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Abstract 
In demyelinating diseases like multiple sclerosis (MS), efficient remyelination is critical for functional 
recovery. Remyelination efficiency declines with age, and is linked to progressive disability. The gene 
regulatory network underlying remyelination, and how it is altered with aging, remains unclear. Here we 
present a comparative single-nucleus RNA and ATAC sequencing analysis of remyelination in young 
and aged mice. We identified gene modules dynamically expressed throughout oligodendrocyte 
differentiation, revealing age-dependent changes in key processes related to myelination. Multi-omic 
analysis allowed us to map the regulatory network driving efficient remyelination within oligodendrocyte 
lineage cells in young mice. We highlight key transcription factors in the network dysregulated with age, 
and we describe similar dysregulations in MS lesions. Modifying the expression of these transcription 
factors in primary oligodendrocyte progenitor cells impacts differentiation. These findings provide a 
foundational understanding of this regenerative process in the context of aging and in chronic 
demyelinating diseases. 
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Introduction  
 
Remyelination in the central nervous system (CNS) is a spontaneous regenerative process following 
demyelination in which adult oligodendrocyte progenitor cells (OPCs) become activated, proliferate, 
and differentiate into new myelin-forming oligodendrocytes1. Newly generated myelin sheaths provide 
critical neuroprotective support by enabling the restoration of conduction velocity and the provision of 
metabolic support to the underlying axon2.  As with most regenerative processes, the efficiency of 
remyelination declines with age3. This age-associated decline underlies the clinical progression of 
multiple sclerosis (MS) into its chronic and progressively degenerative stage4. Elucidating the 
mechanisms of remyelination and how these change with age is critical for understanding age-related 
remyelination failure and how to overcome it therapeutically5. 
​  
The process of remyelination is fundamentally controlled by transcription factors (TFs), which 
orchestrate the differentiation and maturation of OPCs into myelin-producing oligodendrocytes. While 
many TFs, including OLIG1, OLIG2, SOX10, MYRF, NKX2.2, and SOX26–11 have been identified as 
crucial for both developmental and regenerative myelination, their roles have often been studied in 
isolation. We lack a comprehensive understanding of how these TFs work together in an 
interdependent network to drive lineage progression. Establishing a hierarchical network of TFs driving 
remyelination not only provides a deeper understanding of the molecular basis of remyelination but also 
a framework for addressing the hypothesis that age-related remyelination failure arises when this 
network goes awry. 
 
Here we used the lysolecithin mouse model of demyelination-remyelination coupled with single nucleus 
RNA sequencing (snRNA-seq) and single-nucleus ATAC sequencing (snATAC-seq) at key stages in the 
remyelination process to generate a comprehensive cellular map of remyelination in young and old 
mice. We devised a unique computational strategy to leverage our multi-omic data. We first identified 
10 dynamic gene modules that represent distinct biological functions throughout the oligodendrocyte 
differentiation trajectory and uncovered significant age-related changes in their activity. We then used 
this information to construct gene regulatory networks (GRNs) and to identify processive cascades of 
TF activation throughout oligodendrocyte maturation. Our analysis identified key TFs that were not only 
expressed differentially in the oligodendrocyte lineage of young versus aging mice but also in human 
MS lesions. Experimental manipulation of key TFs significantly altered OPC differentiation and 
activation of downstream targets, demonstrating their functional importance and the validity of these 
GRNs. 
 
Results 
 
snRNAseq and snATACseq reveal cellular and chromatin landscape of remyelination in the 
young and aged CNS 
To characterize the transcriptional dynamics underlying remyelination, we induced focal demyelinated 
lesions in the ventrolateral spinal cords of young adult (2-3 months) and aging (14-15 months) mice. 
Tissue was collected for snRNA-seq and snATAC-seq (10X Genomics v3) from naïve mice and at days 
5, 14, and 30 following demyelination (n = 2 per timepoint and age), corresponding to phases of OPC 
recruitment/proliferation, OPC differentiation and active myelination, and completed remyelination (in  
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Fig. 1 | snATAC-seq and snRNA-seq of de- and remyelinating spinal cord lesions in young and aging mice. Caption  
on the next page. 
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Fig. 1 | snATAC-seq and snRNA-seq of de- and remyelinating spinal cord lesions in young and aging mice. a, We 
induced focal demyelinated lesions in the ventrolateral spinal cords of young (2-3 months) and aged (14-15 months) mice, and 
sacrificed the mice at days 5, 14, and 30 post-demyelination, corresponding to the remyelination phases of OPC recruitment, 
OPC differentiation and completed remyelination (in young mice) respectively. snATAC-seq and snRNA-seq were performed in 
spinal cord tissue from these mice (n=2 per age and timepoint). b, Uniform manifold approximation and projection (UMAP) plot 
depicting a two-dimensional view of the integrated cellular neighborhood graph of 52,688 snATAC-seq profiles and 157,563 
snRNA-seq profiles. Points represent cells, colored by cell-type annotations derived from unbiased clustering analysis. NFOL, 
newly formed oligodendrocyte; OPC, oligodendrocyte progenitor cell; MF-ODC, myelin-forming oligodendrocyte; Int-ODC, 
intermediate oligodendrocyte; Mat-ODC, mature oligodendrocyte; MG, microglia; MM, monocyte/macrophage; PIM, peripheral 
immune cell; ASC, astrocyte; END, endothelial cell; EPD, ependymal cell; PER, pericyte; VLMC, vascular leptomeningeal cell; 
SCH, Schwann cell. c, Differential cell abundance results comparing aged vs. young within the four experimental timepoints. 
Points in the UMAP represent cellular neighborhoods from Milo16, colored by the effect size of the comparison as 
log2(fold-change). d, Chromatin accessibility plots showing regions of accessibility (peaks) present in cell-type specific genes 
for each of the respective cell clusters. e, Dot plots displaying the average motif enrichment (snATAC-seq) and gene 
expression (snRNA-seq) for cell-type specific TFs  for each of the cell clusters. 

 

young mice) respectively12 (Fig. 1a). After quality control filtering, a total of 157,563 nuclei were retained 
for snRNA-seq and 52,688 nuclei for snATAC-seq (Supplementary Figs. 1-2; Supplementary Table 1). 
Multi-omic integration and unbiased clustering analysis13–15 revealed all major cell lineages of the CNS 
(Fig. 1b; Supplementary Figs. 3-4). As expected for a white matter (WM) enriched tissue, glial cells 
were the most abundant cell type, with the majority of the 116,932 glial nuclei belonging to the 
oligodendrocyte lineage.  

Differential cell abundance analysis16 comparing age groups at each experimental timepoint details the 
compositional shifts throughout remyelination (Fig. 1c, Supplementary Fig. 3d). This analysis revealed 
differentially enriched cell states with respect to aging across all cell lineages. Lesion samples showed 
a characteristic shift in their cellular composition enriched in immune cells, astrocytes, and OPCs in the 
early stages of remyelination in both young and aging mice. We identified cell-type specific patterns of 
gene expression and chromatin accessibility in the transcriptomic and epigenomic datasets (Fig. 1d, 
Supplementary Table 2). We also estimated genome-wide TF motif enrichment17 at single-nucleus 
resolution in the epigenomic dataset and found similarities between motif enrichment and TF 
expression (Fig. 1e). Furthermore, projecting cell-type labels from the snRNA-seq dataset to the 
snATAC-seq dataset via label transfer analysis demonstrates concordance across data modalities 
(Supplementary Fig. 4).  
 
Multi-omic trajectory analysis uncovers age-dependent dysregulation of dynamic gene 
co-expression networks  
Simultaneous analysis of transcriptional changes based on gene expression and epigenetic changes 
based on chromatin accessibility allows for comprehensive analysis of TF regulatory activity. We first 
set out to understand the TF-driven, dynamic changes in gene expression that occur during 
oligodendrocyte differentiation and maturation during remyelination and how these may be perturbed 
with aging. To this end we first performed pseudotime trajectory analysis18 on oligodendrocyte lineage 
cells (OLCs, Fig. 2a). In both age groups, we could follow lineage progression from quiescent OPCs to 
proliferating OPCs, newly formed oligodendrocytes (NFOL), myelin-forming oligodendrocytes 
(MF-ODC), intermediate oligodendrocytes (Int-ODC), into fully mature oligodendrocytes (Mat-ODC) 
(Fig. 2a). We applied chromatin co-accessibility analysis19 in the OLC snATAC-seq dataset from young 
and aged mice to identify cis-regulatory linkages between promoters and putative enhancer elements 
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(Fig. 2b). Using the snRNA-seq dataset, we identified 7,830 dynamically expressed genes across the 
oligodendrocyte trajectory (t-DEGs) in young and 7,245 in aging, with 6,168 genes with shared dynamic 
expression patterns in both age groups (Fig. 2c). 
 
To characterize major gene expression programs driving remyelination in young and aging mice, we 
performed gene co-expression network analysis20 using young and aged t-DEGs combined (8,907 
genes total), revealing 10 modules (M1 – M10) of highly co-expressed genes (Fig 2c-d, Supplementary 
Fig. 5, Supplementary Table 5). We calculated module eigengenes (MEs), representative gene 
expression profiles based on the entire group of genes present in each module, revealing dynamic 
expression patterns throughout the oligodendrocyte trajectory (Fig. 2d).  Genes and pathways enriched 
in these modules highlight key regulatory relationships of gene networks underlying the biology of 
OLCs specification, differentiation and myelination (Fig. 2e). We projected these modules into the 
snATAC-seq dataset to assess the epigenomic activity of each module throughout the trajectory via 
epigenomic MEs (Fig. 2d), and we found a high degree of concordance across transcriptomic MEs and 
epigenomic MEs (median Pearson correlation per datasets:  R = 0.949), suggesting tightly coordinated 
systemic changes that are conserved from chromatin accessibility to gene expression.  
 
Modules M1 and M2 are expressed in the early stages in the oligodendrocyte lineage (OPC stage) and 
are associated with development-related Gene Ontology (GO) terms such as “regulation of cell 
migration”, “response to cytokine”, “cell differentiation”, and the “Notch signalling pathway” (Figs. 2d-e). 
Modules M3, M4, and M6 are expressed in the intermediate stages (NFOLs and MF-ODCs) and are 
associated with GO terms such as “myelination”, “oligodendrocyte development”, and “regulation of exit 
from mitosis” (Figs. 2d-e). Well known myelin-associated genes including Plp1, Mbp, Mobp, and Mog 
were all among the hub genes of module M4, further supporting its role in regulating myelination. 
Modules M7 – M9 are mostly enriched in  late stages in the lineage (mature oligodendrocytes) and are 
associated with GO terms such as “membrane lipid biosynthesis” and “intracellular cholesterol 
transport” (Figs. 2d-e). Interestingly, M10 is activated both in progenitors and mature cells, indicating 
repression of the module in immature oligodendrocyte stages during the phase of active remyelination 
(Figs. 2d-e). When examining differentially expressed modules between young and aged OLCs, we 
found significant differences in most modules at all 4 time points (Naïve, Day 5, Day 14, and Day 30).  
Most notable was a downregulation in aged OLCs in Modules 5 and 6 at Days 5 and 14, suggesting a 
dysregulation in gene networks underlying gene-regulatory machinery like “mRNA splicing, via 
spliceosome”, and “regulation of exit from mitosis” (Fig. 2f). Additionally, we found significant 
differences in the myelination-related module M4 at key points along the trajectory, for example M4 was 
upregulated in aged OLCs at the end of the trajectory, suggesting a delayed timing in the expression 
programs related to myelination with respect to aging (Fig. 2f). We inspected the composition of the 
gene sets of each module with respect to the sets of t-DEGs identified in young and aging mice (Fig. 
2g). In each module, most genes were dynamically expressed in both young and aging mice. 
Remarkably, 319 out of 320 genes in the myelination module M4 were t-DEGs among both age groups, 
while other modules have higher proportions of age-specific t-DEGs such as the Mat-ODC modules M6 
and M8. Furthermore, we note that the largest module M2 is primarily expressed in OPCs (Figs. 2b-d), 
and we performed a subsequent network analysis of these genes in OPCs only, defining 18 
OPC-specific sub-modules with distinct expression dynamics and associated biological functions 
(OPC-M1 – OPC-M18; Supplementary Fig. 6; Supplementary Table 6).  
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Fig. 2 | Trajectory analysis reveals dynamic signatures of oligodendrocyte maturation. Caption on the next page. 
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Fig. 2 | Trajectory analysis reveals dynamic signatures of oligodendrocyte maturation. a, Overview of the pseudotime 
trajectory analysis on the integrated snATAC-seq and snRNA-seq oligodendrocyte lineage data. A pseudotime trajectory was 
defined using Monocle318. Trajectory dynamically expressed genes (t-DEGs) were identified in young and aged mice, and we 
performed co-expression network analysis of these genes using hdWGCNA20. We also linked genes to putative enhancers in 
young and aged mice via chromatin co-accessibility analysis. Illustrations were created using Biorender.com. b, Heatmap of 
scaled chromatin accessibility values for all gene-linked enhancer regions in 50 uniform bins across the pseudotime trajectory. 
c, Heatmap of scaled gene expression values for all oligodendrocyte t-DEGs in 50 uniform pseudotime bins. Genes are 
grouped by their co-expression module assignment, and ordered by pseudotime trajectory ranks. Selected module hub genes 
are annotated. d, Gene expression and chromatin accessibility dynamics of the ten oligodendrocyte lineage co-expression 
modules. Module eigengene (ME) UMAP feature plots of snATAC-seq and snRNA-seq, and ME trajectory line plots. e, GO 
term enrichment results for each co-expression module. f, Heatmaps showing DME results comparing aged vs. young for each 
module across the 10 uniform bins across the pseudotime trajectory, split by the four experimental timepoints. DME 
comparison was made using a two-sided Wilcoxon rank sum test with Bonferroni P-value adjustment. * P ≤ 0.05, ** P ≤ 0.01, 
*** P ≤ 0.001. g, Proportion of genes in each module that were young t-DEGs (left), aged t-DEGs (right), or shared (middle). 
The number of genes in each set are annotated. Jaccard index of the overlapping sets are shown in the bar plot on the right. 
H, Density heatmap showing distributions of chromatin co-accessibility values for promoter-enhancer pairs detected in the 
oligodendrocyte lineage in young vs. aged mice. Pearson correlation value and significance level are annotated. i-j, 
Epigenomic landscape of the Sox5 locus (i) and the Klk6 locus (j) in young (left) and aged (right) mice. Top: Delta chromatin 
co-accessibility (aged – young) showing enhancer links flanking the Sox5 or Klk6 promoter. Middle: Normalized chromatin 
coverage plots in 10 uniform bins across the pseudotime trajectory. Bottom: gene models at this genomic locus. 

 

Next, we tested whether the age-related changes we observed in the oligodendrocyte lineage were due 
to a broad, global alteration in chromatin accessibility with age. By comparing the strength of 
promoter-enhancer co-accessibility links across the genome, we found a high degree of conservation 
between young and aging OLCs (Pearson correlation R = 0.74, Fig. 2h).  This suggests that the 
observed age-related changes are not caused by widespread epigenetic remodeling but rather by more 
specific disruptions. We found several promoter-enhancer pairs with altered co-accessibility strength 
were highly interconnected hub genes, identified in our analysis of  gene co-expression network 
modules. We focused on the cis-regulatory landscapes of two specific genomic loci with 
promoter-enhancer differences during aging to exemplify this: Sox5 and Klk6, which are hub genes of 
module M2 (expressed in OPCs) and M7 (expressed in mature ODCs) respectively (Figs. 2i-j). The 
transcription factor Sox5 is expressed in OPCs and was shown to be involved in regulating the 
specification and differentiation of OPCs into myelinating ODCs21,22. The Sox5 promoter region was only 
accessible in the beginning of the trajectory in the OPCs, and overall, we found stronger and more 
numerous promoter-enhancer co-accessibility links in the aging OLCs compared to young. At the Klk6 
locus, a gene that encodes a serine protease that is exclusively expressed in mature ODCs, we found 
an increase of promoter-enhancer links in young ODCs relative to aging ODCs. Klk6 has been 
implicated in MS pathogenesis23–25, and Klk6 inhibitor studies suggest that Klk6 may suppress 
myelination by limiting pro-myelinating signals26,27. In line with literature, both of these changes highlight 
age-associated changes that limit the capacity of OLCs to differentiate and form fully myelinating 
ODCs28,29.  

 
Age-dependent dysregulation of the gene regulatory network of remyelination  
Cell fate decisions are controlled by tightly regulated molecular cascades, ensuring proper 
spatiotemporal expression of specific gene programs30. To model the cascade of TF-TF regulation 
required for oligodendrocyte lineage progression during remyelination, we employed a unique 
computational strategy leveraging the integrated ATAC and RNA data of the oligodendrocyte lineage 
trajectory in young and aging remyelinating OLCs (Fig. 3a). We constructed an initial GRN31 based on 
TFs with binding motifs in annotated promoter regions and gene-linked enhancer regions via 
co-accessibility analysis. Using XGBoost regression models, we refined the network by identifying TFs 
that were most predictive for the observed expression of each gene. This process yielded a directed 
GRN, with TFs linked to their respective sets of target genes, i.e. regulons (Supplementary Tables 7-8).  
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Fig. 3 | Transcription factor regulatory cascades underlying remyelination in aging mice. a, TF regulatory network 
analysis strategy. TF binding motif scanning in promoter regions and putative gene-linked enhancers for defining potential 
TF-gene relationships. XGBoost regression models the expression of each gene by potential regulators, ranking the top TFs 
per gene and defining the set of target genes per TF (regulons) comprising the GRN. We identified the most optimal paths in 
this directed network between TFs expressed in OPCs to TFs expressed in mature ODCs, revealing a core set of regulators in 
remyelination. Illustrations were created using Biorender.com. b-c, Subgraphs of the oligodendrocyte TF regulatory networks 
in young (b) and aged (c) mice showing nodes (TFs) and edges identified via optimal pathfinding analysis (other genes in the 
network shown in the background). Nodes are colored by pseudotime trajectory rank. Critical TFs (Sox10, Olig2, Olig1, Tcf4, 
Nkx2.2, and Nkx6.2) and most connected TFs in the network are labelled. Three TF cascades from optimal pathfinding 
analysis are shown below the main network: Olig1 to Nkx6.2; Nkx2.2 to Stat3; Olig2 to Bhlhe41. d, Comparison of TF 
regulatory scores for the inferred regulons of Olig1 and Nkx6.2 in young vs. aged mice. Plots are faceted based on shared 
genes identified in the regulon in both young and aged (top) and unique genes (bottom). e, Scaled expression and aggregated 
TF regulon UCell70 signature scores along the pseudotime trajectory for Olig1 and Nkx6.2 in young and aged mice. 
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To pinpoint the precise sequence of TF activation, we used optimal pathfinding analysis (Fig. 3a). For 
optimal pathfinding we defined TFs that were highly expressed in OPCs as "start TFs" , and TFs 
expressed highly in Mat-ODCs as  “end TFs”. We further stratified the network by ensuring that known 
key, “critical TFs” for oligodendrocyte lineage progression (such as SOX10, OLIG2, OLIG1, TCF4, 
MYRF, NKX2-2, and NKX6-2) were represented in the computed GRN, and assembled individual 
cascades into a core pseudotime-directed GRNs. This allowed us to map the regulatory cascades—the 
step-by-step TF activation events—that drive the maturation of OPCs into Mat-ODCs for young and 
aged OLC trajectories, which revealed distinct gene-regulatory patterns between the two age groups 
(Figs. 3b-c).  
 
GRNs are highly complex systems with an intricate web of connections that provide both redundancy 
and resilience against minor perturbations. We hypothesized that for a perturbation to result in a severe 
pathology, such as that associated with aging, it must disrupt the function of TFs—or "hubs"—which 
possess a high degree of connectivity and control large numbers of downstream target genes. Our 
analysis revealed significant age-dependent changes in the connections and expression dynamics of 
key TF pairs, including OLIG1 – NKX6-2, NKX2-2 – STAT3, and OLIG2 – BHLHE41 (Figs. 3b-e; 
Supplementary Figs. 7-8). For instance, the TFs Olig1 and Nkx6-2 regulate distinct sets of genes in the 
young and aged GRNs, with over 100 unique target genes per age group (Fig. 3d). Furthermore, we 
found that the expression dynamics of NKX6-2 are temporally delayed in the aged GRN. This delay in 
the activation of its entire regulon (Fig. 3e) provides a compelling and plausible molecular mechanism 
that contributes to the well-documented age-dependent delay in oligodendrocyte differentiation and 
remyelination29. 
 
Identification of TFs that are linked to the age-dependent remyelination failure in MS 
To determine if the transcriptional network changes we observed in aging mice are also relevant to 
human disease, we re-analyzed two published snRNA-seq datasets32,33 from human MS lesions and 
healthy WM (Fig. 4a; see Methods for details, Supplementary Fig. 9). We compared differentially 
expressed genes (DEGs) in MS lesions to those in young and aged OLCs during remyelination 
(Supplementary Tables 9-10; Supplementary Figs. 10-11). Given the known deficits in lineage 
progression of aging OLCs, we focused our analysis on DEGs that were also dynamically expressed 
along the OLC trajectory (t-DEGs) and were part of our previously computed regulatory network (Fig. 
3). We further identified genes with a "switch-like" expression pattern—those with peak expression in a 
narrow window of the trajectory (Fig. 4b). We found 1,033 such switch-like genes that were shared 
between young and aged mice, a statistically significant overlap (Fig. 4c, one-sided Fisher's exact test 
P = 0.00). These switch-like genes were most active during critical transitions in lineage progression, 
such as the differentiation from OPCs to immature oligodendrocytes. However, we found fewer of these 
genes active during these transitions in aging OLCs compared to young OLCs, again suggesting 
age-related differences in differentiation and maturation efficiency (Fig. 4c). Pathway enrichment 
analysis of these switch-like genes revealed enrichment of epigenetic processes and Wnt signaling 
exclusively in young OLCs, whereas those related to cellular metabolism and development were 
exclusively enriched in aging OLC switch-like genes (Fig. 4d-f). 
 
We identified a significant overlap between the TFs dysregulated in the aging mouse oligodendrocyte 
lineage and those in human MS lesions, with 53 differentially expressed TFs shared between the two  
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Fig. 4 | Differential regulation of key TFs in aging and MS. a, We define dynamic TFs dysregulated in aging and in human 
myelinating disease based on the following criteria: 1. TFs that are differentially expressed (DE) between young and aged mice 
in the oligodendrocyte lineage in our snRNA-seq dataset; 2. TFs that are DE in OLCs from MS lesions compared to healthy 
tissue in two public snRNA-seq datasets; 3. TFs that are dynamically expressed in the oligodendrocyte trajectory (t-DEGs); 4. 
TFs that represent a subgraph of the oligodendrocyte GRNs resulting from optimal pathfinding analysis. A set of 42 TFs meet 
these criteria. Illustrations were created using Biorender.com. b, Heatmaps of scaled gene expression values across 50 uniform 
pseudotime bins for genes with “switch-like” expression patterns in young and aged mice, and genes shared among both age 
groups. c, Euler diagram shows the overlap of switch-like genes identified in young and aged mice. One-sided Fisher’s exact 
test statistics are shown. OR: odds ratio. d-f, GO enrichment results for switch-like genes shared between young and aged (d), 
young only (e), and aged only (f). g, Heatmaps of scaled gene expression and aggregated TF regulon UCell70 signature scores 
for the 42 prioritized TFs from (a). TFs are ordered by pseudotime trajectory ranking in young mice. Co-expression module 
assignments for each TF are shown on the right. TFs selected for downstream validation experiments are highlighted with bold 
text. h, Comparison of pseudotime trajectory ranks of dynamically expressed TFs. Critical TFs and TFs used for downstream 
validation are labeled. Points are colored by the relative difference in TF expression timing based on trajectory ranks between 
young and aged. i, TF cascades from optimal pathfinding analysis for Nkx6-2 to Nr6a1 in the young network (top) and Nr6a1 to 
Stat3 in the aged network. j, Comparison of TF regulatory scores for the inferred regulons of Nr6a1 in young vs. aged mice. 
Plots are faceted based on shared genes identified in the regulon in both young and aged (top) and unique genes (bottom).   
k-l, Nr6a1 regulatory network in young (k) and aged (l) mice. Nodes represent genes, and edges represent TF-gene regulatory 
relationships. Primary (direct) target genes representing the regulon of Nr6a1 are shown as darker nodes, and secondary target 
genes (i.e., the regulons of other TFs targeted by Nr6a1) are shown in a lighter color. Other TFs targeted by Nr6a1 are labeled. 
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datasets (Fig. 4a, one-sided Fisher’s exact test P = 1.5e-24). Further refinement to include only TFs 
found in the GRN optimal pathfinding analysis revealed 42 TFs that were dysregulated in both our 
aging mouse model and in human MS lesions. This age-associated dysregulation was not confined to 
individual TF expression levels; it also impacted their associated regulons in both the aging mouse and 
human MS lesions (Fig. 4g). Pseudotime trajectory ranks of each TF (where lower ranks indicate 
maximum expression of the TF at an earlier stage in the trajectory and higher ranks indicate expression 
at a later stage) highlights that expression timing of core TFs such as Olig1, Olig2, and Sox10 remained 
stable, but the temporal expression of other TFs, like Bach2 and Nr6a1, was altered with age (Fig. 4h). 
Interestingly, co-expression network analysis had identified Nr6a1 as a member of module M10, which 
is the only module active in both OPCs and in mature ODCs, suggesting a potential shift in its role as a 
regulator of mature ODCs to OPCs with aging (Fig. 2c-d). This shift is further supported by our optimal 
pathfinding analysis, showing the role of Nr6a1 (GCNF) as a start TF in aged mice and an end TF in 
young mice (Fig. 4i). Further examination of  target gene sets of  Nr6a1 revealed significant age-related 
differences. We found the set of genes regulated by GCNF in young OLCs  to be largely distinct from 
the set it regulates in aged OLCs, which suggests that the regulatory function of GCNF changes 
significantly with age (Figs. 4j-l). These results highlight the dysregulation of the aging transcription 
factor network driving oligodendrocyte lineage progression.This dysregulation occurs on multiple levels, 
including, altered transcription factor expression, timing of expression, and target gene regulation, 
affecting critical hub genes during major transitions in OLC lineage progression. 
 
Functional validation of critical TF dysregulation in oligodendrocyte differentiation 
We selected seven TFs for experimental validation based on the criteria described in our analysis: 
BHLHE41, BACH2, ELF2, FOXK2, GCNF, SOX8, and STAT33 (Supplementary Figs. 12-13). Of these, 
only SOX8 and STAT3 had been previously implicated in OLC biology34–37. ELF2 had been suggested 
to have a positive correlation with myelination in a snRNAseq study of oligodendrocytes in MS38.  The 
remaining 4 TFs have not previously been described in the context of OLC biology,  but have been 
studied in the context of regulating proliferation and differentiation in other cell types39–43. 
 
Most of the short listed TFs were upregulated with aging, and we therefore investigated gain-of-function 
effects in neonatal, primary rodent OPCs utilizing lentiviral vectors.  Under proliferation conditions 
(Supplementary Fig. 14a), TF overexpression had no effect on proliferation (Supplementary Figs. 14b,c 
and Supplementary Figs. 15a, b).  Overexpression of GCNF, however, seemed to have a positive effect 
on OPC survival (Supplementary Fig. 14d and Supplementary Figs. 15c, d).  As most of these TFs are 
expressed later in the oligodendrocyte trajectory, we tested the gain-of-function effect on differentiation 
of neonatal OPCs (Fig. 5a).  Individual overexpression of all 7 TFs significantly enhanced OPC 
differentiation, reaching or exceeding levels similar to those seen with the pro-differentiating hormone 
T3 (Figs. 5b, c and Supplementary Figs. 15e, f). These results corroborate previous reports on the 
pro-differentiation roles of these STAT3 and SOX8.  However, this is the first observation to our 
knowledge of the other 5 TFs enhancing OPC differentiation. To further functionally validate the 
shortlisted TFs,  we explored the effect of overexpression of these TFs on their respective downstream 
regulatory network. To this end we performed bulk RNA sequencing on the TF overexpressing OLCs. 
All TF with the exception of GCNF initially predicted to be involved in differentiation and maturation of 
OLC, therefore samples were collected and analyzed 24h after inducing differentiation through mitogen 
withdrawal, whereas GCNF overexpression samples were collected whilst in proliferation condition.  
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Fig. 5 | TF overexpression affects OPC differentiation and downstream gene expression. a. Diagram showing the 
experimental timeline of the OPC differentiation assay with lentiviral constructs for select transcription factor overexpression. 
Illustrations were created using Biorender.com. b.  Representative images of control OPCs (GFP), control (with T3) OPCs, 
and OPCs transfected with the 7 select transcription factors in differentiation conditions and stained for Olig2 and myelin 
basic protein (MBP).  c.  Quantification of the percentage of differentiated OPCs (Olig2+MBP+) of total OLCs (Olig2+) in 
response to transcription factor overexpression treatments.  Each data point shows the mean percentage across technical 
replicates (n=3) per biological replicate (n=4). Each bar shows the mean percentage across biological replicates (n=4), with 
propagated standard deviations indicated as error bars. Statistical analysis was performed using a linear mixed-effects 
model on the logit-transformed percentages, with transcription factor overexpression as a fixed effect and animal as a 
random effect. Green bars highlight transcription factor overexpression treatments with a significant effect on the percentage 
of differentiated OPCs compared to the control group (*** FDR-adjusted q < 0.001 ).  Scale bar = 100 µm.  d. Volcano plots 
showing differential gene expression results comparing transcription factor (TF) overexpression and GFP controls with bulk 
RNA-seq (n=4). The following TFs were overexpressed: Elf2 (d) and Nr6a1 (e).  For each panel, the plot on the right shows 
primary & secondary target genes from both young and aged mice for the TF of interest, and the plot on the left shows all 
other genes.    
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Overexpression of all of these TFs drastically changed the transcriptional landscape of oligodendrocyte 
cells, including several TFs that are primary or secondary downstream of the overexpressed TF (Figs. 
5d,e, Supplementary Fig. 16, Supplementary Table 11).  Overall, these results confirm the validity of our 
computational analysis, and  provide functional validation for the relevance of these TFs for 
remyelinating OLCs, and that their dysregulation is likely to contribute to the reduced ability of these 
cells for regeneration.  
 
Discussion  
 
Our study provides a comprehensive, single-nucleus multi-omic dataset of remyelination, revealing the 
gene-regulatory dynamics orchestrating this vital regenerative process, and highlighting how it is 
fundamentally compromised with age. We identify key oligodendrocyte gene expression modules and 
regulatory networks, and characterize their dynamics throughout remyelination with respect to aging. 
Age-related shifts in the regulatory dynamics of these modules and networks coincide with the decline 
of remyelination efficiency seen throughout aging and in demyelinating diseases like MS3. 
 
The high-resolution, integrated single-nucleus RNA and ATAC sequencing data allowed us to map the 
pseudotime trajectory of the oligodendrocyte lineage in unprecedented detail. We found that the core 
gene co-expression modules of the oligodendrocyte lineage, and many of the trajectory-dependent 
genes (t-DEGs), are shared between young and aged mice during remyelination. This suggests that the 
fundamental epigenomic and transcriptomic programs for remyelination are largely conserved with 
aging. However, a deeper analysis of the pseudotemporal dynamics in specific co-expression modules 
revealed significant age-dependent dysregulation, particularly among modules associated with 
myelination and oligodendrocyte development. This is exemplified by the downregulation of modules 
M5 and M6 in aged mice (naïve and day 30 timepoints), a finding that correlates with the 
well-established delay in oligodendrocyte differentiation and remyelination in older animals3,29,44.  
 
Overall, we found age-related changes not be due to a broad change in chromatin accessibility, as we 
observed a high degree of conservation in promoter-enhancer co-accessibility. Instead, we found 
specific, localized disruptions in the cis-regulatory landscapes of key genes, such as Sox5 and Klk6. 
These region specific disruptions suggest that subtle age and region specific changes may underlie the 
profound failure in the precise gene regulatory control needed for successful maturation of OLCs. Our  
computational strategy allowed us to move beyond simple co-expression relationships towards 
modeling the directed, hierarchical regulatory cascades that drive the regulatory dynamics of 
oligodendrocyte lineage progression. We demonstrated that the age-related delay in remyelination is 
reflected in perturbations within this GRN. While core TFs like OLIG1, OLIG2, and SOX10 maintain 
their expression timing, the activity and regulatory influence of other crucial TFs are profoundly altered. 
A prime example is Nkx6-2, which shows a significant temporal delay in its regulatory signature in aged 
mice. This finding hints at a direct molecular explanation for the observed delayed differentiation, linking 
a specific TF-driven event to the macro-phenotype of remyelination failure. 
 
By comparing our results with two published snRNA-seq datasets of human MS32,33, we establish a 
direct link between the transcriptional dysregulation in the aging mouse model of remyelination and the 
progressive pathology in human MS lesions. We identified a set of 42 conserved TFs that were i) 
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differentially expressed between young and aged mice, ii) differentially expressed between MS lesions 
and healthy WM, iii) dynamically expressed across the OLCs (t-DEGs), and iv) implicated in the core 
GRN from TF pathfinding analysis. Ultimately, we further narrowed this to a group of 7 TFs for in vitro 
experimentation. The finding that these TFs are part of the core regulatory network and that their 
expression and regulatory function—such as the role of Nr6a1 (GCNF) in young versus aged 
mice—are altered, provides compelling evidence that the similar GRN disruptions may contribute to 
age-related remyelination failure both in rodents and in human MS. 
 
We could further confirm that this computed dysregulation in the aged GRN is of functional 
consequence to OLCs, as overexpression of each of the 7 TFs triggered changes in the ability of OPCs 
to form differentiated oligodendrocytes.  Furthermore, experimental overexpression resulted in various 
changes in the downstream transcription factor network.  Apart from SOX8 and STAT3, this is the first 
functional description of the other 5 TFs in OPCs.  The pro-differentiation effects of these 7 TFs, 
together with the dysregulation in the aged GRN, further suggests that these key TFs may underlie the 
differentiation block observed in demyelinated lesions from aging rodents and chronic MS29,45. 
  
Collectively, our work provides a foundational understanding of the GRN driving remyelination and 
identifies critical nodes of dysregulation within the GRN of the aging oligodendrocyte lineage. This work 
provides a foundational understanding of remyelination’s gene regulatory control and offers a powerful 
new framework for developing a network-based understanding of gene regulation during tissue 
regeneration and its age-dependent failure. Future work is needed to fully harness the power of this 
analysis and develop network modulating strategies through targeting single or combinations of critical 
nodal factors that are able to shift the entire network into a more youthful state. 
 
Methods 
 
Mice 
All animal experiments were conducted in accordance with the United Kingdom Home Office 
regulations. Female C57Bl/6 mice from Charles River were used for lysolecithin demyelination at 2-3 
months and 14-15 months of age and were housed under standard laboratory conditions on a 12-hour 
light/dark cycle.  Mice were housed in groups of up to 5 animals without restriction to food and water. 
 
Lysolecithin-induced demyelination 
Mice were anaesthetized with 2.5% isoflurane and administered buprenorphine (0.03 mg/kg, s.c.) as an 
analgesic. The thoracic spinal cord was exposed, after which 1.0 μL of 1.0% lysolecithin (L1381, 
Sigma) was injected to induce a focal demyelinating lesion into the ventrolateral funiculus over 2 
minutes46. After injection, the needle was maintained in position for an additional 2 minutes, after which 
the mice were re-sutured and placed in a recovery chamber.  Mice were monitored daily until time of 
sacrifice on Days 5, 14, and 30 after injection.  
 
Nuclei Isolation 
Mice were perfused with RNase-free PBS under terminal anesthesia. A 6 mm segment of the spinal 
cord ventral hemisection, encompassing the lysolecithin lesion site, was dissected and snap-frozen on 
dry ice. The fresh frozen tissue was minced and homogenized in Nuclei EZ Lysis Buffer using a Dounce 
grinder (NUC101-1KT, Sigma Aldrich). The tissue homogenate was filtered and centrifuged through an 
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OptiPrep™ Density Gradient Medium (Sigma Aldrich) to purify nuclei. Purified nuclei were stained with 
Trypan Blue and counted using a hemocytometer. The same nucleus suspension from each sample 
was used for both single-nucleus RNA-seq and single-nucleus ATAC-seq preparations. 
 
Single-nucleus RNA-seq and ATAC-seq Library Preparation and Sequencing 
Single-nucleus RNA-seq libraries were prepared using the Chromium Next GEM Single Cell 3’ v3.1 
Reagents Kit, and single-nucleus ATAC-seq libraries were prepared using the Chromium Next GEM 
Single Cell ATAC Reagents v1.1 Kit (10x Genomics), following the manufacturer’s instructions. Library 
quality was assessed with the TapeStation (Agilent) and quantified with Qubit (Thermo Fisher). 
Libraries were then pooled and sequenced on the NovaSeq 6000 platform (Illumina). 
 
Processing and initial analysis of the snATAC-seq dataset 
For the snATAC-seq dataset, we aligned sequencing reads from each individual sample to the mouse 
reference genome (mm10) using cellranger-atac count (v 1.2.0). From cellranger-atac, we obtained a 
.bam file of mapped sequencing reads and a fragment file containing the genomic coordinates of each 
sequenced read-pair associated with cell barcodes, indicating a region of accessible chromatin in a 
single nucleus.  
 
We imported these fragments files into ArchR46 for several downstream data processing tasks. ArchR 
initially quantifies chromatin accessibility in single nuclei by summarizing fragments in evenly spaced 
500 bp genomic bins, referred to as a “tile matrix”. Additionally, ArchR uses this tile matrix to quantify a 
“gene score”, an epigenomic proxy of gene expression, using a model that summarizes the signal at a 
gene’s transcription start site (TSS) with a decaying weight throughout the gene body. Constructing the 
tile matrix and the gene score matrix was done using the ArchR function createArrowFiles, which also 
computes cell-level quality information like TSS enrichment. As an initial filter, we excluded low-quality 
nuclei with TSS enrichment lower than 4, or fewer than 1000 unique fragments. We also computed 
doublet scores using the addDoubletScores function and filtered out the inferred doublets (two or more 
distinct nuclei with the same barcode) from the downstream analysis. 
 
We next sought to group cells together by their epigenomic signatures using dimensionality reduction 
and clustering analysis. We first performed iterative latent semantic indexing (iLSI) using the ArchR 
function addIterativeLSI, thereby producing a low-dimensional representation of the dataset. Harmony47 
batch correction was applied to the iterative LSI matrix based on the sequencing batch. Using this 
batch-corrected representation, we then performed graph-based clustering with the Louvain algorithm 
using the function addClusters using a resolution of 0.8. We constructed a two-dimensional projection 
of the dataset by applying UMAP to the cell neighborhood graph previously used for clustering. Cell 
type identity labels were given to each cluster by inspecting gene score signatures and chromatin 
accessibility coverage tracks in each cluster for a panel of canonical cell type marker genes for cell 
types known to be found in the mouse spinal cord. We removed four clusters that showed conflicting 
marker gene scores, indicating additional doublet populations that were not previously identified. We 
next used MACS2 for peak calling in pseudo-bulk replicates for each of the snATAC-seq clusters. 
Peaks from these different analyses are then merged into a unified set of peaks using the iterative 
overlap approach in ArchR with the function addReproduciblePeakSet. Within this peakset, we tested 
for transcription motif enrichment in single nuclei using the chromVAR17 algorithm with the 
JASPAR202048 motif database. After fully processing the dataset as described, we converted the 
 
Dimas, Morabito & Rawji et al. ​ bioRχiv | 16
​  
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 14, 2025. ; https://doi.org/10.1101/2025.11.14.688494doi: bioRxiv preprint 

https://app.readcube.com/library/05286e8e-f5e3-4394-8898-76e5d94ec1b0/all?uuid=13688556636428084&item_ids=05286e8e-f5e3-4394-8898-76e5d94ec1b0:3c2dfb35-edff-4d06-afb2-113874b33a46
https://app.readcube.com/library/05286e8e-f5e3-4394-8898-76e5d94ec1b0/all?uuid=260454167938839&item_ids=05286e8e-f5e3-4394-8898-76e5d94ec1b0:bb300d00-3854-42f3-adf4-7b9e34313202
https://app.readcube.com/library/05286e8e-f5e3-4394-8898-76e5d94ec1b0/all?uuid=6285645309316555&item_ids=05286e8e-f5e3-4394-8898-76e5d94ec1b0:e42889df-f431-4223-9f33-b565527eb32a
https://app.readcube.com/library/05286e8e-f5e3-4394-8898-76e5d94ec1b0/all?uuid=0036972229237508536&item_ids=05286e8e-f5e3-4394-8898-76e5d94ec1b0:9974d064-c667-4883-98c2-49b767c20855
https://doi.org/10.1101/2025.11.14.688494


 
ArchRProject object to SeuratObject format49 to facilitate downstream integration with the snRNA-seq 
dataset using Seurat (v 4.3)50 and Signac (v 1.10)51. 
 
Processing and initial analysis of the snRNA-seq dataset 
For the snRNA-seq dataset, we aligned sequencing reads from each individual sample to the mouse 
reference transcriptome (mm10) using cellranger count (v 6.0). From cellranger count, we obtained a 
.bam file of mapped sequencing reads and a gene by barcode expression matrix (.mtx file) containing 
the gene number of UMI attributed to each gene for each barcode. We next used these gene 
expression matrices to identify potential doublets with the Scrublet52 algorithm, and we removed 
predicted doublets from our subsequent analysis.  
 
For downstream data analysis with Seurat, we created a SeuratObject containing the merged gene 
expression matrices from the different samples. We removed low-quality nuclei based on the following 
thresholds: greater than 5% mitochondrial reads, fewer than 500 RNA counts, fewer than 200 genes 
detected, and greater than 5,000 genes detected. We performed dimensionality reduction and batch 
correction using online integrative non-negative matrix factorization (iNMF) with the R package Liger53. 
We used this iNMF data representation to compute a cell neighborhood graph with the FindNeighbors 
function, and to perform Louvain clustering analysis with the FindClusters function (resolution 0.5). We 
computed a two-dimensional projection of the snRNA-seq dataset by applying UMAP to the cell 
neighborhood graph. Cell type identity labels were given to each cluster by inspecting gene expression 
signatures in each cluster for a panel of canonical cell type marker genes for cell types known to be 
found in the mouse spinal cord. We employed a “one-versus-rest” strategy to perform differential gene 
expression analysis with MAST54 between a given cluster with all other clusters, enabling us to identify 
marker genes that are expressed specifically in each cluster.  
 
Integration of snATAC-seq and snRNA-seq datasets 
We integrated our snATAC-seq and snRNA-seq datasets using Seurat to facilitate numerous 
downstream multi-omic analyses. Since we have the snATAC-seq gene score matrix, an epigenomic 
proxy of gene expression signal, we have a shared feature space to integrate the two datasets despite 
being measurements of distinct genomic features. In general, we use the snRNA-seq dataset as a 
reference in these integrative analyses because snATAC-seq data tends to be noisier than snRNA-seq 
data.  
 
We first sought to perform a supervised transfer learning analysis to predict cell-type labels in our 
snATAC-seq dataset based on our snRNA-seq dataset. We used the Seurat function 
FindTransferAnchors to identify transfer anchors (groups of cells with highly similar molecular states 
based on their relationships in a nearest neighbor graph) using snRNA-seq as the reference and 
snATAC-seq as the query with canonical correlation analysis (CCA) as the underlying dimensionality 
reduction. We next used the Seurat function TransferData to compute a matrix of snATAC-seq nuclei by 
snRNA-seq clusters with each value in this matrix being the predicted probability of a snATAC-eq nuclei 
assigned to one of the snRNA-seq clusters. We then used the same anchors to obtain an imputed gene 
expression matrix for the snATAC-seq dataset using the Seurat TransferData function. We then merged 
the two datasets into one SeuratObject and computed an integrated UMAP of snRNA-seq and 
snATAC-seq. 
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Linking genes to candidate cis-regulatory elements 
Using our multi-omic dataset, we sought to identify regulatory links genes between candidate 
cis-regulatory elements (cCREs). This analysis is similar to our strategy for linking genes with cCREs in 
previous single-nucleus multi-omic study13. We first sought to identify pairs of chromatin accessibility 
peaks which were co-accessible in each cell type in our young and aged mice. This analysis was 
performed using the R package Cicero19, which identifies pairs of co-accessible peaks by correlating 
chromatin accessibility signals within aggregated metacell representations of the input data, penalizing 
the correlation based on genomic distance with a maximum allowable distance of 500kb. We performed 
this analysis separately for different cell types and experimental groups since these potential epigenetic 
regulatory relationships may be unique to certain biological conditions. While this analysis does not 
specifically focus on genes, to specifically inspect potential links between genes and cCREs, we first 
subset the set of co-accessible pairs identified by cicero where one peak flanks a gene’s promoter 
region and the other peak55 lies in a distal genomic region. For downstream analysis, we retained the 
top 20% peak-gene links by their co-accessibility scores. 
 
Multi-omic pseudotime trajectory analysis of the oligodendrocyte lineage  
To thoroughly characterize the molecular signatures of OLCs in our dataset, we sought to perform an 
integrated multi-omic trajectory analysis using the R package Monocle318 (v 1.3.1). For this analysis, we 
included all OLCs from both young and aged animals and all time points to be able to compare different 
groups along a unified trajectory. Using our integrated dataset as previously described, we first 
computed a principal graph in low-dimensional space using the Monocle3 function learn_graph with 
default parameters. We then ordered the cells along a pseudotime trajectory with the Monocle3 function 
order_cells, indicating the OPC cluster as the starting point. 
 
We next sought to identify features that were changing along the trajectory. We used a generalized 
linear mixed effects model to perform differential gene expression analysis with respect to the 
pseudotime ordering as a continuous variable using the Monocle3 function fit_models. We also 
accounted for sequencing batch, number of UMI, and mitochondrial read content as model covariates. 
Trajectory dynamically expressed genes (t-DEGs) were denoted as those with a significant (Bonferroni 
adjusted P-value < 0.05) test result. This analysis was performed separately for nuclei from the young 
and aged mice so we could compare the results with respect to aging. We cut the pseudotime trajectory 
into 10 and 50 evenly sized bins, where each bin contains the same number of cells, for further analysis 
and data visualization with pseudo-bulk profiles of these bins. We next used a recurrent variational 
autoencoder (RVAE) 60 to compute de-noised gene expression signatures of these t-DEGs in evenly 
spaced windows throughout the trajectory and to compute a low-dimensional embedding of these 
genes with respect to their temporal expression patterns. Out of the t-DEGs, we also sought to identify 
genes with switch-like expression patterns which may be important in the transition phase between 
progenitors and oligodendrocytes. We defined “switch genes” as genes that reached 80% of its 
maximum expression level in only two out of 50 trajectory windows. 
 
Gene co-expression network analysis in the oligodendrocyte lineage 
We performed weighted gene co-expression network analysis (WGCNA)56 in the OLCs of the 
snRNA-seq dataset using the R package hdWGCNA20 (v 0.4.02). Prior to network analysis, we 
computed pseudo-bulk gene expression profiles for each of the snRNA-seq samples split by the 10 
pseudotime windows using the hdWGCNA function ConstructPseudobulk followed by a log2(CPM) 
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normalization. We used the set of oligodendrocyte trajectory DEGs t-DEGs from both the young and old 
mice as the input features for network analysis. Using the hdWGCNA function TestSoftPowers, we 
tested the scale-free topology model fit for different soft-power thresholds and selected the smallest 
power that yielded a fit greater than 0.8. We then constructed the co-expression network using the 
hdWGCNA function ConstructNetwork with a minimum module size of 50, a merge cut height of 0.05 
and a detect cut height of 0.995 for Dynamic Tree Cutting57, and default values for all other parameters. 
From this analysis we obtained 10 co-expression modules and a topological overlap matrix (TOM) 
containing co-expression information for each pair of genes. We computed MEs to summarize gene 
expression information for each co-expression module in each cell using the hdWGCNA function 
ModuleEigengenes, and we applied Harmony correction to the MEs based on sequencing batch. We 
then computed eigengene-based connectives (kMEs) for each gene using the hdWGCNA function 
ModuleConnectivity, which thereby allows us to identify the most connected genes in each module, also 
known as the module hub genes.  
 
By inspecting the gene expression patterns of each module throughout the trajectory and with respect 
to the distinct subtypes within the OLCs (OPCs, MFOLs, etc), we noted that one of the largest modules, 
M2, was exclusively expressed in the OPCs. To identify additional patterns within this module, we 
performed another round of network analysis using the genes in module M2 in the snRNA-seq nuclei 
annotated as OPCs. We performed this additional network analysis with hdWGCNA using the same 
functions and settings as previously described above, identifying 18 additional co-expression modules 
specific to OPCs. We identified enriched biological processes in each of the co-expression modules 
using the R package EnrichR (v 3.1) using the following reference databases: GO Biological Processes 
2021, GO Cellular Component 2021, GO Molecular Function 2021. We visualized the gene expression 
patterns of the MEs throughout the oligodendrocyte lineage trajectory with the hdWGCNA function 
PlotModuleTrajectory, and we plotted heatmaps showing the gene expression trajectories of individual 
gene faceted by co-expression module. We performed differential module eigengene (DME) analysis 
with the hdWGCNA function FindDMEs to compare the co-expression module expression patterns 
between young and aged mice throughout the oligodendrocyte lineage trajectory. We assessed the 
epigenomic activity of these co-expression modules by projecting the modules into the snATAC-seq 
dataset. We used the hdWGCNA function ProjectModules to calculate MEs in the OLCs from the 
snATAC-seq dataset using the ArchR gene score assay. 

 
Transcription Factor Regulatory Network Analysis of the Oligodendrocyte Lineage 
We used the information from our integrated single-nucleus multi-omic oligodendrocyte lineage to 
perform transcription factor (TF) regulatory network analysis. The goal of this analysis is to identify 
active trans-regulatory links between TFs and their putative target genes. Here we use a custom 
bioinformatic pipeline leveraging the integrated gene expression and chromatin accessibility information 
to infer TF regulatory networks, with the full code and documentation available on our GitHub page. 
Importantly, we performed the TF regulatory network analysis separately on nuclei from the young and 
aged populations to facilitate downstream comparisons. Additionally, we selected specific cell 
populations in our dataset for this analysis to capture the regulatory changes underlying re-myelination:  
Since TFs can regulate target genes through binding sites at a gene’s promoter or at a distal enhancer 
binding site mediated by chromatin looping, we first collected information about genome-wide motif 
binding sites using the R package motifmatchr (v 1.12.0) to search for position weight matrices (PWMs) 
for TF binding motifs in the JASPAR202048 database. We established links between TFs and putative 
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target genes if there was a TF motif present in a gene’s promoter region or if a TF was present in a 
linked distal cCRE from our previously described chromatin co-accessibility analysis, thereby capturing 
enhancer mediated TF-gene regulatory interactions. We used these initial TF-gene mappings to further 
identify highly confident regulatory relationships by modeling each gene’s expression based on the 
expression of its potential TF regulators. We next used extreme gradient boosting trees (XGBoost) to 
build an ensemble of regression models to predict the gene expression of each gene based on the 
expression levels of their putative TF regulators. For this analysis we performed 5-fold cross validation 
and averaged the performance statistics across these folds. XGBoost regression provides us with 
information about how important each TF was for accurately predicting the expression of a particular 
gene, therefore allowing us to systematically prioritize which TFs were likely actively regulating each 
gene. Using this information we defined sets of confident target genes for each TF, called TF regulons, 
by retaining the top five TFs for each gene based on their XGBoost importance scores with a minimum 
threshold of 0.001. We further stratified these TF regulons based on gene expression correlations 
between the TF and the target genes, where positive correlations represent putative “activating” 
relationships and negative correlations represent putative “repressing” relationships. Using the TF motif 
binding information and the results from our XGBoost regression analysis, we construct TF regulatory 
networks where nodes in the network represent genes or TFs and directed edges represent with a 
weighted regulatory importance score. We used the R package igraph (v 2.0.3) to assemble these 
networks and for downstream data visualization. Together with the enhancer and promoter binding site 
information, TF regulatory network analysis provides potential mechanistic understanding for gene 
regulatory relationships that can be further probed with experimental validation. 
 
Optimal pathfinding to identify cascades of transcription factor regulation 
We sought to use the TF regulatory networks from young and aged mice along with the multi-omic 
oligodendrocyte trajectory to computationally infer the temporal dynamics of TF binding and 
subsequent gene expression changes in remyelination, and to understand how these dynamics change 
between young and aged mice. For this analysis, we focus only on the TF-TF regulatory relationships in 
our networks. In essence, our goal is to identify a core directed subgraph within these TF-TF networks 
that represent the most critical regulators of remyelination and oligodendrocyte maturation. Several key 
TFs are already known to be involved in these processes based on previous studies, including Sox10, 
Nkx2-2, Nkx6-2, Tcf4, Olig1, and Olig2, and we leverage this prior knowledge in our approach.  
 
Here we employed Dijkstra’s algorithm58 to perform optimal pathfinding analysis from TFs highly 
expressed in OPCs at the earliest point in the pseudotime trajectory (start nodes) towards those most 
highly expressed in Mat-ODCs at the terminus of the pseudotime trajectory (end nodes) to predict 
potential TF regulatory cascades. For this pathfinding analysis, we used the subgraph of the full TF 
regulatory network containing only TFs and their links with other TFs, excluding all other genes. We 
weighted the edges of this network with a custom score accounting for binding site information (TF 
motif present at target’s promoter, enhancer, or both), the regulatory importance score from our 
XGBoost regression analysis, TF-TF co-expression, and the pseudotime bin distance. Since Dijkstra’s 
algorithm identifies optimal paths in a network by traversing low-cost edges, small but positive edge 
weights in our network represent TF-TF regulatory relationships with strong evidence from multiple 
sources. Importantly, this analysis does not account for repressive regulatory relationships, since only 
edges with positive weights are retained for analysis. We first identified the shortest paths in this 
network between the starting nodes and the six previously mentioned TFs with substantial prior 
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evidence for their involvement in oligodendrocyte differentiation, which we termed “critical nodes” in this 
network. We next identified the shortest paths between the critical nodes and the end nodes. To 
consider TF cascades that do not involve the critical nodes, we also identified the shortest paths 
between the start nodes and the end nodes. We finally assemble the nodes and edges of these 
individual paths into a new graph. We visualized this directed graph in the RVAGene latent space to 
visually distinguish the pseudotemporal relationships between TFs throughout oligodendrocyte 
maturation. We computed key network statistics like centrality and degree within this subgraph. We 
implemented this pathfinding analysis using the R package igraph. 
 
Reprocessing published human MS snRNA-seq datasets 
We collected raw sequencing data (.fastq format) for two previously published snRNA-seq datasets 
from human MS donors and cognitively normal controls. The Absinta et al 202133 snRNA-seq dataset 
was collected from the Gene Expression Omnibus (GEO) at accession GEO180759, and the Schirmer 
and Velmeshev et al 201932,33 dataset was collected from the Sequence Read Archive (SRA) at 
accession PRJNA544731. For each biological replicate, we used Kallisto Bustools59 to pseudoalign raw 
sequencing reads to the human reference transcriptome (GRCh38) and quantify gene expression 
levels for each cell barcode. The human reference transcriptome was obtained from the 10X Genomics 
website (v 2020-A, July 2020), and was re-formatted for use with Kallisto Bustools using the kb ref 
function. We then ran CellBender60 to correct ambient RNA contamination in each of the snRNA-seq 
samples. Similar to our mouse snRNA-seq dataset, we ran Scrublet to identify and remove potential 
doublets from these datasets. Individual counts matrices were then merged into a single anndata object 
for the two datasets for downstream analysis with the Python package Scanpy (v 1.6)61.  
 
We performed the subsequent clustering analyses separately for the Absinta et al. 2021 and the 
Schirmer and Velmeshev et al. 2019 datasets using a similar processing pipeline; the exact code and 
parameters used for this analysis can be viewed on our GitHub. Prior to clustering, we first performed a 
percentile filtering of outlier cells in each sample based on the number of UMI per cell, the percentage 
of UMI attributed to mitochondrial genes, and the predicted doublet score from Scrublet. After filtering 
low quality cells, we calculated log-normalized gene expression profiles using the Scanpy functions 
sc.pp.normalize_total and sc.pp.log1p. We selected highly variable genes for downstream 
dimensionality and clustering analysis using the Scanpy function sc.pp.highly_variable_genes. The 
normalized gene expression matrix was then scaled to unit variance and centered at zero using the 
Scanpy function sc.pp.scale. Principal component analysis (PCA) was then used to linearly transform 
and reduce the dimensionality of the scaled expression matrix while retaining information content, and 
Harmony was used to correct the resulting PCA representation for batch effects with the Python 
package harmonypy. We then constructed a cell neighborhood graph based on the harmonized PCA 
matrix using the Scanpy function sc.pp.neighbors, which was then used for Leiden clustering 
(sc.tl.leiden function) and UMAP (sc.tl.umap). We assigned coarse-grain cell type labels to each of the 
Leiden clusters by inspecting gene expression signatures for a panel of canonical cell type marker 
genes in each cluster. At this stage, we also inspected the distribution of QC metrics in each cluster in 
order to identify clusters of low-quality cells or outliers for removal from subsequent analyses. We 
filtered out additional outlier clusters based on these QC metrics or if the cluster had conflicting marker 
gene expression, indicating a doublet cluster that was not previously identified by Scrublet. After this 
additional filtering step, we re-computed the Leiden clusters and the UMAP, resulting in a final 
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processed dataset. We then used a custom script to convert the dataset from anndata to SeuratObject 
format for downstream analysis. 
 
Differential gene expression analysis in the human MS datasets 
We performed a series of differential gene expression analyses in the re-processed Absinta et al. 2021 
and Schirmer and Velmeshev et al. 2019 snRNA-seq datasets. Importantly, these studies profiled gene 
expression in single nuclei from MS patients in several different sites with respect to MS lesions. The 
Absinta et al. 2021 dataset included snRNA-seq data for chronic active MS lesion edge, chronic 
inactive  MS lesion edge, MS lesion core, MS periplaque WM, and WM from cognitively normal control 
donors. The Schirmer and Velmeshev et al. 2019 dataset used snRNA-seq to profile cortical grey 
matter (GM) and adjacent WM MS lesions, with data for acute chronic active MS lesions, chronic 
inactive MS lesions, and control tissue. Similar to our previously described differential expression 
analysis with the mouse dataset, we used MAST as the underlying statistical model, and we used the 
following variables as model covariates: sample ID, number of UMI per cell, mitochondrial count 
percentage, postmortem interval (PMI), and RNA integrity number (RIN). For the Absinta et al. 2021 
dataset we performed the following five differential expression tests: chronic active MS lesion edge 
versus control WM, chronic inactive MS lesion edge versus control WM, chronic active MS lesion edge 
versus chronic inactive MS lesion edge, MS lesion core versus control WM, and MS periplaque WM 
versus control WM. For the Schirmer and Velmeshev et al. 2019 dataset we performed the following 
three differential expression tests: acute chronic active MS lesion versus control, chronic inactive MS 
lesion versus control, and acute chronic active MS lesion versus chronic inactive MS lesion. 
 
Data driven prioritization of TFs for experimental validation  
We used a holistic data-driven approach to nominate TFs of interest for additional experimental 
validation. This approach leveraged information from multiple of our previously described data analysis 
steps. We set the following criteria for potential TFs of interest: 1, DEGs in the mouse dataset that are 
differentially expressed between young and aged mice in oligodendrocytes; 2, DEGs in the human 
dataset to identify genes that are differentially expressed between MS and control patients; 3, genes 
intersecting between these mouse and human DEGs; 4, t-DEGs in young or aged mice; 5, t-DEGs with 
switch-like gene expression patterns (not used as a strict filter); 6, genes in the core TF regulatory 
network from our pathfinding analysis. Based on these criteria we selected seven TFs for downstream 
experiments: Nr6a1 (GCNF), SOX8, FOXK2, BHLHE41, STAT3, BACH2, and ELF2. 
 
Isolation of primary rodent OPCs  
Neonatal OPCs (P7-P10) were isolated as previously described44,62.  In brief, rat pups were euthanized 
with an overdose of sodium pentobarbital. Brains were dissected, the meninges removed and the 
brains were finely chopped, before enzymatic digestion with papain and DNase type I.  After digestion, 
the tissue suspension was further dissociated by tritruation with fire-polished Pasteur pipettes. The 
Homogeneate was filtered through a 70 µm cell strainer and  centrifugated in isotonic 22.5% Percoll 
(800 g, 20 min, RT, no break).  The resulting cell pellet was briefly washed in Hanks' Balanced Salt 
Solution (HBSS) and resuspended in red blood cell lysis buffer (Sigma, R7757) for 1 minute at RT.  
After  red blood cell lysis  2.5 μg of a magnetic bead-conjugated mouse-anti-rat-CD45 antibody 
(Miltenyi) was added with 2.5 μg of  mouse anti-A2B5 antibody to the cell suspension for simultaneous 
negative selection of CD45+ cells and primary labelling of OPCs with A2B5 antibody.  
Magnetic-activated cell sorting (MACS, Miltenyi) following the recommendations of the manufacturer 
 
Dimas, Morabito & Rawji et al. ​ bioRχiv | 22
​  
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 14, 2025. ; https://doi.org/10.1101/2025.11.14.688494doi: bioRxiv preprint 

https://app.readcube.com/library/05286e8e-f5e3-4394-8898-76e5d94ec1b0/all?uuid=29585327730136657&item_ids=05286e8e-f5e3-4394-8898-76e5d94ec1b0:1fcccec8-851b-434e-9d0b-c4b3caaa6def,05286e8e-f5e3-4394-8898-76e5d94ec1b0:8dccb439-f9e8-470b-81c2-4e460c118693
https://doi.org/10.1101/2025.11.14.688494


 
was performed for negative selection.The flow-through containing A2B5-labelled cells was briefly 
washed and subsequently incubated with magnetic bead-conjugated rat-anti-mouse-IgM antibody 
(Miltenyi).  Following incubation, another round of MACS was performed according to the 
manufacturers instruction, and CD45-/A2B5+ cells were eluted with pre-equilibrated OPC media. Cells 
were seeded onto poly-D-lysine coated cell-culture treated plates and maintained in complete OPC 
media (60 μg/mL N-acetyl cysteine (Sigma), 10 μg/mL human recombinant insulin (GIBCO), 1 mM 
sodium pyruvate (GIBCO), 50 μg/mL apo-transferring (Sigma), 16.1 μg/mL putrescine (Sigma), 40 
ng/mL sodium selenite (Sigma), 60 ng/mL progesterone (Sigma), 330 μg/mL bovine serum albumin 
(Sigma)), supplemented with basic fibroblast growth factor (b-FGF) and platelet-derived growth factor 
(PDGF, 30 ng/mL each, Peprotech)). For differentiation conditions, cells were transferred into media 
lacking the mitogens PDGF and FGF. Differentiation enhancing  40 ng/mL thyroid-hormone (T3, Sigma) 
was added for  positive controls in the differentiation assays. Cultures were maintained throughout at 
37°C, 5% CO2 and 5% O2. 

 
Cell culture and lentiviral infection of OPCs  
Lentiviral particles containing the transgene of interest under the mouse PGK promoter together with a 
CMV-driven GFP:T2A:puromycin selection cassette (Vectorbuilder) were added to the OPCs in 
complete OPC media for two days, followed by a full media change with complete OPC media with 
b-FGF and PDGF.  The cells were incubated for another 2 days to allow expression of transgenes and 
successfully infected, GFP expressing cells were subsequently  selected with 1 μg/mL puromycin 
(ThermoFisher A1113803) in complete OPC media containing b-FGF and PDGF for 2 days.  After 2 
days virtually all remaining cells were GFP positive and either processed for proliferation or 
differentiation assays. For proliferation assays, OPCs were fixed with 4% PFA in PBS for 15 minutes, 
washed 3 times with PBS and stored at 4°C for immunocytochemistry for Ki-67.  For differentiation, 
OPCs were changed into OPC media without miogens. T3-treated OPCs served as a positive control.  
Cells were allowed to differentiate for 3 days for immunocytochemistry, after which they were fixed in 
4% PFA in PBS, washed 3 times with PBS and stored at 4°C until processed for immunocytochemistry. 
For bulk RNAsequencing, cells in differentiation condition underwent mitogen withdrawal  for 24h.   
 
Immunocytochemistry, microscopy, and quantification 
To assess OPCs for proliferation and differentiation, cells were first washed twice with PBS and then 
blocked with a blocking buffer (10% normal donkey serum in PBS with 0.1% Triton X-100)  for 1 hour at 
room temperature. Cells were then incubated with primary antibodies for 2 hours at room temperature. 
To identify proliferating OPCs, a rat anti-Ki67 (Thermofisher 14-5698-82, clone SolA15) antibody and a 
rabbit anti-Olig2 (Merck, ab9610) antibody were used.  To investigate the extent of OPCs differentiating 
into oligodendrocytes, a rat anti-MBP (Serotec/Biorad) antibody and a rabbit anti-Olig2 (Merck, ab9610) 
antibody were used.  After incubation with the primary antibodies, cells were washed 3 times with PBS, 
followed by incubation with appropriate secondary antibodies for 2 hours at room temperature.  Cells 
were then washed 3 times with PBS and then stored at 4°C in the dark in PBS.   
 
Plates were imaged on a high-throughput Opera imaging system, taking 69 fields of view per well to 
capture the entire well with z-stacks.  Maximum intensity projections were produced for quantification. 
All images were blinded for quantification. CellProfiler was used to quantify the percentage of Olig2+ 
cells that were Ki67+ (proliferation) and the percentage of Olig2+ cells that were MBP+ (differentiation).  
To assess the effect of transcription factor overexpression on proliferation and differentiation rates, 
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linear mixed-effects models were fitted using the lme4 package in R (4.4.2). The response variables 
were the logit-transformed percentages of proliferating and differentiating cells (3 technical replicates, 
3-4 biological replicates per condition), or the absolute counts of OLCs (Olig2+, n=3 biological 
replicates per condition), as indicated. Transcription factor overexpression was included as a fixed 
effect, and a random intercept was added to account for inter-animal variability. P-values for the fixed 
effect were generated via Satterthwaite’s method, adjusted for multiple comparisons using the 
Benjamini-Hochberg method, and significance was determined at an FDR-adjusted q < 0.05.  
 
Bulk RNA sequencing processing  
Cells in proliferation or differentiation conditions were washed twice with PBS and collected in Trizol. 
Library preparation was performed using the NEB NEBNext Ultra II Directional RNA kit (New England 
Biolabs) on a Firefly instrument (SPT Labtech Ltd.).  Library preparation was performed following the 
manufacturer’s recommendations and sufficient RNA quality was confirmed by Tapestation  
measurement.  The sequencing was performed on an Illumina Novaseq platform. 
 
RNA-seq data was processed using the nf-core/rnaseq pipeline63 (v3.12.0) implemented in Nextflow64 
(version 23.10.1). Raw sequencing reads were subjected to quality trimming and adapter removal using 
Trim Galore (v0.6.7) with Cutadapt65 (v3.4). Read alignment against the rat mRatBN7.2 genome was 
performed using STAR66 (v2.7.9a) with default parameters optimized for RNA-seq data using transcript 
models based on Ensembl release v108. 
 
Gene and transcript quantification was performed using Salmon67 (v1.10.1) in quasi-mapping mode. For 
alignment-based quantification, feature counting was performed using Subread’s featureCounts68 
(v2.0.1). Comprehensive quality control reports were generated using MultiQC69. Reads aligned to the 
genome by STAR were further visualized and quantified using SeqMonk (v1.48.0) 
(https://github.com/s-andrews/SeqMonk). . Statistical analysis of differential gene expression was 
carried out in R(4.4.0) using the limma and voom packages. Genes were filtered using the filterByExpr 
function in edgeR with default settings (min.count = 10, min.total.count=15). A linear model was fit for 
each gene using both transcription factor overexpression and animal as factors. Obtained p-values 
were adjusted for multiple comparisons using the Benjamini-Hochberg method, and genes were 
determined as differentially expressed at an FDR-adjusted q < 0.05. 
 
Data availability 
All raw and processed single-nucleus sequencing data have been deposited into the National Center 
for Biotechnology Information Gene Expression Omnibus under accession number GSE277068. At this 
time, data access remains private and the peer reviewers have been provided with a secure access 
token. Additional snRNA-seq datasets from published studies were obtained via the following 
accessions: Absinta et al 202133 snRNA-seq dataset was collected from the Gene Expression Omnibus 
at accession GEO180759, and the Schirmer and Velmeshev et al 201932,33 dataset was collected from 
the Sequence Read Archive (SRA) at accession PRJNA544731.  
 
Code availability 
The data analysis code used for this study is available on GitHub at 
https://github.com/smorabit/Myelination_2025.  
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