
Nature Genetics

nature genetics

https://doi.org/10.1038/s41588-024-01961-xArticle

Spatial and single-nucleus transcriptomic 
analysis of genetic and sporadic forms  
of Alzheimer’s disease

Emily Miyoshi    1,2,10, Samuel Morabito    2,3,4,10, Caden M. Henningfield1,2, 
Sudeshna Das1,2, Negin Rahimzadeh2,3,4, Sepideh Kiani Shabestari1,5, 
Neethu Michael1,2, Nora Emerson1,2, Fairlie Reese4,6, Zechuan Shi1,2, 
Zhenkun Cao1, Shushrruth Sai Srinivasan2,3,4,7, Vanessa M. Scarfone5, 
Miguel A. Arreola1,2, Jackie Lu1, Sierra Wright2, Justine Silva1,2, Kelsey Leavy2, 
Ira T. Lott2,8, Eric Doran8, William H. Yong2,9, Saba Shahin1,2, 
Mari Perez-Rosendahl2,9, Alzheimer’s Biomarkers Consortium–Down Syndrome 
(ABC–DS)*, Elizabeth Head2,9, Kim N. Green1,2 & Vivek Swarup    1,2,4 

The pathogenesis of Alzheimer’s disease (AD) depends on environmental 
and heritable factors, with its molecular etiology still unclear. Here we 
present a spatial transcriptomic (ST) and single-nucleus transcriptomic 
survey of late-onset sporadic AD and AD in Down syndrome (DSAD). 
Studying DSAD provides an opportunity to enhance our understanding 
of the AD transcriptome, potentially bridging the gap between genetic 
mouse models and sporadic AD. We identified transcriptomic changes 
that may underlie cortical layer-preferential pathology accumulation. 
Spatial co-expression network analyses revealed transient and regionally 
restricted disease processes, including a glial inflammatory program 
dysregulated in upper cortical layers and implicated in AD genetic risk 
and amyloid-associated processes. Cell–cell communication analysis 
further contextualized this gene program in dysregulated signaling 
networks. Finally, we generated ST data from an amyloid AD mouse model 
to identify cross-species amyloid-proximal transcriptomic changes with 
conformational context.

The fundamental work of pioneers like Santiago Ramón y Cajal revealed 
that the human brain is spatially organized at macroscopic and micro-
scopic levels, where brain circuitry and function underlie structural 
organization. Single-nucleus RNA-sequencing (snRNA-seq) has 
revealed that brain cell populations are heterogeneous at the molecular 
level1–6. In Alzheimer’s disease (AD) brains, specific cell populations 
have been identified as underrepresented or overrepresented relative 
to the cognitively healthy brain7–11, revealing an axis of selective vulner-
ability to resilience in neurodegeneration11,12 and providing founda-
tional knowledge of the genes, cis-regulatory elements and networks 

altered in AD13. The functional consequences of transcriptomic changes 
in disease-related cell populations remain elusive, and spatial context 
is critical for solving this puzzle.

Here we examined spatial and single-nucleus transcriptomes of 
clinical AD samples in early-stage and late-stage pathology and AD in 
Down syndrome (DSAD). Individuals with Down syndrome (DS) aged 
>65 years old have an 80% risk of dementia14. Despite shared features 
between sporadic AD (sAD) and DSAD15,16, there are no single-cell or 
spatial transcriptomic (ST) studies comparing these populations—pres-
ently only one single-cell study of DS brains17. Focusing on DSAD as a 
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genetic form of AD, due to the vastly increased risk from triplication of 
APP on chromosome 21 (chr21), provides opportunities for compara-
tive analyses with sAD and to further our understanding of AD genetics. 
Our analyses uncovered shared and distinct transcriptomic changes in 
DSAD and sAD and identified relationships between genetic risk and 
altered transcriptomic signatures.

We also performed ST in 5xFAD mice, an amyloid model of AD, at 
four time points to facilitate cross-species comparisons. snRNA-seq 
studies in AD mouse models have found glial disease-associated cell 
states18,19; however, it has been challenging to robustly identify their 
human counterparts. Although mouse models offer advantages for 
studying disease, AD clinical trial failures of drugs successful in mice 
raise questions about the translatability of mouse findings. Trans-
lational and druggable targets may be nominated via cross-species 
integrative approaches, as demonstrated by our previous work20,21. 
We paired our ST experiments with fluorescent amyloid imaging to 
identify cross-species amyloid-proximal gene expression changes. 
Together, our multifaceted experimental and analytical approaches 
illuminate spatially restricted and cell-type-specific transcriptomic 
changes across AD subtypes and species.

Results
ST and cellular transcriptomics of AD
We performed a spatially resolved cross-species gene expression study 
of AD by generating ST data (10x Genomics Visium) from postmortem 
human prefrontal cortex (FCX; n = 10 cognitively healthy controls, 
n = 9 early-stage AD, n = 10 late-stage AD, n = 10 DSAD) and 5xFAD and 
wild-type (WT) mouse brains (n = 8–12 per group, 4–12 months; Fig. 1a–c 
and Supplementary Fig. 1). Unbiased clustering analysis22 identified 
nine clusters in our human dataset—three white matter (WM) clusters 
and six gray matter (GM) clusters encompassing the cortical layers—and 
15 brain-region-specific clusters in our mouse dataset. We annotated 
these clusters based on known marker gene expression, tissue locali-
zation and unbiased cluster marker gene detection (Supplementary 
Figs. 2–4, Table 1 and Supplementary Tables 3 and 4).

We also performed snRNA-seq23 (Parse Biosciences) in cognitively 
healthy controls (n = 27 FCX and n = 27 PCC) and DSAD (n = 21 FCX and 
n = 21 PCC, 55 individuals total; Supplementary Table 5). The PCC and 
FCX may represent early and late AD changes, respectively24. We used 
scANVI25,26 for reference-based integration of this dataset with three 
previous AD studies7–9 (FCX; total n = 27 cognitively healthy controls, 
n = 23 early-stage AD and n = 48 late-stage AD) for a total of 585,042 
nuclei after quality control (Fig. 1d and Supplementary Fig. 1). Clus-
tering analysis identified all major brain cell types, including rare vas-
cular populations27 (Fig. 1e), and their marker genes provided further 
context for their transcriptomic identities (Supplementary Fig. 1 and 
Supplementary Table 6; Methods). Differential abundance analysis28 
revealed widespread shifts in cell state composition, especially among 
microglia, astrocytes and vascular cells, encompassing both selectively 
vulnerable and disease-reactive states (Supplementary Fig. 6 and  
Supplementary Note; Methods).

Regional and cell-type-specific gene expression changes
To identify disease-associated gene expression changes, we performed 
differential expression (DE) analysis in each disease group compared 
to controls for our human ST and snRNA-seq datasets (Supplemen-
tary Figs. 7–12 and Supplementary Tables 7–12). Trisomy 21 suggests 
overexpression of chr21 genes in our DSAD samples, so we examined 
differentially expressed genes (DEGs) by chromosome. We found chr21 
gene overexpression was dependent on region or cell type (adjusted 
P < 0.05; Fig. 2a,b, Extended Data Fig. 1 and Supplementary Fig. 13). For 
example, APP is upregulated in DSAD samples but interestingly is not 
significantly different from control samples in spatial cluster L3/L4. Our 
analysis identified substantial downregulation of genes in cluster L3/L4 
across diagnoses, which may reflect preferential pathology accumula-
tion in L3 (refs. 29–31). Layers L3/L4 are central to cognitive processes 
and known for their dense synaptic connections; these DEGs may reflect 
the molecular responses to pathological changes impacting cognition. 
Deconvolution of the spatial DEGs using the snRNA-seq dataset showed 
that many genes upregulated across all the spatial regions were from 
glial and vascular cells (Figs. 2c,d and Supplementary Note; Methods).

Fig. 1 | ST and single-nucleus transcriptomic analysis of genetic and sporadic 
forms of AD. a, We performed ST experiments in the human frontal cortex and 
the mouse brain using 10x Genomics Visium. Human samples—n = 10 cognitively 
normal controls, n = 9 early-stage AD, n = 10 late-stage AD and n = 10 DSAD 
(median 1,316 genes per spot; n = 115,251 ST spots; Supplementary Table 1). 
Mouse samples—n = 10 WT and n = 10 5xFAD aged 4 months; n = 10 WT and n = 10 
5xFAD aged 6 months; n = 10 WT and n = 10 5xFAD aged 8 months; n = 8 WT and 
n = 12 5xFAD aged 12 months (median 2,438 genes per spatial spot; n = 212,249 
ST spots; Supplementary Table 2). b, Two representative human ST samples 
from each of the disease conditions, each spot colored by cortical annotations 
from BayesSpace22 clustering analysis. c, One representative mouse ST sample 
from WT and 5xFAD at each time point, each spot colored by brain region 
annotations derived from BayesSpace clustering analysis. d, We performed 

snRNA-seq in the frontal cortex and PCC from cognitively normal control donors 
(n = 27 FCX and n = 27 PCC) and DSAD donors (n = 21 FCX and n = 21 PCC). We 
also included snRNA-seq data from three previous studies of the cortex in AD7–9 
(n = 27 controls, n = 23 early-stage AD and n = 48 late-stage AD). e, UMAP plot 
depicting a two-dimensional view of the cellular neighborhood graph of 585,042 
single-nuclei transcriptome profiles. Each point in this plot represents one cell, 
colored by their cell-type annotations derived from Leiden clustering58 analysis. 
EX, n = 229,041; INH, n = 90,718; MG, n = 20,197; ASC, n = 57,443; OPC, n = 23,053; 
ODC, n = 153,182; PER, n = 4,659; END, n = 3,637; FBR, n = 2,403 and SMCs, SMC, 
n = 709. See Table 1 for additional cluster name abbreviations. Illustrations were 
created with Biorender.com. EX, excitatory neurons; INH, inhibitory neurons; 
MG, microglia; ASC, astrocytes; ODC, oligodendrocytes; PER, pericytes; END, 
endothelial cells; FBR, fibroblasts; SMCs, smooth muscle cells.

Table 1 | Abbreviations for spatial and snRNA-seq cluster 
names

Cluster Abbreviation Dataset

Cortical deep layers Ctx (deep layers) Mouse ST

Cortical upper layers Ctx (upper layers) Mouse ST

Olfactory cortex Ctx (olfactory) Mouse ST

Hippocampus pyramidal 
layer

Hippocampus (pyr.) Mouse ST

Hypothalamus/amygdala Hypothal./amygdala Mouse ST

White matter (cerebral 
peduncle)

WM (c. peduncle) Mouse ST

Excitatory neuron EX Human snRNA-seq

Inhibitory neuron INH Human snRNA-seq

Astrocyte ASC Human snRNA-seq

Microglia MG Human snRNA-seq

Oligodendrocyte ODC Human snRNA-seq

Oligodendrocyte precursor 
cell

OPC Human snRNA-seq

Arteriole endothelial cell Arterial Human snRNA-seq

Capillary endothelial cell Capillary Human snRNA-seq

Transport pericyte T-pericyte Human snRNA-seq

Extracellular matrix pericyte M-pericyte Human snRNA-seq

Smooth muscle cell SMC Human snRNA-seq

Perivascular fibroblast P. fibro. Human snRNA-seq

Meningeal fibroblast M. fibro. Human snRNA-seq
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We also found high correlations (R ≥ 0.5) of DE effect sizes between 
diagnoses in most spatial clusters and modest correlations (R ≥ 0.2) 
in most snRNA-seq clusters (Fig. 2e,f and Supplementary Figs. 14–16). 
These trends were stronger in GM clusters compared to WM clus-
ters, consistent with the snRNA-seq data, where the correlations were 
stronger in neuronal versus glial clusters. Gene ontology (GO) term 
enrichment of the shared DEGs revealed region-specific enrichment 
of AD-relevant biological pathways, such as upregulation of genes 
related to long-term potentiation in L3–L5 and downregulation of 
those related to amyloid fibril formation in L3/L4 and L3–L5 (Fig. 2g,h 
and Supplementary Table 13). Similarly, we compared human ST DE 
effect sizes to 5xFAD versus WT DEGs, revealing the 5xFAD model 
recapitulates some clinical AD changes (Supplementary Figs. 17–22, 
Supplementary Tables 14–17 and Supplementary Note).

System-level analysis of spatial gene expression programs
We performed high-dimensional weighted gene co-expression network 
analysis (hdWGCNA)32 in our ST dataset within each cortical layer clus-
ter and WM, yielding 166 gene modules from seven networks (Fig. 3a). 
Hierarchical clustering of these modules defined 15 cortex-wide 
‘meta-modules’ based on similarity in expression patterns (module 
eigengenes (MEs)) and their constituent gene sets (Fig. 3a, Extended 
Data Fig. 2, Supplementary Fig. 23 and Supplementary Table 18; Meth-
ods). We interrogated system-level differences between disease groups 
and controls with differential ME (DME) analysis (Fig. 3a, circular heat-
map, and Supplementary Table 19; Methods). Comparing DME effect 
sizes across diagnoses, we found that many DSAD changes reflect those 
in sAD, as well as modules uniquely regulated in each group (Fig. 3b,c 
and Extended Data Fig. 3). Early-stage AD had several modules exclu-
sively downregulated in the WM and L3/L4 networks (Fig. 3c), and path-
way enrichment associated these modules with neurotransmission, 
neurodevelopment and amyloid-β formation (Extended Data Fig. 3). 
Alternatively, most modules specifically upregulated in late-stage AD 
originated from the L6b network, while modules specifically upregu-
lated in DSAD largely came from the L1 and L3/L4 networks.

We next sought to compare disease subtypes in the broader 15 
meta-modules. These meta-modules were enriched for genes involved 
in myelination (M1) and chemical synaptic transmission (M3, M4, M7, 
M10 and M13), as well as previously implicated processes like gluta-
mate signaling (M6), inflammatory response (M11) and amyloid fibril 
formation (M14; Fig. 3d and Supplementary Table 20). DME analysis 
of these meta-modules revealed that M6, containing hub genes such 
as APP, SCN2A and CPE, is upregulated in L1 in all diagnoses (Fig. 3e). 
While L1 is less densely populated with neurons than other cortical 
layers, M6 is expressed primarily in neurons, indicating that processes 
like APP metabolism, macroautophagy and RNA splicing are altered in 
AD L1 neurons. Alternatively, M11 is expressed in non-neuronal cells 
and upregulated across cortical upper-layer clusters. M11 contains 
genes associated with immune response and neuronal death, and its 

hub genes include complement pathway genes (C1QB and C3) and 
disease-associated astrocyte genes7,19 (SERPINA3, VIM and CD44). We 
inspected these modules in the mouse ST dataset, revealing that M1, 
M6 and M11 expression levels were correlated with age only in 5xFAD 
mice, therefore representing changes associated with disease progres-
sion and amyloid accumulation (Fig. 3f and Supplementary Fig. 24). 
Module preservation analysis33 showed that almost all meta-modules 
were preserved in the mouse dataset (Fig. 3g, Z-summary preserva-
tion > 2), although M1, M6 and M11 were moderately to weakly pre-
served (Z-summary preservation < 10).

Inflammatory signature correlated with AD genetic risk
We also performed genetic enrichment analyses with single-cell dis-
ease relevance scores (scDRS)34 to investigate cellular and regional 
enrichment for AD risk genes and to identify links between disease risk 
signatures with co-expression modules (Extended Data Fig. 4 and Sup-
plementary Figs. 25–29; Methods). We found significant associations 
with AD genetic risk in clusters L1, L3/L4 and WM in DSAD (Monte Carlo 
test FDR ≤ 0.05; Fig. 3h). ST spots contain multiple cells, and previous 
studies show enrichment of AD genetic risk exclusively in myeloid 
cells7. The signal may be obscured by neuronal and oligodendrocytic 
signatures in sAD samples. 5xFAD mice displayed increasing AD risk 
scores with age, with significant region-level associations at 12 months 
for several regions, including deep cortical layers and WM (Fig. 3i). 
Furthermore, we found significant cluster-level associations for micro-
glia clusters MG1 and MG2 across all four snRNA-seq datasets (Fig. 3j).

We next correlated meta-module expression and AD risk scores in 
each cluster with a significant scDRS group-level association (Fig. 3k 
and Extended Data Fig. 5). While these correlations were modest, in 
the human ST dataset, we found the strongest correlations in the L3/L4 
cluster with M13, M10, M7 and M11 in DSAD (Pearson R ≥ 0.2). Further-
more, we found that M11 was correlated with AD genetic risk in 5xFAD 
mice, increasing in strength with age. In the snRNA-seq datasets, M11 
was highly expressed in microglia and correlated with AD genetic risk 
across all datasets and disease subtypes, with a stronger correlation in 
activated microglia cluster MG2 (mean Pearson R = 0.342) compared 
to MG1 (mean Pearson R = 0.284). Finally, several meta-module mem-
ber genes are associated with AD genetic risk through genome-wide 
association studies (GWAS)35–37, such as BIN1 in M1, APP and APOE in 
M6 and clusterin (CLU) and ADAMTS1 in M11.

Transcriptomic sex differences among subtypes of AD
Previous studies have described sex differences in AD clinical manifes-
tations, risk factors and gene expression8,38–43. Here we performed DE 
analysis to investigate sex differences between DSAD and sAD using 
our ST dataset (Supplementary Tables 21–23; Methods). We found 
transcriptome-wide differences, with broad upregulation of genes 
in females compared to males across the spatial clusters and on all 
chromosomes (Fig. 4a–c and Supplementary Fig. 30). Deconvolution 

Fig. 2 | Altered gene expression signatures among subtypes of AD.  
a, Heatmap colored by effect size from the DSAD versus control differential 
gene expression analysis, with genes stratified by chromosome and by spatial 
region. Statistically significant (FDR < 0.05) genes with an absolute average 
log2(FC) ≥ 0.25 in at least one region are shown. b, Stacked bar chart showing 
the number of DSAD versus control DEGs in each spatial region stratified 
by chromosome. c, Heatmap showing the gene expression values in the 
snRNA-seq dataset of spatial DEGs shared between DSAD and late-stage AD. 
d, Deconvolution of spatial DEGs using snRNA-seq cluster marker genes. Bar 
charts showing the number of DEGs up or down in disease for each spatial 
cluster are shown on the top and bottom, respectively. Proportional bar 
charts in the middle show the proportion of spatial DEGs that are also cluster 
marker genes in each of the snRNA-seq clusters. Spatial DEGs that are not in the 
snRNA-seq marker genes are shown in gray. e, Comparison of DE effect sizes 
from early-stage AD versus control and DSAD versus control. Genes that were 

statistically significant (adjusted P < 0.05) in either comparison were included 
in this analysis. Genes are colored blue if the direction is consistent, yellow if 
inconsistent and gray if the absolute effect sizes are smaller than 0.05. Black 
line represents a linear regression with a 95% confidence interval around the 
mean shown in gray. Pearson correlation coefficients are shown in the upper 
left corner of each panel. f, Comparison of DE effect sizes from late-stage AD 
versus control and DSAD versus control, layout as in e. g,h, Selected pathway 
enrichment results from DEGs that were upregulated (g) or downregulated (h) 
in both late-stage AD and DSAD compared to controls. i,j, Selected pathway 
enrichment results from DEGs that were upregulated (i) or downregulated (j) in 
late-stage AD exclusively. k,l, Selected pathway enrichment results from DEGs 
that were upregulated (k) or downregulated (l) in DSAD exclusively. One-sided 
Fisher’s exact test was used for enrichment analysis. VEGF, vascular endothelial 
growth factor; NMDA, N-methyl-D-aspartate; NK, natural killer.
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analysis showed that many genes upregulated in females were glial and 
vascular, while more of those upregulated in males were neuronal or 
oligodendrocytic (Fig. 4d and Supplementary Fig. 31). GO enrichment 
revealed that genes involved in inflammation, oxidative stress and 
glucose metabolism are upregulated in females independent of a brain 
region, whereas male DEGs are related to alternative splicing, chromatin 
organization and cytoskeletal organization and transport (Fig. 4e,f 
and Supplementary Table 24). We found that microglial activation was 
enriched specifically in L6b and WM in females, but amyloid-β-related 
processes were enriched in both female- and male-specific DEGs. This 
enrichment was restricted to L3–L5 in males, indicating regional speci-
ficity of transcriptomic sex differences related to amyloid processing. 
Gene set overlap analysis demonstrated that many of the DEGs with the 
largest effect sizes were shared across multiple regions (Fig. 4g). C1QB 
(M11) is upregulated in DSAD females in all the spatial regions, with the 
highest effect size in the WM (average log2(fold change (FC)) = 0.969), 
and we validated this at the protein level using immunofluorescence 
(Figs. 4h–j; two-sided t test P value = 0.037). We also performed 
sex-based DE analysis within the other diagnoses in the human and 
mouse ST datasets and the snRNA-seq dataset, revealing additional 
sex-specific signatures of disease (Supplementary Figs. 30, 32–45 and 
Supplementary Tables 25–31).

To investigate system-level sex-related transcriptomic changes 
in AD, we performed DME analysis between females and males in each 
disease group (Figs. 4k,l). In cluster L1, M11 was upregulated in males 
in early-stage AD but upregulated in females for late-stage AD and 
DSAD, revealing stronger neuroinflammatory signatures in females 
with high pathological load. Many of the top region-specific modules 
in sAD were from the L1 network, yet the direction of effect switched 
between early and late stages (Fig. 4l). For example, modules L1–M1 
and L1–M8 were the top female modules in late-stage AD and among 
the top male modules in early-stage AD, indicating key temporal dif-
ferences in disease-related gene expression changes between sexes. 
In general, more modules were upregulated in late-stage AD females 
versus more in early-stage AD males. We also compared the DME effect 
sizes between the sex DMEs and the diagnosis DMEs (Fig. 4m), and 
found many modules not DE between control and disease showed sex 
differences.

Imaging mass cytometry (IMC) reveals protein expression 
changes
We next used IMC for multiplexed imaging of 23 proteins, including 
cell-type markers, proteins encoded by genes of interest from our tran-
scriptomic analyses and proteins of interest from an AD proteomic 
study44 (Fig. 5a–c and Supplementary Table 1). We analyzed spatial pro-
tein expression patterns in FCX samples from our ST cohort (post-QC: 
n = 2 cognitively normal controls, n = 6 late-stage AD and n = 6 DSAD), 
and clustering revealed 11 populations (Fig. 5d; Methods). We recov-
ered proteomic profiles for astrocytes (GFAP+ and S100b+), neurons 
(microtubule-associated protein 2 (Map2+) and NeuN+), microglia 

(Iba1+) and populations enriched in extracellular matrix proteins or 
phospho-tau (Figs. 5e,f).

We compared protein abundances between disease groups in these 
cell populations (Figs. 5g–l and Supplementary Table 32; Methods). 
Amyloid-β and phospho-tau significantly increased in AD neurons, 
as expected, but Map2 decreased, indicative of neurodegeneration 
(Fig. 5g). DSAD neurons demonstrated elevated phospho-tau burden 
compared to late-stage AD, and one astrocyte cluster was marked by 
high phospho-tau, likely engulfing these phospho-tau-bearing neurons 
and indicating increased tau pathology in DSAD (Fig. 5j). Cystatin C 
(CST3), known to colocalize with amyloid, was significantly changed 
in microglia and astrocytes from late-stage AD and DSAD (Fig. 5i). In 
our ST data, CST3 was upregulated in both groups in spatial clusters 
L3–L5 and L5/L6. We also found a significant upregulation of CLU in 
both microglia and astrocyte subpopulations with increased CD44 
expression in both late-stage AD and DSAD (Figs. 5j,k). CD44 and CLU 
are hub genes of meta-module M11, which we found upregulated in 
both 5xFAD and clinical AD samples, demonstrating coregulation at 
both gene and protein levels.

Integrated analysis reveals dysregulated cell signaling
We analyzed cell–cell communication (CCC) in disease by predicting 
spatial coordinates of each snRNA-seq cell with CellTrek45 (Extended 
Data Fig. 6, Supplementary Figs. 46 and 47 and Supplementary Note) 
and inferring CCC using CellChat46 after stratifying snRNA-seq popula-
tions by upper cortical, lower cortical or WM (Fig. 6a; Methods). This 
revealed changes in the CCC landscape, illuminating dysregulated path-
ways based on relative information flow between DSAD and controls 
(Fig. 6b, Extended Data Fig. 7, Supplementary Figs 48–50 and Supple-
mentary Table 33). We focused on the following three signaling path-
ways: NECTIN, ANGTPL and CD99. NECTIN signaling is downregulated 
in DSAD (Figs. 6c–f). Nectins are involved in synapse maintenance47–49, 
and NECTIN2 has been implicated in AD genetic risk50,51. We report 
diminished neuronal NECTIN signaling (Figs. 6c,d) and, using immu-
nofluorescence, Nectin2 downregulation in neurons from late-stage 
AD and DSAD (Fig. 6g,h; two-way t test, P < 0.05). In control samples, 
ANGPTL signaling features astrocyte clusters in lower cortical layers 
and WM (ASC1 and ASC3, respectively) communicating with neurons, 
pericytes and oligodendrocyte precursor cells (OPCs) with the ligand 
ANGPTL4 (Figs. 6i–l). However, in DSAD, additional astrocytes, such as 
ASC1 and ASC3 in the cortical upper layers, showed significant inter-
actions mediated by ANGPTL4. Increased ANGPTL4 expression has 
been previously observed in astrocytes from patients with AD with 
vascular changes52, and co-immunofluorescence of ANGPTL4 and 
GFAP confirmed astrocytic ANGPTL4 upregulation in DSAD (two-way t 
test, P < 0.05; Fig. 6m,n). We note a loss of astrocyte-inhibitory neuron 
ANGPTL communication with the disease, and ANGPTL4 is a hub gene 
of meta-module M11. Furthermore, CD99 is also a hub gene of M11, but 
CD99 signaling is downregulated in DSAD, confirmed by immunofluo-
rescence (Extended Data Fig. 8).

Fig. 4 | Sex-related transcriptomic differences in subtypes of AD. a, Effect sizes 
from DSAD female versus male differential gene expression, genes stratified by 
chromosome and spatial region. Significant (FDR < 0.05) genes with absolute 
average log2(FC) ≥ 0.25 in at least one region are shown. b, Stacked bar chart 
showing the number of DSAD female versus male DEGs by spatial region stratified 
by chromosome. c, Volcano plots showing the effect size and significance level 
from the DSAD female versus male DE (MAST59, two-sided test). d, Number of 
DEGs upregulated in females or upregulated in males for each cluster on top 
and bottom, respectively. Proportional bar charts show the proportion of DEGs 
that are snRNA-seq marker genes. e,f, Selected pathway enrichment analysis 
from DEGs that were upregulated in females (e) or males (f). One-sided Fisher’s 
exact test was used for enrichment analysis. g, Overlap between sets of DEGs in 
spatial clusters. h, Representative images from the prefrontal cortex (PFC) of 
age-matched male and female patients with DSAD stained for C1QB (red). Dashed 

line visually separates GM and WM. i, Bar graph representing mean fluorescence 
intensity (relative) in ×20 images of C1QB (n = 5 brain sections from n = 3 female 
DSAD cases and n = 5 brain sections from n = 3 male cases) in the WM. P value 
from the two-sided t test is shown. Error bar shows one s.d. from the mean. j, Top, 
spatial feature plots showing C1QB expression in representative female (left) and 
male (right) DSAD samples. Bottom, samples colored by region annotations. 
k, Heatmap showing the meta-module DSAD female versus male DME results 
for each cortical layer and WM. X indicates a lack of significance. l, Volcano plot 
showing the effect size and significance level from DSAD female versus male DME 
analysis (two-sided Wilcoxon rank-sum test). m, Comparison of DME effect sizes 
between sex and diagnosis tests. Black line represents a linear regression with 
a 95% confidence interval around the mean shown in gray. Pearson correlation 
coefficients are shown in the upper left corner of each panel. Number of modules 
significant in either analysis in each quadrant is noted. F, female; M, male.
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Fig. 5 | IMC reveals single-cell spatial proteomic changes in AD. a, IMC was 
performed in postmortem human cortical tissue (n = 2 control, n = 6 late-stage 
AD and n = 6 DSAD) using the Hyperion Imaging System (Standard BioTools). 
Illustrations were created with Biorender.com. b, Representative IMC images 
from control, late-stage AD and DSAD samples with select targets from the panel. 
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d, UMAP plot showing the unbiased clustering of segmented nuclei from the 
IMC dataset based on their protein intensity values. Each dot represents a 
segmented nucleus, colored by cluster assignment. e, Stacked bar plots showing 
the proportion of segmented nuclei assigned to each cluster stratified by disease 
groups. f, Heatmap showing the relative protein intensity of each protein in 
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boundaries and lines correspond to the IQR and median, respectively. Whiskers 
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interquartile range; NS, not significant; ECM, extracellular matrix.
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Conformation-specific amyloid gene expression signatures
Deep characterization of amyloid pathology and associated molecu-
lar changes is critical to understanding AD pathogenesis. Therefore, 
we stained human and mouse ST tissues with Amylo-Glo for dense 
amyloid-β plaques and the Anti-Amyloid Fibrils OC Antibody (OC) for 
diffuse amyloid fibrils (Fig. 7a,b). In the human dataset, we found that 
amyloid pathology distribution was consistent with neuropathological 
plaque staging (Fig. 7c), and we observed increasing amyloid deposi-
tion in 5xFAD with age across cortical and subcortical regions (Supple-
mentary Fig. 51). By integrating amyloid imaging and transcriptomic 
data, we identified amyloid hotspots and 65 plaque-associated and 
215 fibril-associated genes proximal to these hotspots in the human 
dataset (Fig. 7d,f, Supplementary Figs. 52–55 and Supplementary 
Table 34). Genes associated with plaques and fibrils included diagnosis 
DEGs and M11 hub genes, CLU and VIM, and are enriched in processes 
including intermediate filament assembly, long-term potentiation and 
blood–brain barrier transport (Fisher’s exact test P = 1.8 × 10−115, odds 
ratio = 1248.92; Fig. 7g,h and Supplementary Table 35). Fibril-specific 
genes are related to synaptic function and hemopoiesis (Fig. 7i).

In the mouse dataset, we identified amyloid-associated genes 
within each spatial cluster, revealing 1,829 plaque-associated and 1,759 
fibril-associated genes, with the largest overlaps in the hippocampus 
pyramidal and upper cortical layer clusters (Fig. 7f and Supplementary 
Table 36). GO enrichment linked these gene sets to inflammatory and 
neurodegenerative processes (Fig. 7j and Supplementary Table 37), 
and they overlapped with previously reported gene signatures iden-
tified in AD mouse models18,19,53,54. Fibrillar-specific genes included 
Itgb2, Cd53 and Il33, suggesting unique immune signatures preceding 
plaque formation. We found modest yet significant overlaps between 
human and mouse amyloid-associated genes, particularly among 
plaque-associated, and microglial genes were more common in mice 
(Fig. 7k). Shared fibrillar-associated genes in the cortex include NEFH, 
NEFM, ALDOC and MAFB. Notably, meta-module M11’s hub genes VIM 
and CLU were among the shared amyloid-associated genes, and M11’s 

expression weakly correlated with amyloid hotspots (max Pearson cor-
relation R = 0.131 in L5/L6 early-stage AD, R = 0.187 in ctx deep layers in 
6 month 5xFAD), implicating it in cross-species amyloid-associated pro-
cesses (Supplementary Fig. 56). Furthermore, co-expression network 
analysis in the 5xFAD ST dataset uncovered an amyloid-associated gene 
module (SM6), which shared similar genes and expression patterns 
with a previously identified set of ‘plaque-induced’ genes53 (Figs. 7l,m, 
Extended Data Figs. 9 and 10, Supplementary Fig. 57–59 and Supple-
mentary Table 38).

Discussion
Spatiotemporal pathological progression coupled with cellular dys-
regulation are focal points of AD. Our ST and single-nucleus transcrip-
tomic analysis of DSAD, sAD and 5xFAD mice reveals insights into 
key disease processes (Fig. 7n). We identified regional DEGs shared 
between sAD and DSAD, contextualizing their shared genetic, clinical 
and biomarker features16,55,56. Remarkably, we identified changes in 
L3/L4 across all diagnoses, coinciding with L3-preferential amyloid 
deposition in AD; these changes may underlie this regional vulnerabil-
ity. We identified sex-related differences in DSAD, revealing increased 
expression of inflammatory genes within females and regulatory 
genes in males. However, the number of replicates used for these 
sex comparisons is a limitation of this study. DS samples without AD 
also would be valuable controls but are extremely rare due to the 
high prevalence of AD in the aged DS population57 and not included 
in this study.

Integrated system-level analyses of ST and snRNA-seq enhanced 
our understanding of the AD transcriptome among subtypes. CCC 
analysis identified signaling pathway changes. Dysregulated ANGPTL 
and CD99 signaling highlight astrocyte modulation of brain vascular 
integrity in AD and pinpoint downstream targets of astrocyte pheno-
type changes. Multiscale network analysis32 identified a diverse array 
of gene modules, exposing AD spatiotemporal gene expression pat-
terns. We found significant downregulation of L3/L4 and WM modules 

Fig. 6 | Altered cell–cell communication signaling networks in DSAD.  
a, Schematic representation of CCC analysis. b, Bar plot showing signaling 
pathways with significant differences between DSAD and controls, ranked  
based on their information flow (sum of communication probability among all 
pairs of cell populations in the network). c,d, Network plot showing the CCC 
signaling strength between different cell populations in controls (c) and DSAD 
(d) for NECTIN signaling. e, Spatial feature plots of the snRNA-seq in predicted 
spatial coordinates for one control sample (left) and one DSAD sample (right) for 
select NECTIN signaling genes. f, Dot plot showing gene expression of NECTIN 
signaling genes with significant CCC interactions in control (top) and DSAD 
(bottom). g, Representative double immunofluorescence images for Nectin2 
(green), Map2 (yellow) and DAPI (blue) from postmortem human brain tissue 
(PFC) of control, late-stage AD and DSAD cases. h, Bar plot representing results 
of NECTIN colocalization analysis from ×60 images (n = 5 cognitively healthy 
control, n = 4 late-stage AD and n = 4 DSAD cases) using the JACoP Plugin  

from ImageJ and Manders' correlation coefficient. Data are presented as  
the average of three different fields of view (FOVs) per sample. P values  
from two-way t tests are shown. Error bar shows one s.d. from the mean.  
i,j, Network plot as in c and d in control (i) and DSAD (j) for ANGPTL signaling.  
k, Spatial feature plots as in e for one control sample (top) and one DSAD sample 
(bottom) for the ANGPTL pathway. l, Dot plot showing gene expression of 
ANGPTL signaling genes with significant CCC interactions in control (top) and 
DSAD (bottom). m, Representative double immunofluorescence images at ×10 
and ×60 magnification for ANGPTL4 (green), GFAP (red) and DAPI (blue) from 
postmortem human brain tissue (PFC) of control, late-stage AD and DSAD cases. 
n, Bar plot representing results of ANGPTL colocalization analysis from ×60 
images (n = 3 cognitively healthy control, n = 3 late-stage AD and n = 4 DSAD 
cases) using the JACoP Plugin from ImageJ and Manders' correlation coefficient. 
Data are presented as the average of three different FOVs per sample. P values 
from two-way t tests are shown. Error bar shows 1 s.d. from the mean.

Fig. 7 | Amyloid-associated gene expression signatures. a,b, Representative 
fluorescent images from DSAD (a) and 12-month 5xFAD (b) stained with 
Amylo-Glo and OC to mark dense amyloid plaques and diffuse amyloid fibrils, 
respectively. ST data colored by cluster, amyloid quantification and hotspot 
analysis are below the images. c, Box and whisker plots showing the distribution 
of amyloid quantifications in the human ST dataset, stratifying samples by 
neuropathological plaque staging. Box boundaries and lines correspond to 
the IQR and median, respectively. Whiskers extend to the lowest or highest 
data points that are no further than 1.5 times the IQR from the box boundaries. 
Number of samples per stage—none, n = 8; stage A, n = 3; stage B, n = 7 and stage 
C, n = 14. Two-sided Wilcoxon test was used for pairwise comparisons. d,e, 
Amyloid hotspot results (Getis-Ord Gi*) for human (d) and mouse (e). f, Number 
of amyloid-associated genes from Amylo-Glo, shared and OC for mouse clusters. 
Euler diagram shows the overlap of Amylo-Glo- and OC-associated genes in the 

human dataset. g, Number of Amylo-Glo- and OC-associated genes that overlap 
with disease DEGs. h,i, Selected pathway enrichment results from amyloid-
associated genes that were shared between Amylo-Glo and OC (h) and OC-
specific (i) in the human ST dataset. j, Selected pathway enrichment results from 
amyloid-associated genes shared between Amylo-Glo and OC in the mouse ST 
dataset. One-sided Fisher’s exact test was used for enrichment tests. k, Heatmap 
showing gene set overlap results of mouse and human amyloid-associated genes, 
as well as with other gene sets (DAA19, DAM18, DOL54 and PIGs53). NS, P > 0.05; 
*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001, ****P ≤ 0.0001. l, Expression of SM6 and PIGs 
modules in representative mouse ST samples. m, Euler plot showing overlap of 
the SM6 and PIGs53. n, Overview of the experiments, data analysis and selected 
conclusions of this entire study. Illustrations were created with Biorender.com. 
DAA, disease-associated astrocytes; DAM, disease-associated microglia; DOL, 
disease-associated oligodendrocytes; BBB, blood–brain barrier.

http://www.nature.com/naturegenetics
https://www.biorender.com/


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01961-x

C
tx

−d
ee

p−
la

ye
rs

C
tx

−u
pp

er
−l

ay
er

s
H

ip
po

ca
m

pu
s−

py
ra

m
id

al

C
tx

−o
lfa

ct
or

y

H
yp

ot
ha

la
m

us
−a

m
yg

da
la

Th
al

am
us

 2
W

M
−c

er
eb

ra
l−

pe
du

nc
le

Th
al

am
us

 1

W
M

1

a

1,000 µm

Amylo-Glo
OC

Amylo-Glo
OC

1,000 µm

c

10998136

1189383

109132294

961724

859486

83552

723258

1444757
1076080

9157121

5816110

613361

1915181

1164575 10 55 160

Human genes

Hippocampus
Lateral−ventricle

WM2
Striatum

WM1
Eryth–neurons

Thalamus 2
Thalamus 1

Hippo–pyramidal
Hypothal−amygdala

Ctx (upper layers)
WM (c. peduncle)
Ctx (deep layers)

Ctx−olfactory

0 100 200 300 400 500
ngenes

Amylo-Glo

Shared

OC

Amylo overlap No overlap
OC overlap

Number of amyloid-associated genes f

Amyloid hotspot
score Low High

NS*****
NS****

NS*
**

NS
NS**

NS*
***

NS*
**

NS
NS*

L1 L2/L3 L3/L4 L3−L5 L5/L6 L6b WM

0

0.2

0.4

0.6

Av
g.

 O
C

nu
m

NS*
***

NS
NS*

NS*
**

NS
NS***

NS*
**

NS
NS
NS

NS
NS*

0

0.1

0.2

0.3

Av
g.

 A
m

yl
o-

G
lo

nu
m

Plaque stage None Stage A Stage B Stage C

Human amyloid quantifications

32 33

33 32

37 28

59 156

57 158

79 136

OC

Amylo-Glo

0 50 100 150 200

0 20 40 60

EAD
LAD

DSAD

EAD
LAD

DSAD

Overlap of amyloid genes
and DEGs

***

***
***

***

***
***
***

***

*
***

***

***
***
***

***

**
***

***

***
***
***

***

***
***

***

***
***
***

DAA
DAM

DOL
PIG

s

*** ***

*** **

*** *
***

*** **
***

* **
*** **

** **

WM2
WM1

WM (c. peduncle)
Thalamus 2
Thalamus 1

Striatum
Lateral−ventricle

Hypothal−amygdala
Hippo–pyramidal

Hippocampus
Eryth–neurons

Ctx (upper layers) 
Ctx−olfactory 

Ctx (deep layers)

Amylo OC

Odds
ratio

0
25
50
75
100
0
10
20
30

Relevant
gene sets

Human

5xFAD amyloid gene overlap
analysis

5xFAD

WT

4 m
onths

6 m
onths

8 m
onths

12 
months

PIGs

5xFAD

WT

5xFAD spatial module SM6

ME

0

High

g

27 36 21

SM6 PIGs

Overlap of PIGs
and SM6

log10(enrich)

4 6 84 6 8

−log10(P)
Neurotransmitter secretion

Actin-myosin filament sliding
Cytokine production

Chemical synaptic transmission
Myelination

Cholesterol transport
Response to amyloid-β

Neuron death
Response to axon injury
Amyloid fibril formation
Complement activation

Cell junction disassembly
Synapse pruning

Microglial cell activation
Neutrophil activation

5xFAD Amylo-Glo + OC shared
genes

n

• ST and snRNA-seq
• Disease vs control
• 5xFAD vs WT
• Female vs male

• hdWGCNA in 7 regions 
• 166 region-specific modules
• 15 brain-wide meta-modules
• Transcriptomic signatures of 
  AD polygenic risk (scDRS) 

• Integrate ST and amyloid
  fluorescent imaging
• Distinct plaque and fibril 
  genes in human and mouse

• Predicting snRNA-seq 
  spatial coordinates
• Compare signaling networks
  in control and disease 

Di�erential expression analysis

Co-expression network analysis

CCC

Amyloid hotspot analysis

H
um

an
M

ou
se • 5xFAD and WT

  at 4, 6, 8 and 12
  months of age

H
um

an

This study

Previous
datasets

• DSAD
• Control

• Control
• Early AD 
• Late AD

• Control
• Early-stage AD 
• Late-stage AD 
• DSAD

• Hyperion IMC
  (spatial proteomics)

snRNA-seq

Spatial transcriptomics

• AD risk in microglia
• AD risk increases with 
  age in 5xFAD mice
• M11 up in AD and corr.
  with AD risk 

• DME similarity across groups
• Early changes in WM, L3/L4
• Late changes in L6b
• AD in DS changes in L1

• Transcriptome-wide 
  changes in AD in DS
• Glial and vascular
  changes in grey matter
• WM ODC genes disrupted
  in early AD

• Similar DEG e�ect sizes 
  between disease groups
• Female and male DEGs
  enriched for amyloid 
  response

• Numerous signaling pathways 
  altered in disease, including 
  NECTIN (down), ANGPTL (up)
  and CD99 (down)

• Integrating snRNA-seq
  and ST revealed precise 
  localization of signaling 
  sources and recievers

• Amyloid-associated 
  mouse module SM6
  contains DAM and AD 
  risk genes

• Small overlap between
  human and mouse amyloid 
  gene sets
• Microglial activation enriched
  in mouse genes, BBB transport
  and synaptic functions in human

Sequencing experiments Data analysis Selected conclusions

Amylo-Glo
(dense 

plaques)

OC
(di�use
fibrils)Clusters

namyloid

Hotspots

Clusters

namyloid

Hotspots

b
Human amyloid imaging Mouse amyloid imaging

Control

Early AD

Late AD

DSAD

OC Amylo-Glo

4 mo

6 mo

8 mo

12 mo

OC Amylo-Glo
Human 5xFADd

Neuron di�erentiation

Transport across blood−brain barrier
Neuron death

Vascular transport
Amyloid-β formation
Sodium ion transmembrane transport
Long-term synaptic potentiation
Acidic amino acid transport
Short-term memory
Intermediate filament bundle assembly

0 2 4 6 8

Amylo-Glo + OC shared
genes 

Long-term synaptic potentiation
Glial cell di�erentiation
Chemical synaptic transmission
Sodium ion export across membrane
Hemopoiesis
Synaptic transmission, GABAergic

0 2 4 6

OC only genes

log10(enrich)

h j

i

k l

m

e

ngenes

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01961-x

specifically in early-stage AD, indicating dynamic shifts in gene expres-
sion that may have a pivotal role in AD progression. Glial meta-module 
M11 is upregulated in the cortical upper layers and contains DEGs 
shared between sAD and DSAD. We also found evidence of an associa-
tion between AD genetic risk and M11 by comparing risk scores with 
M11 across data modalities and species.

We integrated amyloid imaging and ST to identify transcriptomic 
signatures proximal to dense amyloid plaques and diffuse fibrils, yield-
ing cross-species amyloid-associated gene sets. We acknowledge that 
the present resolution of ST (55 μm) may have limited our findings—
sample differences between the human and mouse datasets likely 
also contributed to the differences in these gene sets. However, we 
identified M11 hub genes in the amyloid-associated genes, observing 
M11 expression at regions with amyloid deposition in mice and humans, 
altogether emphasizing the critical role of M11’s associated biological 
processes and genes in AD pathophysiology.

This study offers an exploration into the spatiotemporal dynam-
ics of AD gene expression using ST and snRNA-seq. Our analysis high-
lights specific cell types in AD, describes disease-associated changes in 
human cortical niches and mouse brain regions, identifies key networks 
coordinating spatiotemporal and cellular changes and links these 
transcriptomic signatures to AD genetic risk and amyloid pathology 
accumulation. Together, this work adds new dimensions to our under-
standing of AD, emphasizing the dynamic shifts in gene expression 
and the critical involvement of both neuronal and glial components 
in disease progression, and highlights the importance of studying AD 
subtypes like DSAD.
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Any methods, additional references, Nature Portfolio reporting sum-
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Methods
Postmortem human brain tissue
Human brain tissue from the prefrontal cortex and posterior cingulate 
cortex (PCC) was obtained from the University of California, Irvine’s 
(UCI) Alzheimer’s Disease Research Center and the National Insti-
tutes of Health NeuroBioBank under UCI’s Institutional Review Board 
(IRB). Additional postmortem human brain tissue originating from 
other studies8,9 was obtained under the IRB of Rush University Medical 
Center. Informed consent was obtained from all human participants. 
Samples were assigned to groups based on both neurofibrillary tangle 
and plaque staging, in addition to clinical diagnoses. Samples were 
also selected based on several covariates, including age, sex, race, 
postmortem interval (PMI), RNA integrity number (RIN) and disease 
comorbidity. RIN values were obtained by isolating total RNA with the 
Zymo Direct-zol RNA Isolation Kit and running on the Agilent TapeSta-
tion 4200. Sample information is given in Supplementary Table 1.

Mouse brain tissue
All mouse work was approved by the Institutional Animal Care and Use 
Committee at UCI. 5xFAD hemizygous (C57BL/6J; Jackson Laboratory, 
034848) and WT ( Jackson Laboratory, 000664) littermates were bred 
and housed until killed at 4, 6, 8 and 12 months. Sample information is 
given in Supplementary Table 2. For genotyping, we used the following 
primers (for PSEN1): 5′-AAT AGA GAA CGG CAG GAG CA-3′ (forward) 
and 5′-GCC ATG AGG GCA CTA ATC AT-3′ (reverse). Mice were killed by 
carbon dioxide inhalation. After PBS transcardiac perfusion, one brain 
hemisphere was flash-frozen in isopentane chilled with dry ice for RNA 
analyses, while the other hemisphere was fixed in 4% paraformaldehyde 
for immunohistochemistry.

snRNA-seq
In total, 50 mg of fresh-frozen postmortem human brain tissue was 
homogenized in Nuclei EZ Lysis buffer (NUC101-1KT; Sigma-Aldrich) 
and incubated for 5 min before being passed through a 70 μm filter. 
Samples were then centrifuged at 500g for 5 min at 4 °C and resus-
pended in additional lysis buffer for 5 min. After another centrifuga-
tion at 500g for 5 min at 4 °C, samples were incubated in nuclei wash 
and resuspension buffer (NWR; 1× PBS, 1% BSA and 0.2 U μl−1 RNase 
inhibitor) for 5 min. To remove myelin contaminants, we prepared 
sucrose gradients with nuclei PURE sucrose buffer and nuclei PURE 
2M sucrose cushion solution from the Nuclei PURE Nuclei Isolation 
Kit (NUC-201; Sigma-Aldrich), and samples were carefully overlaid and 
centrifuged at 13,000g for 45 min at 4 °C. Samples were then washed in 
NWR before processing with the Nuclei Fixation Kit (Parse Biosciences, 
SB1003). After nuclei fixation and permeabilization, samples were 
cryopreserved with DMSO until the day of library preparation. We 
generated single-nucleus libraries with the Whole Transcriptome Kit 
(WTK, Parse Biosciences, SB2001). cDNA library quantification and 
quality were assessed with a Qubit dsDNA HS Assay Kit (Invitrogen, 
Q32851) and D5000 HS Kit (Agilent, 5067-5592 and 5067-5593) or D1000 
HS Kit (Agilent, 5067-5584 and 5067-5585) for the Agilent TapeStation 
4200. Libraries were sequenced using the Illumina NovaSeq 6000 S4 
platform using 100 bp paired-end sequencing for a sequencing depth 
of 50,000 read pairs per cell.

ST
Fresh-frozen tissue samples were sectioned on an HM525NX cryostat 
(Thermo Fisher Scientific) at −15 °C for 10-μm thick sections that were 
immediately mounted onto 10x Genomics Visium slides. Slides were 
individually stored in slide mailers (sealed airtight in a plastic bag) at 
−80 °C until staining. We followed 10x Genomics Methanol Fixation, 
Immunofluorescence Staining and Imaging for Visium Spatial Protocols 
(Rev C), except after tissue sections were fixed in methanol and blocked, 
the sections were incubated with Amylo-Glo (Biosensis, TR-300; 1:100) 
for 20 min. Sections were then incubated with the primary antibody OC 

(1:500 for mouse and 1:200 for human; polyclonal, Millipore, AB2286) 
and respective secondary antibody (1:400; goat anti-rabbit secondary 
antibody, Alexa Fluor 488 or Alexa Fluor 647, both Life Tech). Immedi-
ately after immunostaining, capture areas were imaged on a widefield 
Nikon Ti2-E microscope at ×20 magnification. ST libraries were then 
generated from the tissue sections according to the 10x Genomics 
Visium User Guide (Rev E). Library quantification, quality check and 
sequencing were performed as previously described, but sequencing 
depth was based on an estimated 60% tissue area coverage per sample 
for 50,000 read pairs per covered spot. The individual ST spots may 
contain one to ten cells per spot, as reported by 10x Genomics based 
on their Visium analysis of 10-μm thick mouse brain sections.

IMC
Primary antibodies were formulated carrier-free except for YKL-
40, which contained glycerol and was purified before metal conju-
gation with Amicon 10K Buffer Exchange Columns (EMD Millipore, 
UFC501096). All antibody concentrations were obtained using a Nan-
odrop 2000c Spectrophotometer and formulated with a final stock 
concentration of 0.5 mg ml−1. All antibodies were conjugated using 
Standard BioTool’s (SBT, formerly Fluidigm) Maxpar X8 metal conjuga-
tion protocol with Maxpar metal labeling kits (SBT, 201300).

Fixed and cryoprotected tissue was sectioned on an HM525NX cry-
ostat (Thermo Fisher Scientific) at −15 °C for 14-μm thick sections onto 
Fisher Superfrost Plus slides. Slides were stored at −80 °C until staining 
and sealed airtight in a plastic bag. We followed the fresh-frozen stain-
ing protocol from SBT; however, because the tissue was previously 
fixed, we skipped the fixation step. Slides were transferred on dry ice to 
incubate at 37 °C for 5 min on a PCR machine, similar to the 10x Genom-
ics Visium protocol. Sections were washed in PBS three times for 5 min 
before drawing a hydrophobic barrier. After the hydrophobic barrier 
dried, we incubated the sections with 3% BSA in PBS with 0.2% Triton 
X-100 for 45 min at room temperature. We then incubated the sections 
with the primary antibody cocktail diluted in 0.5% BSA/PBS with 0.2% 
Triton X-100 overnight at 4 °C. The antibodies and dilutions used in 
the primary antibody cocktail are given in Supplementary Table 29. 
Sections were then washed in PBS with 0.2% Triton X-100 twice for 
8 min before incubating with the iridium intercalator (SBT, 201192A; 
1:100 in PBS) for 30 min at room temperature. We then washed the 
sections in water twice for 5 min before allowing them to air dry before 
ablation. Hyperion Imaging System (SBT) was tuned before ablation 
using Hyperion Tuning Slide (SBT, 201088) for optimal instrument 
performance. Ablations were performed with ablation energy of four 
with a reference energy of zero in 1,000 × 1,000 μm regions of inter-
est, except for one due to unexpected consumption of Argon gas that 
resulted in a 1,000 × 922 acquisition.

Immunofluorescence
PFA-fixed human postmortem brain tissues were sectioned at 30 μm 
using a cryotome (Leica, SM2010R). Sections were then rehydrated (1× 
PBS) and permeabilized using sodium citrate buffer (heated at 95 °C 
for 10 min). After blocking with 3% BSA solution or serum (respective 
to the antibodies), sections were incubated with primary antibodies 
at 4 °C overnight (ANGPTL4 antibody (1:500; Thermo Fisher Scien-
tific, 710186), GFAP polyclonal antibody (1:500; Thermo Fisher Sci-
entific, PA3-16727), CD99 antibody (1:250; Thermo Fisher Scientific, 
MA5-12287), CD99L2 antibody (1:500; Thermo Fisher Scientific, PA5-
58539), Nectin2 antibody (1:250; Thermo Fisher Scientific, PA582470), 
MAP2 antibody (1:250; Thermo Fisher Scientific, PA1-10005) and C1QB 
polyclonal antibody (1:250; Thermo Fisher Scientific, PA5-42554)). 
Secondary antibodies were selected according to the manufacturer’s 
instructions and incubated for 2 h. Slides were imaged using Zeiss Axio 
Scan Z1 Slide scanner (for ×10 images) and Nikon ECLIPSE Ti2 inverted 
microscope (for ×20/×40/×60 images). Images from three randomly 
selected areas of each slice were used for analysis. For C1QB staining, 
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we tried to dissect WM-enriched regions from postmortem fixed brain 
samples and verified the presence of both WM and GM at a ratio of 
approximately 3:1 (for most male samples) and 2:1 (for most female 
samples) through visual inspection and subsequent confirmation 
with MOBP staining, ensuring accurate tissue characterization. To 
control for potential variations in background fluorescence between 
samples, we used ImageJ to quantify the average mean fluorescence 
intensity of the background. We then applied background subtraction 
by deducting this value from the total mean fluorescence intensity, 
thereby minimizing the impact of uneven background signals on our 
fluorescence measurements.

Preprocessing gene expression data
For the snRNA-seq dataset, we aligned sequencing reads to the refer-
ence transcriptome (GRCH38) and quantified gene expression using 
splitpipe (Parse Biosciences) in each of the five snRNA-seq experiments. 
We quantified and corrected the ambient RNA signal present in our 
samples using Cellbender60 remove-background (v0.2.0). Heterotypic 
barcode collisions were inferred in each snRNA-seq experiment using 
Scrublet61 (v0.2.3) with default settings. We merged the individual 
snRNA-seq experiments into a single AnnData (v0.8.0) object, totaling 
611,999 barcodes and 29,889 genes before additional quality control 
filtering. For each snRNA-seq experiment, we removed barcodes in the 
95th percentile for the number of unique molecular identifiers (UMIs) 
detected, doublet score from Scrublet and percentage of mitochon-
drial reads. We also applied dataset-wide cutoffs to remove barcodes 
with less than or equal to 250 UMIs, greater than or equal to 50,000 
total UMIs and greater than or equal to 10% mitochondrial reads. For 
one of the snRNA-seq experiments, we applied a more stringent filter 
to remove cells with less than or equal to 500 UMIs and greater than 
or equal to 5% mitochondrial reads. We retained 431,534 barcodes for 
downstream analysis.

The 10x Genomics Loupe Browser image alignment tool was used 
to select Visium ST spots that intersected the tissue based on the fluo-
rescent images. Sequencing reads from the human and mouse Visium 
experiments were processed using the 10x Genomics Spaceranger 
(v1.2.1) pipeline, with GRch38 and MM10 as the respective reference 
transcriptomes. Spaceranger count was used to align sequencing 
reads to the reference, quantify gene expression and perform a pre-
liminary clustering analysis for each sample. Unlike the snRNA-seq 
dataset, we did not filter out additional spots based on sequencing 
QC metrics; however, our mouse ST clustering analysis did reveal a 
group of low-quality spots that we excluded from many downstream 
analyses like DE. The UMI counts matrices and fluorescent images for 
the human and mouse samples were combined into merged Seurat62 
objects for the respective species.

Initial snRNA-seq data analysis
Following QC filtering, we processed the snRNA-seq dataset using 
SCANPY63 and scVI64. The UMI counts matrix was first normalized using 
the functions sc.pp.normalize_total and sc.ppl.log1p. We set up 
the AnnData object to train the scVI model using snRNA-seq as the batch 
key and the following additional continuous and categorical covari-
ates—sample ID, diagnosis, brain region, age at death, percentage of 
mitochondrial counts, number of UMI, PMI and RIN. We set up the scVI 
model with two hidden layers, 128 nodes per layer, a 30-dimensional 
latent embedding after the encoder phase and a dropout rate of 0.1. We 
trained the model over 50 epochs and noted a flattened loss curve by 
the end of the training procedure. The latent embedding learned from 
the scVI model accounts for the batch effects and additional covariates 
specified in the model setup step, and we used this embedding for 
Leiden clustering and uniform manifold approximation and projec-
tion (UMAP)65 dimensionality reduction in SCANPY. With a resolution 
parameter of 1.5, we identified 43 clusters. We inspected gene expres-
sion patterns in these clusters for a panel of canonical central nervous 

system cell-type marker genes to assign major cell-type labels to each 
cluster. We also checked the distribution of QC metrics in each cluster 
to identify outlier clusters. Six clusters (7, 29, 33, 35, 50 and 51) were 
removed from the downstream analysis as QC outliers or due to the 
presence of potential doublets. We recomputed the UMAP and Leiden 
clustering (resolution = 1.2) after filtering these clusters, yielding 29 
clusters. Glutamatergic neuron clusters were annotated based on the 
expression of known cortical layer marker genes, and GABAergic neu-
ron clusters were annotated based on the expression of known markers 
(VIP, SST, PVALB and LAMP5). At this stage, non-neuronal cell clusters 
were simply labeled by their major cell types (astrocytes, microglia, 
oligodendrocytes, oligodendrocyte progenitors and vascular cells). 
To identify subpopulations in non-neuronal cells, we performed sub-
clustering analysis in each of the major non-neuronal cell populations 
(microglia, astrocytes, oligodendrocytes and vascular cells). Each 
group was isolated in its own AnnData object, and Leiden clustering 
was performed (see GitHub repository for subclustering parameters).

Reprocessing publicly available single-nucleus gene 
expression datasets
We obtained sequencing data from three published snRNA-seq 
studies7–9 of AD. Sequencing data from refs. 8,9 datasets were down-
loaded from Synapse (syn18485175 and syn21670836), and the data 
from ref. 7 generated by our own group was not redownloaded. We 
used a uniform pipeline to process each of these datasets, with slightly 
varying parameters that are noted in our GitHub repository. This pipe-
line and the resulting AnnData objects are identical to those used in 
another study from our group32, and we reiterate the main analysis 
steps here. Sequencing reads were pseudoaligned to the reference 
transcriptome (GRch38), and gene expression was quantified using the 
count function from kallisto bustools66. The ambient RNA signal was 
corrected in UMI counts matrices for each sample using Cellbender60 
remove-background, and we used Scrublet61 to identify barcodes attrib-
uted to more than one cell. Individual samples were then merged into 
one AnnData object for each of the three studies. Analogous to the 
snRNA-seq data we generated in this study, we performed percentile 
filtering based on the following QC metrics: doublet score, number of 
UMI per cell and percentage of mitochondrial reads per cell. The down-
stream processing was performed using SCANPY63. Gene expression 
was normalized using the functions sc.pp.normalize_total and sc.
pp.log1p, resulting in a ln(counts per million (CPM)) transformation 
of the input UMI counts data. Highly variable features were identified 
using sc.pp.highly_variable_genes, which were then scaled to 
unit variance and centered at zero using sc.pp.scale. Linear dimen-
sionality reduction was performed on the scaled expression matrix 
using principal component analysis (PCA) with the function sc.tl.pca. 
Harmony67 was used to batch-correct the PCA representation with the 
function sc.external.pp.harmony_integrate. A cell neighbor-
hood graph was computed based on the harmony representation using 
sc.pp.neighbors, followed by Leiden58 clustering and nonlinear UMAP 
dimensionality reduction with sc.tl.leiden and sc.tl.umap, respectively. 
Canonical central nervous system cell-type marker genes were used to 
assign coarse-grain identities to each cluster and to identify additional 
doublet clusters that passed our previous filtering steps. We inspected 
the distribution of the QC metrics in each cluster and removed outlier 
clusters. After filtering additional low-quality clusters, we ran UMAP 
and Leiden clustering again to result in the final processed AnnData 
object for each dataset.

Differential cell state abundance testing in the snRNA-seq 
datasets
We sought to test for differential cell state abundance across conditions 
within our snRNA-seq dataset using the R package miloR28 (v1.8.1). 
MiloR offers a statistical framework for testing for the enrichment 
or depletion of certain cell states across two conditions of interest 
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(control versus disease status) using partially overlapping cellular 
neighborhoods on the k-nearest neighbors (KNN) graph. For our dif-
ferential abundance analysis, we first constructed the KNN graph and 
identified cellular neighborhoods using the scANVI25 representation of 
our snRNA-seq dataset. After constructing this cell neighborhood cell 
counts matrix, a negative-binomial generalized linear model (GLM) is 
fit to obtain P values and FC differences for the differences in neighbor-
hood abundances across the conditions of interest. For our analysis, 
we applied this differential abundance procedure separately for the 
four snRNA-seq datasets used in this study.

ST clustering analysis
In the human and mouse ST datasets, we grouped spots into biologi-
cally relevant clusters by accounting for transcriptome measure-
ments and spatial coordinates. The BayesSpace22 clustering algorithm 
uses a low-dimensional representation of the transcriptome with a 
spatial before encouraging the assignment of neighboring spots in 
the same cluster. Critically, BayesSpace produces a single unified 
clustering across many different ST experiments rather than sepa-
rate clustering and annotation for each ST slide. Seurat objects were 
converted to the SingleCellExperiment format using the function 
as.SingleCellExperiment. Absolute and relative spatial coordinates 
were stored in the metadata compartment of the SingleCellExperiment 
objects to inform the BayesSpace model of the spatial information, 
ensuring to offset each sample such that there was no overlap. Each 
dataset was log-normalized, and linear dimensionality reduction was 
performed with PCA using the function spatialPreprocess from the 
BayesSpace R package. Harmony67 batch correction was applied on the 
basis of individual samples using the RunHarmony function. For the 
human dataset, we ran BayesSpace clustering using the spatialCluster 
function in the BayesSpace R package, varying the q parameter (number 
of resulting clusters) from five through ten. We inspected the output of 
each clustering and found that q = 9 produced results that were most 
consistent with the underlying anatomy of the cortex, allowing us to 
annotate clusters based on cortical layers and WM. Similarly, we ran 
BayesSpace clustering on the mouse dataset varying the q parameter 
between 10 and 20, and we selected q = 15 for downstream analysis. To 
inspect the tissue composition variability among the human ST sam-
ples, we calculated the normalized difference between the number of 
GM and WM spots in each sample.

Reference-based integration of snRNA-seq datasets
We performed reference-based integration of the snRNA-seq dataset 
from the present study with the three published AD snRNA-seq data-
sets. Using our new snRNA-seq dataset as the reference, we projected 
the three published datasets into the reference latent space using 
scANVI25, and we performed transfer learning to predict cell identi-
ties using scArches68. While scANVI shares similarities with the scVI 
model that we previously used to process our snRNA-seq data, it is a 
semi-supervised model that leverages cell annotations in the reference 
dataset to inform the latent representation of the query dataset. We 
trained the scANVI model separately for each of the query datasets 
using the class scvi.model.SCANVI, training for 100 epochs in each case. 
For each query dataset, this process resulted in a low-dimensional rep-
resentation of the transcriptome in the latent space originally learned 
from the reference snRNA-seq dataset with the model.get_latent_
representation function and predicted cell annotation labels from 
the model.predict function. We merged the reference dataset with the 
three query datasets, and we ran UMAP on the scANVI latent repre-
sentation to visually represent the unified dataset in two dimensions.

Cluster marker gene analysis
We performed cluster marker gene analysis for each snRNA-seq cluster 
using the snRNA-seq dataset generated in this study. For this analy-
sis, we used a ‘one-versus-rest’ strategy to systematically perform 

differential gene expression analysis, comparing each cluster to all the 
other clusters. We used MAST59 as our DE model for this test, accounting 
for the sequencing batch and the number of UMI per nuclei as covari-
ates in our model. We used a similar strategy to perform cluster marker 
gene analysis in our human and mouse Visium ST datasets where we 
used the biological sample ID and the number of UMI per spot as model 
covariates for MAST.

Differential gene expression analysis
We systematically performed differential gene expression analysis in 
each of our datasets to compare the disease conditions with controls. 
For all our differential gene expression tests, we use MAST59 as the 
underlying model, which has shown favorable results in recent bench-
marks for DE analysis in datasets with multiple sequencing batches. 
For the snRNA-seq dataset generated in this study, we compared gene 
expression between the DSAD and cognitively normal control groups 
for each cluster and major cell type, and we performed this analysis 
separately for the two brain regions profiled in this study (frontal 
cortex and PCC). We used the sequencing batch, number of UMI per 
nuclei, sample PMI and sample RIN as model covariates for these tests. 
We used a similar strategy for the DE analysis of the previously pub-
lished snRNA-seq datasets7–9 to compare late-stage AD samples with 
cognitively normal controls, accounting for the study of origin and 
number of UMI per nuclei as model covariates. We compared gene 
expression between cognitively normal controls and the three experi-
mental groups (early-stage AD, late-stage AD and DSAD) separately 
in our human ST dataset. For these comparisons, we used RIN, PMI, 
number of UMI per spot, date of sequencing library preparation and 
sequencing batch as model covariates. In the mouse ST dataset, we 
performed differential gene expression analysis to compare gene 
expression between 5xFAD and WT mice in each ST cluster, and we 
stratified this analysis by each age group (4, 6, 8 and 12 months). For 
the mouse analysis, we used the number of UMI per spot, sequencing 
batch, date of killing and date of sequencing library preparation as 
model covariates. We visualized the results of the DE tests as volcano 
plots to show the statistical significance and the effect sizes for each 
gene. For the human datasets, we also visualized the DE results using a 
heatmap stratified by chromosome to inspect the contribution of each 
chromosome to the overall set of DEGs. In the human ST datasets, we 
‘deconvolved’ the spatial DEGs by their cell populations by compar-
ing each set of DEGs to the snRNA-seq marker genes. For each disease 
versus control spatial DEG, we checked if it was also a marker gene 
for one of the cell populations. In the case where a DEG was a marker 
gene in more than one population, we broke ties based on the highest 
effect size from the marker gene test. In this analysis, we also noted 
which genes were not markers of any snRNA-seq cell population. We 
then inspected the proportion of the set of DEGs that were attributed 
to each of the cell populations.

Within the human snRNA-seq and ST datasets, we compared the 
results of the DE analyses across the different conditions within each 
snRNA-seq and ST group. For these comparisons, we computed Pearson 
correlations and performed linear regression on the DE effect sizes for 
the set of genes that were significantly different between condition 
and control for either of the analyses. We visualized these results using 
scatter plots and indicated genes that were consistent or inconsistent 
in terms of their effect sizes across the different comparisons. We used 
the EnrichR69 R package (v3.1) to identify biological pathways and 
processes that are enriched in our sets of DEGs and in sets of DEGs that 
were shared across different DE tests.

Hierarchical co-expression network analysis in human ST
We performed hierarchical co-expression network analysis across dif-
ferent cortical layers and WM in our human ST dataset using the R pack-
age hdWGCNA32,70 (v0.2.19). Before network analysis, we computed 
pseudo-bulk gene expression profiles for each of our 39 ST samples 
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in for the cortical layer clusters and WM (L1, L2–L3, L3–L4, L3–L4–L5, 
L5–L6, L6b, WM), and we calculated log2(CPM mapped reads) normal-
ized expression values. Genes were retained for network analysis if 
they were expressed above 0 UMI counts in at least 5% of cells in any of 
the spatial annotations, thereby retaining 10,199 genes. We selected 
soft-power threshold parameters for each spatial region by computing 
the scale-free topology model fit for different soft-power values and 
using the smallest parameter that yielded a model fit greater than 0.8. 
Co-expression networks were then computed separately for the seven 
spatial regions using the hdWGCNA function ConstructNetwork, using 
a minimum module size of 50, a merge cut height of 0.1 for dynamic 
tree cutting71, the soft-power thresholds as previously described and 
all other parameters set to the default values. This process yielded 
166 gene co-expression modules across the seven spatial regions, and 
we assigned a unique name to each module based on a combination 
of their spatial region of origin and a numeric identifier. For exam-
ple, module ‘L1–M7’ is the seventh module originating from spatial 
region L1. We calculated gene expression summary values, called MEs, 
for each of these 166 modules in each of the ST spots using the hdW-
GCNA function ModuleEigengenes, applying a Harmony95 correction 
to the MEs based on biological sample of origin. We then computed 
eigengene-based connectivity (kME) for each gene using the hdWGCNA 
function ModuleConnectivity.

We next sought to perform a hierarchical analysis of these 
co-expression networks using a strategy similar to a previous study72. 
First, we calculated similarity metrics between pairs of co-expression 
modules that arose from different spatial regions by computing gene 
overlap statistics such as Jaccard similarity (J) using the R package 
GeneOverlap (v1.34.0). Next, we calculated pairwise Pearson correla-
tions between each of the 166 co-expression modules within each of 
the seven brain regions, and we kept the component-wise maximum 
of these correlations (E). Using these two measures of similarity, we 
computed a module-module dissimilarity matrix D = 1 − (E + (3J)/4). 
We then computed the Euclidean distance between modules in this 
matrix and performed hierarchical clustering with the R function 
hclust. We refer to the 15 groups of modules that arose from this hier-
archical clustering analysis as ‘meta-modules’. Similar to our previous 
co-expression network analysis, we computed MEs and kMEs for these 
meta-modules to summarize gene expression in the ST spots and to 
quantify the eigengene-based connectivity of each gene. For cases 
where a single gene was assigned to more than one meta-module, we 
re-assigned the gene to only the meta-module where the gene had the 
highest eigengene-based connectivity. Additionally, we computed a 
consensus topological overlap matrix (TOM) based on the seven TOMs 
from the co-expression analysis in each spatial region, and we visual-
ized this consensus TOM as a UMAP plot using the hdWGCNA function, 
RunModuleUMAP. We identified enriched biological processes in each 
of the meta-modules using the EnrichR69 R package (v3.1) to overlap 
these gene sets with those associated via GO.

We performed DME analysis to compare the differences in the 
expression of each co-expression module between disease groups 
(early AD, late AD and DSAD) with cognitively normal controls. This 
analysis was done using the hdWGCNA function FindDMEs, using a 
two-sided Wilcoxon rank-sum test for the comparisons. Like differential 
gene expression analysis, DME analysis results in measures of statisti-
cal significance and effect sizes for each co-expression module across 
each comparison. For the 166 region-specific co-expression modules, 
we performed DME analysis only within the region that the modules 
were derived from. Alternatively, for the meta-modules, we performed 
DME analysis within each of the spatial regions. After performing these 
tests, we sought to compare the results of these tests across the differ-
ent disease conditions to identify similarities and differences among 
the co-expression patterns. For the 166 co-expression modules, we 
computed Pearson correlations and linear regressions comparing the 
effect sizes of the DME results and visualized the results as scatter plots. 

We next tested the overlap between sets of co-expression modules that 
were significantly differentially expressed between the groups using 
the UpSetR73 package.

To inspect the activity of these spatially derived co-expression 
networks in other related contexts, we projected the 166 co-expression 
modules and the 15 meta-modules into our snRNA-seq and mouse ST 
datasets using the hdWGCNA function ProjectModules. This function 
computes MEs in a query dataset for sets of genes from co-expression 
modules that were found in a different reference dataset. In this case, 
the reference dataset is the human ST dataset, and the query datasets 
are the human snRNA-seq and the mouse ST datasets. We coarsely 
inspected the distributions of the meta-modules in specific cell types 
within the human snRNA-seq dataset with UMAP visualizations where 
each cell is colored by the projected ME value. In the mouse ST dataset, 
we inspected these trends using violin plots stratified by age group and 
genotype. Furthermore, in the mouse dataset, we performed module 
preservation analysis33 to assess the reproducibility of these modules 
across species using the hdWGCNA function ModulePreservation.

Co-expression network analysis in mouse ST
We used hdWGCNA32 to perform a brain-wide gene co-expression 
network analysis in our mouse ST dataset, similar to the analysis from 
the mouse brain ST dataset from ref. 53, which was used to identify the 
‘plaque-induced gene’ (PIG) network. First, because co-expression 
network analysis is sensitive to noise in sparse datasets, we computed 
‘meta-spots’ by merging the transcriptomes of adjacent ST spots in 
a grid pattern for each of the 80 ST samples. Genes were retained for 
network analysis if they were expressed above 0 UMI in at least 5% of 
spots originating from any of the different brain regions, yielding a 
total of 12,579 genes. After performing a soft-power threshold search 
similar to our human co-expression network analysis, we computed 
the co-expression network TOM and identified gene modules using 
the hdWGCNA function ConstructNetwork with default parameters. 
In total, this process yielded ten brain-wide spatial co-expression mod-
ules. We computed MEs for these modules using the hdWGCNA func-
tion ModuleEigengenes, applying a Harmony67 correction to the MEs 
based on the sequencing batch. Next, we computed eigengene-based 
connectivity (kME) for each gene using the hdWGCNA function Mod-
uleConnectivity. We visualized the co-expression network in two 
dimensions by computing a UMAP representation of the TOM with 
the hdWGCNA function RunModuleUMAP. We used the EnrichR69 
R package (v3.1) to identify biological processes from GO that were 
enriched in these co-expression modules.

We sought to compare these co-expression modules with other rel-
evant gene sets. For this analysis, we used the same gene sets described 
in the ‘Quantifying gene expression signatures of disease-relevant gene 
sets’ section. We performed pairwise Pearson correlations of the MEs 
with the UCell74 scores of these gene signatures to assess the similarity 
of gene expression patterns using the hdWGCNA function Module-
TraitCorrelation. We next computed gene overlap statistics between 
the sets of genes in each co-expression module with these other gene 
sets using the R package GeneOverlap. To further our comparison 
with the spatial co-expression modules from ref. 53, such as the PIG 
module, we used the hdWGCNA function ProjectModules to quantify 
gene expression patterns of ref. 53 modules in our mouse ST dataset. 
We then computed pairwise Pearson correlations between the MEs 
for the co-expression modules derived from our mouse ST dataset to 
those derived from the dataset of ref. 53.

Polygenic disease enrichment analysis in ST and snRNA-seq
We performed polygenic disease enrichment analysis in our ST and 
snRNA-seq datasets using the Python package scDRS34 (v1.0.0). Briefly, 
scDRS computes cell-level disease enrichment scores using transcrip-
tomic measurements and putative disease gene sets from GWAS. These 
transcriptomic datasets are inspected for deviations from expected 
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expression levels based on 1,000 ‘control’ gene sets with matching 
mean and variance to the disease gene sets. After normalizing the 
disease enrichment scores, scDRS computes cell-level P values using 
the empirical distribution of the pooled normalized control scores. 
In addition to cell-level enrichments, scDRS computes group-level 
enrichment P values (cluster, cell type, region, etc.) using a unified 
Monte Carlo test based on the test statistics for the disease scores 
in a given group and the distribution of test statistics for the control 
scores in the same group. The scDRS Python package includes puta-
tive disease gene sets curated by the authors of scDRS, and we used 
these provided gene sets for our analysis (74 gene sets for humans 
and 22 for mice). We applied scDRS to the following datasets: human 
ST, mouse ST, snRNA-seq from the present study, snRNA-seq from 
ref. 8, snRNA-seq from ref. 9 and snRNA-seq from ref. 7. scDRS was 
performed in each dataset separately, and we report the results sepa-
rately because batch effects from distinct datasets could potentially 
affect the enrichment results, which the scDRS algorithm does not 
explicitly account for. We computed group-level associations for cell 
clusters in the snRNA-seq data and the region clusters for the spatial 
data separately for each disease group in humans and separately for 
each genotype and age group in the mouse dataset. We next assessed a 
potential relationship between the scDRS score for AD with the spatial 
co-expression modules by computing Pearson correlations of MEs with 
the scDRS scores. These correlations were performed separately for 
different clusters and disease groups. This analysis was performed for 
the 166 spatial co-expression modules in the human ST dataset; the 15 
co-expression meta-modules in the human ST dataset, the mouse ST 
dataset and the human snRNA-seq dataset; and the 10 mouse spatial 
co-expression modules.

Sex differences within disease groups
We performed additional differential gene expression tests to iden-
tify sex differences within the different disease groups present in our 
dataset, using a similar strategy as the other DE tests with MAST59 as the 
underlying model. For the snRNA-seq datasets, we compared expres-
sion between nuclei from female versus male samples in each cell type 
and each cell cluster, and we used sequencing batch, the number of 
UMI per nuclei and the PMI as the model covariates. Because the ST 
dataset has fewer samples than the snRNA-seq dataset, the results were 
more likely to be skewed by a dataset imbalance between the female 
and male samples. For instance, within the DSAD cohort, there were a 
greater number of female samples (seven) as compared to male sam-
ples (three). For the human ST dataset, before running the DE analysis, 
we first downsampled the dataset (stratified by biological sample) such 
that the number of spots from the female samples matched that from 
the male samples. We then performed DE analysis with MAST using 
the unique sample identifier, the number of UMI per spot and the PMI 
as the model covariates. For the mouse ST dataset, we performed DE 
tests between females and males in the 5xFAD mice within the same age 
group (4, 6, 8 and 12 months) using the unique sample identifier and the 
number of UMI per spot as model covariates. We inspected the overlap 
between sets of DEGs between the different spatial regions using the R 
package UpSetR73 (v1.4.0). We used the EnrichR R package to identify 
biological processes enriched in DEGs in each spatial region. To comple-
ment the DE analysis, we also used the hdWGCNA R package to perform 
DME analysis to compare the expression of our co-expression modules 
between female and male samples in each spatial region.

Spatial proteomics data analysis
SBT MCD files were imported into Visiopharm Software (v2022.03). 
Image classes were created for training and included background, 
nuclei and nuclei border. Nuclei detect AI App (v2023.01.2.13695), a 
pretrained deep learning app developed by Visiopharm, was used to 
detect nuclei with Ir191 and Ir193 nuclear channels. Single-cell data was 
exported to a.tsv file for further analysis.

We performed an unbiased clustering analysis of our IMC spatial 
proteomic dataset using the R package Seurat62 (v4.3.0). We first cre-
ated a Seurat object using the protein intensity by nuclei segments 
matrix as the input, and then we log-normalized this matrix using the 
Seurat function NormalizeData. We next performed dimensional-
ity reduction by scaling and centering the data with the ScaleData 
function and performing PCA with the RunPCA function. To correct 
the sample-specific differences in our protein intensity data, we ran 
Harmony67 to correct the PCA matrix before running Louvain clustering 
and UMAP. We then performed a one-versus-rest marker test (two-sided 
Wilcoxon rank-sum test) with the Seurat function FindAllMarkers to 
identify proteins that were significantly expressed in each cluster to 
annotate them with cell-type labels. Following our cell-type annotation, 
we performed additional Wilcoxon rank-sum tests to compare the dif-
ferent experimental groups (cognitively normal controls, late-stage AD 
and DSAD) within each cluster for each protein in our panel.

Spatial mapping of snRNA-seq data
We mapped our snRNA-seq dataset into spatial coordinates using the 
R package CellTrek45 (v0.0.94). Briefly, the CellTrek pipeline enables 
spatial mapping of single-cell transcriptomes by creating an integrated 
co-embedding of ST and single-cell data, followed by a multivariate ran-
dom forest model to predict the biological coordinates from the shared 
feature space. In our testing, we found that this algorithm was limited in 
that it could not scale to large datasets comprising hundreds of thou-
sands of single cells. Additionally, this algorithm only maps data to a 
single ST slide at a time. We also found that the CellTrek algorithm only 
provided predicted coordinates for a subset of the input single-cell tran-
scriptomes. For these reasons, we mapped our snRNA-seq frontal cortex 
data to the human ST dataset in a pairwise fashion for each snRNA-seq 
sample and each ST sample. For a given pair of ST and snRNA-seq sam-
ples, we constructed an integrated co-embedding using the CellTrek 
function traint with default parameters. We then iteratively mapped 
the single-cell transcriptomes into the ST coordinates using the CellTrek 
function over three iterations. The second iteration only included cells 
that were not mapped in the first iteration, and the third iteration only 
included cells that were not mapped in the first or second iterations. We 
then computed the Euclidean distance between each mapped cell and 
each of the ST spots, and we labeled each cell with a spatial annotation 
based on the most frequently observed annotation among the labels 
of the ten closest spots. After running the pairwise CellTrek mappings, 
we compiled the results into a single table. In sum, this process yielded 
multiple spatial coordinates and multiple annotations for each cell 
across the 39 human ST samples in this study. Given that these tissue 
samples varied in their GM and WM content, the CellTrek mappings and 
inferred spatial annotations are generally not consistent across the ST 
samples. To come up with a consensus regional annotation across the 
different spatial mappings, we excluded the mappings from ST samples 
that were excessively high in WM or GM content. We computed a metric 
summarizing the GM to WM ratio in each ST sample by counting the 
number of GM spots and WM spots, taking the difference and dividing 
by the total number of spots. Positive values indicate higher GM content, 
while negative values indicate higher WM content. We excluded samples 
with greater than 0.9 and less than −0.3, thereby retaining mappings 
from 34 of the ST samples. For each cell, we counted the number of times 
it was mapped to each spatial region and labeled the cell based on the 
most frequently mapped region across the different samples. We further 
simplified these spatial annotations by upper cortical, lower cortical or 
WM regions. We performed differential abundance testing with miloR28 
to compare the abundance of nuclei in each cell cluster stratified by 
these spatial annotations between the control and DSAD groups.

Cell–cell signaling analysis
We performed cell–cell signaling analysis in our snRNA-seq frontal 
cortex dataset with CellChat46 (v1.1.3), using the predicted spatial 
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annotations in addition to cell-type labels. The human CellChatDB 
ligand–receptor interaction database was used for this analysis. To 
facilitate downstream comparisons of the signaling networks in DSAD 
versus control samples, we ran the CellChat workflow separately based 
on disease status. The CellChat object was created using the normal-
ized gene expression matrix and the cell-type annotations with the 
predicted spatial regions from CellTrek, removing any cell groups with 
fewer than 30 cells. We then ran the recommended CellChat workflow 
using the following functions: identifyOverExpressedGenes, 
identifyOverExpressedInteractions, projectData, compute-
CommunProb, filterCommunication, subsetCommunication, 
computeCommunProbPathway, aggregateNet and netAnaly-
sis_computeCentrality. The DSAD and control CellChat objects 
were merged into one object using the mergeCellChat function. We 
compared the signaling networks across conditions both functionally 
and structurally using the computeNetSimilarityPairwise function. 
Furthermore, we used the rankNet function to compute the rela-
tive information flow changes between DSAD and control across all 
signaling pathways. We identified differentially expressed ligands 
and receptors as well as their signaling pathways using the identi-
fyOverExpressedGenes function, visualizing selected results with the 
netVisual_bubble function.

We next compared the results from CellChat to another cell–cell 
signaling analysis pipeline, LIANA75 (R package (v0.1.13)). LIANA dif-
fers from CellChat in that it is a unified analysis package for running 
a number of different CCC inference methods (including CellChat) 
with a number of different ligand/receptor interaction databases. 
Thus, the results from LIANA are aggregated from different analysis 
approaches. Similar to our CellChat analysis, we ran LIANA with the 
default parameters for snRNA-seq profiles from our control and DSAD 
groups. To compare the results between CellChat and LIANA, we com-
puted Pearson correlations between the number of predicted cell–cell 
interactions between each cell group as the signal sender versus the 
other groups as the signal receivers.

Quantifying gene expression signatures of disease-relevant 
gene sets
We used the UCell74 R package (v2.2.0) to quantify gene expression 
signatures of several relevant gene sets with the function AddModuleS-
core_UCell. The following gene sets were used for this analysis: home-
ostatic microglia18, disease-associated microglia18, disease-associated 
astrocytes19, disease-associated oligodendrocytes54 and PIGs53. The full 
list of genes within each gene set used for this analysis can be found on 
our GitHub repository.

Integration of amyloid imaging data and ST data
Because we stained the brain sections used for ST with Amylo-Glo and 
OC, we developed a custom data analysis pipeline to identify gene 
expression changes associated with amyloid-β plaque depositions in 
our human and mouse ST datasets. For this analysis, our data process-
ing pipeline was uniform among the human and mouse datasets. We 
used custom automated imaging analysis protocols (General Analysis 
protocols on NIS-Elements) to obtain Amylo-glo+ and OC+ binaries 
thresholding by intensity and size, as well as accounting for autofluores-
cence/nonspecific staining by negative thresholding based on an empty 
channel. We exported the following values for each binary: area (μm2), 
diameter, center X and Y coordinates. Only 5xFAD samples were used 
for the mouse samples, as there is no amyloid pathology in WT mice. 
Samples with high backgrounds were excluded. The image analysis 
of the Amylo-Glo and OC fluorescent images gives us the coordinates 
and sizes of stained amyloid bodies that can then be directly compared 
to the Visium ST data. We separately counted the number of amyloid 
aggregates stained with Amylo-Glo or OC that overlapped each of the 
ST spots. We then calculated the number of Amylo-Glo or OC+ binaries 
per spot by testing for an intersection between a spot and a binary. The 

radius of a spatial spot was calculated according to values provided by 
10x Genomics, where a spot is 55 μm with a 100 μm distance between 
spot centers, and expanded the radius of a spot to account for the gap 
between spots. To account for the size of each amyloid aggregate, we 
also computed the sum of the areas of all amyloid aggregates overlap-
ping each ST spot. We next used the R package Voyager76 (v1.0.10) to 
perform hotspot analysis by computing the Getis-Ord Gi*77,78 statistics 
for the Amylo-Glo and OC area scores in each ST sample.

Identifying amyloid-associated gene expression signatures in 
human and mouse
We used the Getis-Ord Gi*77,78 hotspot statistics for amyloid aggregates 
stained with Amylo-Glo and OC to identify gene expression signa-
tures associated with amyloid aggregation in the human and mouse 
ST datasets. We used GLMs to identify genes that were significantly 
altered in expression with respect to the amyloid hotspot statistics. 
This analysis was done using the fit_models function from the R 
package monocle379 (v1.3.1). We used the biological sample of origin 
and the number of UMI per spot as model covariates, and statistical 
significance is evaluated using a two-sided Wald test. Furthermore, 
this analysis was performed separately for the Amylo-Glo and OC 
hotspot statistics because these two stains identify different forms 
of amyloid aggregates. Because our mouse brain dataset profiled an 
entire brain hemisphere and the clusters broadly corresponded to 
different major brain regions, we also performed this analysis sepa-
rately for each of the clusters in the mouse ST dataset. Alternatively, 
the human dataset contains ST profiles only in the frontal cortex GM 
and WM. Amyloid aggregation tends to primarily occur in the GM, as 
seen in our hotspot analysis, and for this reason, we chose to exclude 
the human WM ST spots from the analysis. After running the GLM, we 
computed Pearson correlations between the amyloid hotspot scores 
and gene expression for significant results. We consider genes to 
be amyloid-associated if there is a significant result from the GLM 
(FDR < 0.05) and a positive correlation between gene expression and 
the amyloid score.

For each of these sets of amyloid-associated genes, we performed 
biological pathway enrichment analysis using the R package EnrichR69 
(v3.1) with gene sets from the GO database. In both the human and 
mouse datasets, we computed overlap statistics between the sets of 
amyloid-associated genes from Amylo-Glo and OC using the R package 
GeneOverlap (v1.34.0). Furthermore, we computed overlap statistics 
between each set of amyloid-associate genes and other disease-relevant 
gene sets, which were previously described in the Quantifying gene 
expression signatures of disease-relevant gene sets. We also performed 
a gene overlap analysis to compare the set of amyloid-associated genes 
between the human and mouse datasets.

Statistics and reproducibility
No statistical method was used to predetermine the sample size for the 
experiments. The investigators were not blinded to allocation during 
experiments and outcome assessment. Samples were only excluded 
from analyses if sample loss occurred or they did not meet QC criteria. 
snRNA-seq samples were randomized for nuclei isolation and library 
preparation. Single-nucleus isolations were performed in randomized 
groups of 12 samples. Library preparations were performed as four 
batches of 24 samples, with an additional batch to increase the number 
of nuclei per sample for 16 samples. ST samples were assigned to slides 
in a supervised manner due to the restriction of four samples per slide 
and to ensure a control sample was included in each for imaging analy-
sis. Human and mouse ST samples were distributed to avoid perfectly 
confounding variables as much as possible based on the provided 
sample metadata variables. All sequencing data were analyzed in total 
and with appropriate batch correction methods. IMC samples were 
allocated for n = 2/group per slide (three slides total) and selected to 
balance by sex and age where possible.
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Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All raw and processed ST and single-nucleus RNA-sequencing data have 
been deposited into the National Center for Biotechnology Information 
Gene Expression Omnibus database under accession GSE233208. Our 
datasets are also publicly available to browse interactively on the Cellx-
Gene data portal at the following link: https://cellxgene.cziscience.
com/collections/7c1fbbae-5f69-4e3e-950d-d819466aecb2. Additional 
snRNA-seq datasets from published studies were obtained from Syn-
apse with the following accessions: syn18485175 (ref. 8), syn21670836 
(ref. 9) and syn22079621 (ref. 7). Source imaging data as well as Hype-
rion source data are available with figshare using this link.

Code availability
The data analysis code used for this study is available on  
GitHub80 at https://github.com/swaruplabUCI/DSAD_Spatial_ 
Miyoshi_Morabito_2024.
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Extended Data Fig. 1 | Spatial transcriptomic DEGs examined by 
chromosome. a, Heatmap colored by effect size from the spatial transcriptomic 
early-stage AD versus control differential gene expression analysis, with 
genes stratified by chromosome and by spatial region. Statistically significant 
(FDR < 0.05) genes with an absolute average log2(fold change) ≥ 0.25 in at least 
one region are shown. b, Stacked bar chart showing the number of spatial 
transcriptomic early-stage AD control DEGs in each spatial cluster stratified by 
chromosome. c, Heatmap colored by effect size from the spatial transcriptomic 

late-stage AD versus control differential gene expression analysis, with genes 
stratified by chromosome and by spatial region. Statistically significant 
(FDR < 0.05) genes with an absolute average log2(fold change) ≥ 0.25 in at least 
one region are shown. d, Stacked bar chart showing the number of spatial 
transcriptomic late-stage AD versus control DEGs in each spatial cluster 
stratified by chromosome. e, Spatial feature plots of four selected DEGs in one 
representative sample from each disease group.
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Extended Data Fig. 2 | Module hub gene networks for the human ST co-expression meta-modules. Hub gene networks for each of the 15 human spatial co-
expression meta-modules. The top 25 hub genes ranked by kME are visualized. Nodes represent genes, and edges represent co-expression links.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Differential module eigengenes (DMEs) among disease 
conditions. a, DMEs that are upregulated in all disease conditions compared 
to control. Modules are grouped into different plots based on which disease 
condition had the highest effect size. Higher fold change values correspond 
to modules that are upregulated in disease. b, DMEs that are upregulated in 
one condition and downregulated in at least one other condition. c, Selected 
pathway enrichment results for the top 25 hub genes for each module for the 
set of modules upregulated in different disease conditions. d, DMEs that are 

downregulated in all disease conditions compared to control, similar to a.  
e, DMEs that are downregulated in one condition and upregulated in at least 
one other condition. f, Selected pathway enrichment results for the top 25 hub 
genes for each module for the set of modules downregulated in different disease 
conditions. g, Upset plot showing the overlap between sets of differentially 
expressed modules in each disease group. One-sided Fisher’s exact test was used 
for enrichment analysis.
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Extended Data Fig. 4 | Genetic enrichment analysis in human spatial 
transcriptomics. Dot plots showing the results of genetic enrichment analysis 
performed in the human Visium ST dataset using scDRS. The scDRS Python 
package was run on the human ST dataset to compute spatial transcriptomic 
disease relevance scores (st-DRS) across a corpus of 74 traits provided by 
the scDRS package, resulting in spot-level disease enrichment scores and 

significance levels. Gene-trait association information was derived from the 
scDRS package, which was compiled from several genetic studies37,81–90 A Monte 
Carlo (MC) test was used to test for group-level significance between each trait 
and the ST clusters, separately for each disease group and the entire dataset 
together (all, right side). Black outlines on the dots denote a significant group-
level association (FDR ≤ 0.05).
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Extended Data Fig. 5 | Correlation of co-expression network module 
eigengenes and scDRS genetic enrichment. Dot plots show the percentage 
of snRNA-seq nuclei or ST spots in each group as the size and the correlation of 
the module eigengenes (MEs) as the color in the human snRNA-seq dataset (a), 

the human spatial transcriptomics (ST) dataset (b) and the mouse ST dataset 
(c). For this visualization, only groups with a significant group-level association 
(microglia clusters MG1 and MG2 for example) are included.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Systematic integration of spatial and single-nucleus 
expression profiles. a, Pairwise integration of samples from spatial and single-
nucleus transcriptomics (left). For all possible pairs of ST + snRNA-seq samples, 
we constructed a transcriptomic co-embedding (middle) and used a multivariate 
random forest (CellTrek45) to predict the spatial coordinates of snRNA-seq cells in 
the given spatial context. The snRNA-seq dataset is shown on the right projected 
into two different spatial contexts (left: control sample; right: DSAD sample), 
split by major cell lineages and colored by cell annotations. b, Spatial feature 
plots of selected layer-specific marker genes, shown side-by-side in the ST dataset 
and the snRNA-seq dataset projected into the spatial context for one DSAD 
sample (left) and one control sample (right). c, Proportion of nuclei from each 
snRNA-seq cluster mapped to the spatial domains defined by the ST clustering. 

d, Distribution of spatial domain mapping probabilities for nuclei from each 
of the snRNA-seq clusters. e, Box and whisker plots showing differential cell 
composition between disease and control. Groups are organized on the y-axis 
by major cell types and ordered by median fold-change values within each cell 
type. Box boundaries and lines correspond to the IQR and median, respectively. 
Whiskers extend to the lowest or highest data points that are no further than  
1.5 times the IQR from the box boundaries. Each data point represents a single-
cell neighborhood from Milo; the number of cell neighborhoods per cluster is 
shown in Supplementary Table 5. f, Spatial density plot showing the snRNA-seq 
dataset in predicted spatial coordinates, highlighting selected cell populations. 
g, Spatial feature plots showing selected module eigengenes in the snRNA-seq 
dataset in predicted spatial coordinates.
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Extended Data Fig. 7 | Overview of cell–cell communication analysis. a, 
Heatmap showing the differential cell–cell communication (CCC) interaction 
strength between AD in DS and control. Each cell represents a snRNA-seq 
cell population, where rows correspond to signaling sources and columns 
correspond to signaling targets. Bar plots on the top right show the sum of the 

incoming and outgoing signaling, respectively. b,c, Bar plots showing the total 
number of CCC interactions (b) and interaction strength (c) for control and AD 
in DS. d, Joint dimensionality reduction and clustering of signaling pathways 
inferred from AD in DS and control data based on their functional similarity. Each 
point represents a signaling pathway.
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Extended Data Fig. 8 | CD99 signaling changes between DSAD and control. 
a,b, Network plot showing the CCC signaling strength between different cell 
populations in controls (a) and DSAD (b) for the CD99 signaling pathway.  
c,d, Spatial feature plots of the snRNA-seq in predicted spatial coordinates for 
one control sample (c) and one DSAD sample (d) for one ligand and one receptor 
in the CD99 pathway. e, Dot plot showing gene expression in the snRNA-seq 
dataset of ligands and receptors in the CD99 signaling pathway with significant 
interactions based on CellChat. f, Representative double immunofluorescence 

images for CD99 (green), CD99L2 (red) and DAPI (blue) from postmortem human 
brain tissue (prefrontal cortex, PFC) of control, AD and ADDS cases. Images 
were captured using a Nikon ECLIPSE Ti2 inverted microscope. g, Bar graph 
representing results of colocalization analysis from ×60 images (n = 3 cognitively 
healthy control, n = 3 AD and n = 4 DSAD cases) using the JACoP Plugin from 
ImageJ and Manders’ correlation coefficient. Data are presented as the average 
of three different fields of view (FOVs) per sample. P-values from two-way t-tests 
are shown.
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Extended Data Fig. 9 | Co-expression network analysis in the mouse ST 
dataset. a, UMAP plot of the mouse spatial co-expression network. Each node 
represents a single gene, and edges represent co-expression links between genes 
and module hub genes. Point size is scaled by eigengene-based connectivity. 
Nodes are colored by co-expression module assignment. The top five hub genes 
per module are labeled. Network edges were downsampled for visual clarity.  

b, Dot plot showing selected GO enrichment results for each co-expression 
module. c,d, Module eigengene (ME) distributions for the ten mouse co-
expression modules in each mouse age group (control, early-stage AD,  
late-stage AD and AD in DS) stratified by cluster for wild-type (c) and 5xFAD mice 
(d). One-sided Fisher’s exact test was used for enrichment analysis.
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Extended Data Fig. 10 | Module hub gene networks from the mouse co-expression network analysis. Hub gene networks for each of the 10 mouse spatial co-
expression modules. The top 25 hub genes ranked by kME are visualized. Nodes represent genes, and edges represent co-expression links.
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