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Abstract

Assessing anti-tumor immune responses and immune microenvironments in central nervous
system (CNS) neoplasms, such as brain tumors and leptomeningeal disease (LMD), provides
prognostic insights and predictive biomarkers. Liquid biopsy of the cerebrospinal fluid (CSF)
represents a promising minimally-invasive approach, but its ability to reflect immune
responses against tumors remains unclear. Here, we used single-cell sequencing of CSF cells
and spatial transcriptomics of CNS lesions to compare and contrast LMD patients with CNS
lymphoma (CNSL), glioblastoma (GB) and brain metastases (BrM), to neuroinflammatory
CNS disorders. We identified disease-specific CSF environments, reflecting parenchymal
tumor microenvironment features. CNSL showed robust T cell responses, while BrM and GB
were dominated by both blood-derived and tissue-resident myeloid cells. Longitudinal CSF
sampling unveiled mechanisms of disease progression and therapy resistance, highlighting
the potential of CSF liquid biopsies for uncovering disease biology, discovering cellular

biomarkers and developing personalized therapies for CNS neoplasms.
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Introduction

Organ and tumor factors shape the tumor microenvironment (TME), which is crucial for tumor
progression and the effectiveness of treatment. Despite an inherently reduced immune
response capacity of the central nervous system (CNS)°, immune cells ensure surveillance
and anti-tumor response also in the TME of CNS tumors®?°. This opens therapeutic avenues
for patients with brain and leptomeningeal neoplasms**~*°, for whom conventional treatments,
including immunotherapies, have yielded limited success!®2°. This is particularly relevant for
patients with leptomeningeal disease (LMD) arising in the context of brain metastases (BrM)
from solid tumors, most commonly breast cancer, lung cancer, and melanoma?. It is also
relevant for less common forms of LMD, such as those associated with glioblastoma (GB).
Moreover, while immunotherapies are effective in extra-cerebral hematological malignancies,
they remain challenging in CNS lymphomas (CNSL)2223 especially in case of accompanying
LMD, due to the distinct CNS immunobiology and aggressive tumor profile. Overall, the
mechanisms of LMD formation, defined as a spread of tumor cells to the leptomeninges and
the CSF, are not fully understood®®>24, There is an urgent need to decipher disease-specific
mechanisms and address the unique challenges of LMD to refine therapeutic strategies.

The minimally-invasive liquid biopsy (LB) of the cerebrospinal fluid (CSF) is particularly
advantageous for diagnosis and longitudinal disease monitoring in patients with CNS
neoplasms and especially LMD. Emerging CSF LB technologies hold promise for predicting
prognostic outcomes®#2¢, Single-cell sequencing technologies have revolutionized our
understanding of cellular diversity by providing comprehensive maps of cell types, states, and
functions at unprecedented resolution?=3°, Furthermore, single-cell analysis enabled refined
patient stratification, aiding in the identification of distinct disease types and paving the way
for more precise therapeutic interventions*2, Here, we provide evidence how single-cell
technologies can expand the LB analyses, providing valuable insights into immune
mechanisms beyond the standard cell-free CSF analytes?.

While LMD shows both adherent growth and floating tumor cells in the CSF?*33, the latter
represent an ideal target for emerging single-cell-based LB tools that hold potential for clinical
decision-making??L. Although healthy CSF displays low cell density, it contains diverse
lymphocytic and myeloid immune cell phenotypes. Healthy CSF mainly contains CD4 central
memory T cells and low levels of CD8 cytotoxic T cells, myeloid and B cells?223, Origins and
phenotypes of myeloid CSF cells are described to resemble tissue-resident border-associated
macrophages (BAMs) and fate mapping technologies suggest a similarity to the CNS-resident
microglia*3*. In CNS disorders and leptomeningeal diseases, the cellular composition of CSF
changes significantly, with an increase in immune cells, reflecting the immune response in the

CSF?135, Previous studies in BrM patients identified identical T cell receptor (TCR) clonotypes
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in tumor tissue and the CSF, suggesting T cell trafficking between brain parenchyma and the
CSF?¢. However, the degree to which immune response mechanisms in patients with brain
tumors and LMD are reflected in the CSF requires further exploration. This study aimed to
decode the CSF cellular landscapes in patients with LMD across different tumor entities as
well as neuro-inflammatory disorders using single-cell RNA and TCR sequencing. We further
extended our analysis to longitudinal profiling and to additional compartments, such as the
blood and the brain tissue, through deep TCR sequencing and spatial transcriptomics,
respectively. The improved understanding of the cellular diversity and dynamics in the CSF of
patients with brain and leptomeningeal neoplasms will help tailoring personalized treatment
strategies, addressing the pressing clinical need to optimize therapeutic approaches for these

challenging tumors.

Results

Single-cell analysis of CSF reveals distinct immune cell composition in CNS diseases
To generate a landscape of cells in the CSF, we applied single-cell RNA sequencing (SCRNA-
seq) with paired T cell receptor sequencing (SCTCR-seq) in patients with defined brain and
leptomeningeal neoplasms (CNSL, GB, and BrM) as well as autoimmune and pathogen-driven
inflammatory CNS disorders (Sup. table 1). The CSF data was compared to the peripheral
blood adaptive immune response and the immune microenvironment of corresponding
parenchymal CNS lesions using deep immune receptor sequencing (OS-TCR) or spatial
transcriptomics (Xenium), respectively. Additionally, circulating tumor DNA (ctDNA) was
assessed in the cell-free CSF fraction by Nanopore sequencing (Fig. 1a, Sup. Fig. 1a).
After sequencing and quality filtering, we obtained 72,695 CSF cells across 20 CSF samples
from 16 patients (including 4 serial CSF samples), with cell numbers ranging from 21 to 7880
cells per sample (AVR = 3634, SD = 2632, Sup. Fig. 1b). We initially compared the sensitivity
of scRNA-seq in detecting tumor cells in the CSF to indirect LMD parameters (elevated protein
or lactate levels) and cytopathological tumor cell detection assessed during clinical routine
(Fig. 1b, Sup. table 1, see Methods). Tumor cells were identified by sScRNA-seq using gene
expression and genomic features, quantifying the expression of GB*” and BrM3-%° tumor cell
signatures in CD45-negative CSF cells (Sup. Fig. 1c). For the identification of CSF tumor cells
in CNSL patients, we computed the ratio of B cell kappa to lambda immunoglobulin chains,
with monoclonality being an indicator of malignant transformation in lymphomas* (Sup. Fig.
1d, see Methods). Further, copy number aberrations, as a hallmark of genomic instability,
were inferred from the single-cell transcriptome genomic distribution (inferCNV#243, Sup. Fig.

2 & 3, see Methods). Single-cell sequencing detected tumor cells in 9 of 12 patients and 11
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of 16 samples (including serial samples) from patients with CNS neoplasms. In contrast,
cytological assessment in clinical routine diagnosed neoplastic cells in the CSF of 8 of 12
patients and 8 of 16 samples. In four CSF samples (P01, P10-T1, P12-T2 and P12-T3) with
unclear (suspicious but not clearly identified neoplastic cells) or even negative
cytopathological assessment, we detected tumor cells at sScRNA-seq level. Noteworthy, we
detected CD45-negative cells with a NSCLC signature and copy number aberrations in patient
P03 with NSCLC-BrM and LMD (Supp. Fig. 2), in line with the cytopathological assessment
that identified as single tumor cell in the CSF sample. These findings highlight the sensitivity
of single-cell sequencing to detect even low frequencies of diverse tumor cell types and to
characterize the cellular landscape of the CSF in patients with brain and leptomeningeal
neoplasms.

We next applied SCVI* to integrate scRNA-seq samples and to remove technical artifacts
(Fig. 1c). On the corrected data, we applied clustering to assign cells the major cell types,
based on canonical gene expression markers, namely B cells (CD79A, CD19), plasma cells
(MZB1, IGHA1L, IGHG1), macrophages (CD14, CD68), monocytes (S100A8, LYZ, VCAN),
dendritic cells (CD1C, CLEC9A, IL3R), CD4 T cells (CD3E, CD4), CD8 T cells (CD3E, CD8A,
CD8B), NK cells (NCAM1, NKG7, GNLY) and non-immune cells (PTPRC negative; Fig. 1c,d).
An in-depth phenotyping of cell states was conducted by further recursive clustering, resulting
in a detailed annotation of the cellular CSF landscape (Fig. 1e). To decipher the global impact
of neurological diseases onto the CSF environment, we also included 44 healthy CSF samples
(56,010 cells, Sup. Fig. 1e,f,g)*. Healthy CSF samples contained the expected proportion of
approximately 80% lymphoid cells (Fig. 1f). Despite apparent interpatient heterogeneity, we
identified disease-specific CSF immune cell compositions with a lymphoid-dominated profile
in patients with CNSL and inflammatory conditions, in contrast to a myeloid-dominated CSF
immune landscape in patients with solid brain tumors (GB and BrM; Fig. 1d,f).

To confirm disease-related shifts in the CSF immune cell landscape, we performed differential
cell type abundance testing of CNSL, BrM, GB and neuro-inflammatory patients with the
healthy CSF samples (see Methods, Fig. 1g). Here, the myeloid-dominated CSF profile of
GB and BrM patients was confirmed for several myeloid cell types, accompanied by a
significant reduction of both CD4 and CD8 T cells. The generally low levels of CSF B cells and
plasma cells increased in neuro-inflammatory pathologies and GB patients. The strong
increase of B cells in CNSL patients could be explained by the infiltration of neoplastic B cells
into the CSF. CNSL patients also showed a decrease of CD4 T cells compared to healthy
CSF, in line with a significantly reduced CD4/CD8 T cell ratio compared to healthy CSF
(Wilcoxon rank sum test, p = 0.012; Fig. 1g,h).

Given the strong association of macrophage polarization as well as T cell activation and

exhaustion states to the tumor pathophysiology®4°4¢, respective signatures were compared in
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CSF immune cells across neuro-oncological and neuro-inflammatory diseases with healthy
controls. While macrophages and T cells in the healthy CSF did not show an enrichment of
these signatures, CSF cells in neuro-inflammatory disorders showed an increase in pro-
inflammatory macrophages (Fig. 1i). In the CNS tumor patients, we observed an enrichment
of T cell activation and pro- and anti-inflammatory macrophages. Of note, CNSL patients were
characterized by a particularly strong enrichment of T cell activation and exhaustion
signatures, suggesting an active immune response against CNSL cells in the CSF®*. The
myeloid-dominated CSF of GB patients showed a mixed enrichment of pro- and anti-
inflammatory macrophage signatures and a decreased T cell activation score. Together, these
results indicate the CSF immune profiles to reflect the respective TME and suggest the CSF
as a resource for cellular biomarker discovery and the tailoring of treatment strategies,

including advanced immunotherapies.
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Figure 1: Single-cell phenotyping of CSF reveals complex environments driven by CNS
diseases. a, Study workflow. Schematics were created using biorender. b, Square chart
showing all CSF samples, several clinical parameters as well as the detection, or lack thereof,
of tumor cells by scRNA-seq. c, Integrated UMAP of all cells in the CSF across patients and
diseases (72695 cells). Cell type color scale is the same as in d. d, Barplot showing the CSF
composition of the pre-treatment sample of all patients at the general resolution. Disease color
scale is the same as in b. e, Sankey plot of the detailed annotation of the cellular CSF
landscape. f, Barplot showing Myeloid and T cell composition across healthy and disease CSF
samples. Dashed line shows the approximate clinical healthy ratio. The number of healthy
samples is 44. g, Dotplot showing the results of applying scCODA on the general annotation
comparing the disease groups against the healthy. Reference cell type used was NK cells and
the false-discovery rate set at 0.35. Only populations with significant changes are shown. h,
Boxplots showing CD4 to CD8 ratio per patient and disease. A Wilcoxon rank sum test was
applied to compare BrM, CNSL and Inflammatory groups against healthy. Comparisons with
n < 3 samples (GB) were not performed. Disease color scale is the same as in f. i, Heatmap
showing scaled signature scores computed with a multivariate linear model on pseudo-bulked
T cells or macrophages, respective of the signature, across conditions. Significant score p-
values (< 0.05) are noted with asterisks.
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CSF is adynamic environment reflecting T cell activity in CNS diseases

To gain a deeper understanding of the CSF T cell response in the different CNS neoplasms,
we reintegrated, clustered and annotated 43,780 T cells from all samples, identifying 12
subpopulations (Fig. 2a,b). Six distinct CD4 T cells clusters included naive and memory
subpopulations, T helper (specifically Th17 cells) and T regulatory cells. Similarly to CNS
tumor microenvironments, we distinguished two distinct CD8 exhausted populations*’=%%; a
terminally exhausted (HAVCR2, LAG3 and ENTPD1) and a pre-exhausted subtype with lower
levels of HAVCR2, ENTPD1 and LAG3, but high expression of PDCD1. We also found
conventional CD8 populations, such as cytotoxic and effector memory (EM), together with an
NK/Gamma-Delta population and proliferating T cells.

To determine whether the T cell subpopulation heterogeneity across the patients is a
consequence of the diseases (Sup. Fig. 4a), we performed an integrated analysis by
projecting the transcriptomic profiles of the T cell subpopulations onto the T cell compartment
of the healthy CSF samples (see Methods). In healthy CSF, we observed a predominance of
naive and central memory (CM) CD4 phenotypes and cytotoxic CD8 T cells. No exhausted or
pre-exhausted T cells were found, and we detected only very low levels of T regulatory cells
in the healthy CSF (Fig. 2c). Using canonical signatures of naive, T regulatory and exhausted
T cells, we confirmed the depletion of regulatory and exhausted phenotypes in healthy CSF
(Fig. 2d). Differential abundance analysis further validated these findings, detecting a
significant increase in proliferative, pre-exhausted, and exhausted T cell subtypes compared
to healthy controls (Fig. 2e). In contrast, naive T cell populations were significantly reduced in
patients with CNS tumors. The analysis also corroborated increased levels in regulatory T
cells in neuro-inflammatory and BrM patients compared to healthy controls. Our in-depth
phenotyping of CSF adaptive immune cells suggests a different T cell environment in the CSF
of CNSL patients, characterized by an enrichment of cytotoxic, pre-exhausted and exhausted
T cells. Clinically, an increase of pre-exhausted CD8 T cell population in the CSF of CNS
tumor patients represents a candidate biomarker for immunotherapy treatment to potentiate
the ongoing anti-tumor reactivity*’5. On the contrary, the increase of T regulatory and IFN-
responding CD4 phenotypes in patients with BrM and GB, could be causally linked to the
active suppression of an effective anti-cancer response®?°354,

To further understand T cell dynamics in the CSF, we profiled TCRs at single-cell resolution
and analyzed the activity and expansion of T cell subpopulations in CSF and matched blood
samples. Despite a heterogeneity in the repertoire size across samples (MEAN = 2638.81, SD
=1917.68, Sup. Fig. 4b), we observed a significant decrease of TCR diversity in the CSF of
CNSL patients, compared to the healthy controls and other disease cohorts (Wilcoxon rank
sum test, p = 0.02; Fig. 2f). In line, T cell expansion, indicated by the proportion of expanded

clones (Wilcoxon rank sum test, p = 0.026) and the mean clone size (Wilcoxon rank sum test,
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p = 0.02) per patient, was significantly higher in CNSL patients (Fig. 29, Sup. Fig. 4c).
Notably, T cell expansion in the CSF of CNSL patients was predominantly observed in CD8 T
cells, while CD4 T cell clones exhibited minimal expansion (Fig. 2h, Sup. Fig. 4d). Therefore,
we examined the phenotypes of the top five most expanded CD8 TCR clones per patient,
revealing an overall expansion of predominantly cytotoxic T cells, along with smaller
proportions of pre-exhausted and exhausted phenotypes (Fig. 2i). Noteworthy, patient P15
with a secondary CNSL exhibited the most pronounced T cell expansion, characterized by a
predominance of exhausted phenotypes, contrasting with the remaining patients with primarily
cytotoxic profiles. Together, these findings reflect the dynamics of T cells and their TCR
repertoire in the CSF, pointing to the distinct strength of T cell responses of patients across
CNS diseases.

To determine whether CSF clonal expansion happens locally or arises from the periphery, we
compared TCR clones in the CSF and blood of five patients. This included two patients with
primary CNS lymphoma (CNS-DLBCL): P10 had clearly identifiable CSF tumor cells in two
serial matched samples. In P06 malignant B cells could not be clearly identified (by neither
scRNA-seq nor cytopathological assessment) but showed increased numbers of CSF immune
cells and signs of lymphoid activation in clinical CSF assessment. We also analyzed two serial
matched samples of PO7 with a bacterial infection and cerebral abscess caused by Eikenella
spp. bacteria. Surprisingly, deep TCR sequencing (OS-TCR) of the blood samples revealed
>75% of expanded T cell clones in the CSF to be traceable in matching PBMC samples (AVR
= 88.72%; Fig. 2j), indicating peripheral T cell representation of CNS-related clonotypes.
However, we observed a higher clonal expansion and lower TCR repertoire diversity in the
CSF, compared to the blood and healthy CSF controls (Fig. 2k,I), pointing to a local activity
of disease-reactive T cell clones in the CSF. These results support the representation of a
disease-specific immune profile in the CSF compartment of patients. It is worth speculating
that these T cell clones expanded in the CNS, before draining to the CSF compartment, further

supporting the CSF as a mechanistic proxy of the diseased sites.
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Figure 2: CSFis adynamic T cell environment reflecting T cell activity in CNS diseases.
a, Integrated UMAP of T cells in the CSF across patients and diseases (43780 T cells). Cell
type color scale is the same as in b. b, Dotplot showing marker gene expression across T cell
subpopulations. CM: central memory, IFN: interferon, EM: effector-memory, NK-gd: natural
killer cells and gamma-delta T cells. c, Integrated UMAP of T cells in healthy CSF (56010
cells) annotated with the projected T cell subtypes in disease CSF. Barplot showing
composition across all healthy samples below. Cell type color scale is the same as in b. d,
Boxplots showing signature scores of the main changing T cell phenotypes, computed with a
multivariate linear model on pseudo-bulked T cells by patient. A Wilcoxon rank sum test was
applied to compare BrM, CNSL and Inflammatory groups against healthy. Comparisons with
n < 3 samples (GB) were not performed. e, Dotplot showing the results of applying scCODA
on the T cell subtypes comparing the disease groups against the healthy. Reference cell type
used was CD8 EM and the false-discovery rate set at 0.25. Only populations with significant
changes are shown. f, Boxplot showing TCR repertoire diversity across patients and disease
by computing the percentage of distinct TCR clones by sample. A Wilcoxon rank sum test was
applied to compare the disease groups against the healthy. Comparisons with n < 3 samples
(GB) were not performed. g, Boxplot showing TCR repertoire expansion across patients and
disease by computing the average TCR clone size by sample. A Wilcoxon rank sum test was
applied to compare the disease groups against the healthy. Comparisons with n < 3 samples
(GB) were not performed. h, Boxplot showing TCR repertoire expansion across patients and
disease by computing the proportion of expanded TCR clones by sample. A TCR was
considered expanded if it was found in at least 5 cells. A Wilcoxon rank sum test was applied
to compare the disease groups against the healthy. Comparisons with n < 3 samples (GB)
were not performed. i, Barplot showing the top 5 most expanded CD8 TCR clones per patient
and colored by the phenotype of the cells sharing each TCR. Cell type color scale is the same
as in b. j, Barplot showing the percentage of expanded TCR clones in the CSF found in blood
for each sample. Dashed line shows the average at 88.72%. k, Boxplot showing TCR
repertoire diversity in healthy CSF samples and disease samples with matched blood
samples. A Wilcoxon rank sum test was applied to compare the CSF and blood. |, Boxplot
showing TCR repertoire expansion in healthy CSF samples and disease samples with
matched blood samples. A TCR was considered expanded if it was found in more than one

cell. A Wilcoxon rank sum test was applied to compare the CSF and blood.
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Distinctive myeloid profiles modulate the CSF milieu in CNS diseases

We next conducted an in-depth characterization of myeloid cells in the CSF. Integrating and
clustering myeloid cells alone guided the annotation of 12 distinct myeloid phenotypes,
including several macrophage, monocyte and dendritic cell subtypes (Fig. 3a,b). Interestingly,
we identified three populations (CNS border-associated macrophages, BAMs; microglia-like
and anti-inflammatory macrophages) that expressed CNS-resident markers (LYVEL, TREM2,
APOE, TMEM119 and CSF1R)*46, Conversely, we detected two monocyte populations likely
originating from blood. We also identified a myeloid cell population of mitochondrial resident-
tissue macrophages in the CSF that was recently described as resident tissue macrophages
with low levels of monocyte-related genes (MT-RTMs, resident macrophage population with
high mitochondrial activity)>®. Dendritic-cell subsets in the CSF included Mreg (CCR?7,
LAMP3), DC1 (CLEC9A, XCR1), DC2 (CD1C, FCER1A), DC5 (ITGAX, SIGLEC6) and pDCs
(LILRA4, CLEC4C).

To further elucidate the origins of macrophage and monocyte subsets in the CSF, we applied
signatures indicative of either CNS-resident (MG, microglia-like) or blood-derived (BD)"%¢57
origins, the latter invading the CSF from the periphery. To validate the signatures, we
confirmed that the myeloid signature in all blood samples, regardless of the disease, was BD
(Sup. Fig. 5a, all p-values < 0.01). In line with the gene marker-based annotation, the CNS-
resident signature was high in the three myeloid populations of potential resident origin,
whereas the BD signature was enriched in the two monocyte populations (Fig. 3c). Both
signatures helped to determine the origin of most myeloid populations, except MT-RTMs,
which have previously been described to derive from circulating monocytes®. Myeloid cells in
the CSF of healthy controls showed significantly higher expression of the CNS-resident
signature, in contrast to patients with neuro-inflammatory and neuro-oncological disorders,
who, in turn, were enriched in the BD signature (Fig. 3d,e). The two signatures showed a
strong negative correlation across all CSF samples, indicating the predominance of an either
microglial or blood-derived origin of myeloid cells (R = -0.63, p-value < 0.01). This also shows
the CSF from CNS diseases to have more blood infiltration of myeloid cells, especially high in
inflammatory diseases and CNSL (Sup. Fig. 5b).

We next sought to understand the myeloid landscape in the CSF of patients with neuro-
inflammatory and neuro-oncological diseases compared to healthy homeostatic conditions.
We performed an integrated analysis by projecting the transcriptomic profiles of the patient
cohort onto healthy controls (see Methods, Fig. 3g). Albeit in different proportions, all myeloid
cell types from pathological conditions were also present in the healthy CSF, except for
intermediate monocytes that were absent in controls (Fig. 3h). Differential abundance testing
against healthy CSF confirmed a higher abundance of monocytes in the CSF of GB and BrM
patients (Fig. 3f). BrM patients exhibited a significant reduction in DC populations in the CSF
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(Sup. Fig. 5c¢). Vice versa, neuro-inflammatory diseases showed an enrichment of most DC
subtypes compared to healthy CSF (Fig. 3f, h). DCs have been linked to antigen presentation,
anti-tumor response and T cell priming, activation and cytotoxicity>®-!, a process that might
be disrupted in brain cancers.

To gain a deeper understanding of the functional properties of myeloid populations in the CSF,
we performed network analysis to identify gene modules of highly co-expressed genes
(hdWGCNA, see Methods). We identified 11 independently computed modules for the healthy
and 13 for the disease cohorts (Sup. Table 2). Next, we analyzed the overlap of healthy and
disease modules. Notably, all healthy modules exhibited certain similarity to disease modules.
However, two modules were disease-specific: MM11 and MM12, suggestive of a specific
remodeling through these programs (One-sided Fisher's exact test; Fig. 3i). Particularly,
module MM12 presented interferon-related genes, suggesting interferon signaling pathways
to be upregulated in CSF myeloid cells in inflammatory diseases and CNSL patients.

We then annotated the disease modules based on their hub genes (Sup. Table 3), identifying
“‘phenotypic” modules (MM1, MM4, MM9, MM10, MM11 and MM13) and “functional” modules
(MM2, MM3, MM5, MM6, MM7 and MM8, MM12; Fig. 3j, Sup. Fig. 5d). Signature scoring of
the top 50 genes per module revealed distinct activities across diseases. We observed that
MM1 (enriched in BAMSs) was significantly depleted in the inflammatory group when compared
to the healthy patients (Wilcoxon rank sum test, p = 0.00019), validating the findings of cellular
phenotyping. Similarly, MM10 (brain resident populations) showed similar pattern to MM1 and
a clear MG origin (Fig. 3k, Sup. Fig. 5e,f). MM4 (plasmacytoid dendritic cells) was significantly
enriched in the inflammatory group (Wilcoxon rank sum test, p = 0.003), confirming results of
differential abundance testing (Fig. 3f and 3j). MM11, representing a specific subset of
dendritic cells (DC1), was found exclusive to the disease groups, further supporting the
depletion of the DC subtype in the healthy myeloid compartment (Fig. 3j and 3k, Sup. Fig. 5
e,f). On the other hand, hdWGCNA analysis revealed a positive correlation between modules,
such as MM3, MM5 and MM6 (Sup. Fig. 5g). These modules reflect a metabolic shift in
myeloid cells: MM3, related to oxidative phosphorylation (OXPHOS); MM5, associated with
mitochondrial activity; and MM6, linked to lactate production (Sup. Table 2). We observed
downregulation of both the OXPHOS module and the mitochondrial activity module in CSF
myeloid cells across inflammatory, BrM and GB groups compared to healthy CSF (Fig. 3k).
The lactate module MM6 was enriched in CSF myeloid cells from patients with BrM and GB
(Fig. 1f and 3k) and particularly enriched in the MT-RTMs population (Sup. Fig. 5f). These
findings indicate a metabolic switch in CSF myeloid cells of patients with BrM and GB.
Interestingly, we observed a positive correlation between the MM6 expression score and CSF

lactate levels assessed in clinical routine diagnostics (Sup. Fig. 5h). These findings suggest
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the MT-RTM population to be CSF-resident and to have a relevant role in local lactate
production.
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Figure 3: Distinctive myeloid profiles modulate CSF milieu in CNS diseases. a,
Integrated UMAP of myeloid cells in the CSF across patients and diseases (13994 cells). Cell
type color scale is the same as in b. b, Dotplot showing marker gene expression across T cell
subpopulations. BAMs: border associates macrophages, MT-RTM: mitochondrial resident
tissue macrophages. DC: dendritic cells. ¢, Heatmap showing scaled signature scores across
myeloid subpopulations. DB: blood-derived, MG: microglia-derived. All signature scores had
a significant associated p-value (> 0.01). d, e, Boxplots showing MG and BD scores across
patients and diseases. A Wilcoxon test was applied to compare BrM, CNSL and Inflammatory
groups against healthy. f, Dotplot showing the results of applying scCODA on the myeloid
subtypes comparing the disease groups against the healthy. Reference cell type used was
DC2 and the false-discovery rate was set at 0.35. Only populations with significant changes
are shown. g, Integrated UMAP of myeloid cells in healthy CSF (9703 cells) annotated with
the projected myeloid subtypes in disease CSF. h, Barplot showing myeloid subpopulation
composition across diseases and healthy CSF. i, Heatmap showing gene set overlap between
healthy and disease myeloid modules by computing the pairwise odds ratio. Asterisks indicate
the level of significance of the associated p-values: * p < 0.05, ** p < 0.01 and *** p < 0.001. j,
UMAP showing the phenotypic modules’ expression on the myeloid cell populations. k,
Boxplots showing signature scores of selected myeloid module genes across patients and
conditions, computed with a multivariate linear model on pseudo-bulked myeloid cells by
patient. A Wilcoxon rank sum test was applied to compare BrM, CNSL and Inflammatory
groups against healthy. Comparisons with n < 3 samples (GB) were not performed.
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CSF liquid biopsy: aresource for individual disease monitoring

In addition to identifying disease-driven features of myeloid and lymphoid cell types that
indicate mechanisms of anti-tumor immune responses, we were also able to temporally track
patient-specific alterations within the CSF landscape. Therefore, we first pinpointed
macrophage polarization and T cell activation states, which are closely linked to tumor
pathophysiology, in individual patients across various neuro-oncological and neuro-
inflammatory diseases and healthy controls (Fig. 4a,b). In healthy individuals, macrophages
and T cells in the CSF did not show enrichment in pro- or anti-inflammatory activation
signatures, nor significant T cell exhaustion. However, on an individual patient level, we
observed strong enrichment of anti-inflammatory macrophage signatures and a more
exhausted T cell environment in several brain tumor patients, such as P09 (melanoma BrM
and LMD) and P12 (breast cancer BrM and LMD). Notably, P10, who experienced an
aggressive course of primary CNSL with LMD, was characterized by T cell exhaustion in the
CSF. In contrast, P01, whose primary CNSL (which also involved LMD at first diagnosis)
showed a sustained response to high-dose chemotherapy and autologous stem cell
transplantation, demonstrated pro-inflammatory macrophage and activated T cell signatures,
indicating a functional anti-tumor response (Fig. 4a,b).

Next, we performed an in-depth investigation of the dynamics underlying patient-specific
immune responses. We sought to understand if the cellular composition of the CSF reflects
the disease course and/or treatment response of individual patients. The serial CSF profiling
in PO7 with a cerebral abscess, purulent meningitis and ventriculitis caused by Eikanella spp.
bacteria exemplifies non-cancer immune mechanisms in the CSF. As shown previously, P07,
displayed a T cell-driven environment (Fig. 1d, Fig 4c). Cell communication analysis showed
CD8 T cells receiving the majority of signals from other CSF cells, highlighting their active
response to the infection (Fig. 4d, Sup. Fig. 6a). Over a two-month period of antibiotic
treatment, we observed an increase of B cells and a reduction of DC (Fig. 4d). Further, the
adaptive immune response of P07 was characterized by a diverse clonal TCR expansion of a
broad variety of adaptive immune cell types, especially cytotoxic CD8 T cells (Fig. 4e). These
cellular dynamics represent the course of a healing immune response against the infection,
leading to a full patient recovery reflected in the CSF.

We then conducted an in-depth analysis of the CSF characteristics using examples from brain
tumor patients. P10 (aggressive primary CNSL with LMD) exhibited a CSF landscape
characterized by T cell activation and exhaustion, with higher levels of CD8 than CD4 T cells
and low proportions of myeloid cells (Fig. 4b). After one week of steroid treatment, we
observed a shift in the relative composition of the CSF, with several immune cell types,
including plasma cells and myeloid populations, decreasing after treatment, while the relative

proportions of B cells increased (Fig. 4g). However, cell interaction analysis revealed that
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monocytes had a relevant role in both receiving (incoming, receptor on monocytes) and
producing (outgoing, ligand on monocytes) interactions, suggesting their key role in
modulating the environment, despite the T cell-dominated environment. TCR analysis showed
an expansion of both cytotoxic and exhausted T cell clones over a short one-week monitoring
interval (Fig. 4f). Classification of the patient into the five CNSL states using EcoTyper
signatures®?, revealed a more adverse lymphoma state at the first time point (S4-5) compared
to the second (S1-3; Fig. 4i) and CNV analysis evidenced a clonal evolution. While these
findings suggest an anti-tumor immune response against malignant B cells in the CSF of P10,
there was only a moderate improvement of the patient’s condition with high-dose steroid
treatment.

In P12 (triple negative breast cancer with BrM and LMD), we identified mechanisms of tumor
evolution through serial CSF profiling. Here, tumor cell numbers in the CSF increased
throughout the monitoring period, particularly at time point 3, when the patient experienced
progression of LMD despite intrathecal chemotherapy with methotrexate (Fig. 4j). Cell
communication analysis confirmed previous findings of myeloid cells, specifically,
macrophages, to modulate the CSF environment, while T cells showed reduced engagement
(Fig. 4k). Copy number variation analysis revealed the presence of a dominant clone (CI01)
in the first time point, while a different clone (CI02) emerged just one week after the initiation
of methotrexate. The CI02 clone subsequently proliferated and became the dominant tumor
cell population at time point 3, coinciding with clinically evident disease progression (Fig. 4m).
Using CancerSEA® tumor profile signatures, we explored the predominant gene programs
during clonal evolution in this patient. Interestingly, the methotrexate-resistant clone CI02 also
exhibited a distinct phenotype. While clone CI01 at baseline displayed signatures of
metastasis, hypoxia and DNA damage, clone CI02 shifted to signatures of differentiation and
angiogenesis with downregulation of inflammation (Fig. 4 I).

P09 had an advanced BRAF-mutated melanoma with BrM and LMD and with high numbers
of tumor cells in the CSF (Fig. 4n, Sup. Fig. 6d). Myeloid cells, specifically macrophages,
modulate the CSF environment, with T cells showing a reduced engagement (Fig. 40). In line,
we detected limited clonal T cell expansion (Fig. 4p). We identified three distinct tumor clones,
all resembling the CNV profile derived from ctDNA Nanopore sequencing (CI01, CI02, and
CI03; Fig. 4r, Sup. Fig. 2). Notably, we identified distinct tumor phenotypes, with dominant
gene programs of metastasis, invasion, hypoxia, epithelial-to-mesenchymal transition (EMT),
DNA damage and cell cycle. At the time of the CSF sampling, CI01 was the most abundant
clone (Sup. Fig. 6d), although CI02 had the most aggressive characteristics (Fig. 4q). These
results demonstrate the potential of CSF LB, paired with single-cell sequencing to determine
tumor clone heterogeneity, essential to track tumor evolution and to understand therapy

resistance mechanisms.
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Figure 4: CSF liquid biopsy: aresource for individual disease monitoring in brain tumor
patients. a, b, Scatterplots showing the main macrophage (a) and T cell (b) signatures across
all patients. Selected patients are labeled. c, Barplot showing population composition changes
across timepoints of patient PO7. d, Scatterplot showing incoming and outgoing interaction
strength of the general populations found in the CSF of P07. e, Scatter plot showing TCR
clone size in logarithmic scale, as well as the phenotype of the shared clones before and after
treatment CSF samples of patient PO7. f, Barplot showing population composition changes
across timepoints of patient PO7. g, Scatterplot showing incoming and outgoing interaction
strength of the general populations found in the CSF of P10. h, Scatter plot showing TCR
clone size in logarithmic scale, as well as the phenotype of the shared clones before and after
treatment CSF samples of patient P10. T cell phenotype color scale as in e. i, Heatmap
showing scaled signature scores across patient P10 samples’ B cells of the five lymphoma
states from EcoTyper. j, Barplot showing population composition changes across timepoints
of patient P12. k, Scatterplot showing incoming and outgoing interaction strength of the
general populations found in the CSF of P12. |, Heatmap showing scaled signature scores of
CancerSEA’s cancer programs signatures across tumor clones and timepoints. m, Copy
number variation profiles of the two tumor clones found across all timepoints of patient P12.
n, Barplot showing P09 composition. o, Scatterplot showing incoming and outgoing interaction
strength of the general populations found in the CSF of patient P09. p, Scatterplot showing
TCR clone size and phenotype of P09. Phenotype color scale as in e. q, Heatmap showing
scaled signature scores of CancerSEA’s cancer programs signatures across tumor clones of
patient P09. r, Copy number variation profiles of the three tumor clones found in CSF and the
ctDNA profile of patient P09.
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CSF-resident cell phenotypes mirror the immune microenvironment of CNS lesions

To explore the potential of the CSF profiling to profile the characteristics of corresponding
parenchymal CNS lesions, we analyzed tissue sections of six patients alongside their matched
CSF using the spatial transcriptomics Xenium platform. Matched pairs of CSF and tissue were
available for CNSL (P01 and P10), BrM (P09 and P12), GB (P02) and the inflammatory patient
PO7. We generated spatially-resolved gene expression data for a targeted panel of 390 genes
using the Xenium Human Immuno-Oncology panel. To assess the local immune
environments, we projected signatures derived from the CSF cells onto the tissue lesions (Fig.
5a). In P07 (bacterial cerebral abscess), we observed an enrichment of the pro-inflammatory
signature in the CNS sample, similar to the matched CSF sample. The CNSL tissue samples
(P01 and P10) displayed high levels of T cell activation closely matching the CSF T cell
profiles, while we observed distinct myeloid compartments in these patients. BrM tissue (P09,
melanoma; P12, triple negative breast cancer) showed less T cell activation and cytotoxic
signatures, with P12 displaying an enriched T regulatory signature and P09 high levels of anti-
inflammatory myeloid cells. Matching the T cell rich profile of the CSF, the GB tumor (P02)
presented signatures pointing to frequent tumor-infiltrating lymphocytes (cytotoxic and
regulatory).

Next, we combined the genes from the Xenium panel with genes used for annotating CSF
cells to compare the cellular composition between the CSF and the corresponding tissue
samples. Here, we identified a variety of immune cell types in the tissue, including B and
plasma cells, macrophages, microglia, T cells, tumor cells, neutrophils and a heterogeneous
group of non-immune cells, most likely containing neurons and other brain cell types (Sup Fig.
7a). The sample size and cell numbers varied depending on available tissue sample (Sup Fig.
7b). The tissue lesion of patient PO7 (prior to antibiotic treatment), displayed an immune
composition with a prominent presence of B and plasma cells alongside microglia and
macrophages (Fig. 5b). The myeloid cells showed a low pro-inflammatory signature,
suggesting a reduced immune response prior to treatment (Sup Fig. 7c). In the CNSL patient
(P01), we identified a dense accumulation of malignant B cells in the CNS (Fig. 5c¢) and
validated the presence of activated and cytotoxic T cells in the tumor mass (Sup Fig. 7d).
CNSL patient P10 exhibited high concentration of malignant B and plasma cells in the brain
parenchyma and around blood vessel-like structures (Fig. 5d). Using CXCL13 as a proxy for
T cell infiltration®*%°, we validated the co-occurrence of infiltrating T lymphocytes localized with
the malignant B cells around blood vessel-like structures. The BrM tissue of P12 revealed a
prominent angiogenic phenotype, with numerous blood vessel-like structures interspersed
among tumor cells (Fig. 5e, regions A and B). This vascularization suggests the tumor to
drive angiogenesis, a property we previously identified in the tumor clone (Cl02) that emerged

in the CSF upon treatment. Immune cell infiltration in this patient was sparse, with the TME
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dominated by pro- and anti-inflammatory macrophages, with the latter localizing
predominantly around blood vessel-like structures. The CSF immune profile of patient P12
showed also similarities to the TME, featuring a myeloid-dominated environment. GB patient
P02 showed localized levels of T cell infiltration around blood vessel-like structures (Fig. 5f;
Sup. Fig. 7g), matching the T cell-enriched CSF profile. In P09 (melanoma BrM), we observed
a focal infiltration of macrophages, B and plasma cells, microglia and T cells, with tumor
microenvironment dominated by anti-inflammatory macrophages (Sup Fig. 7h).

These results strongly suggest an active exchange of T cells between the brain and CSF
during neuro-inflammatory and neuro-oncological disorders, as evidenced by the similarity of
phenotypes across both compartments. In contrast, myeloid cells appeared to mostly operate
based on their local environment, indicating distinct functional roles in the tissue

microenvironment versus the CSF.
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Figure 5: CSF cell phenotypes mirror the immune microenvironment of CNS diseases.
a, Heatmap showing scaled signature scores computed using corrected weighted sum, on
pseudo-bulked T cells or macrophages and microglia, respective of the signature, in the brain
tissue. b, Spatial cell type annotation of the brain tissue of inflammatory patient PO7. c, Spatial
cell type annotation of the brain tissue of CNSL patient PO1. Color scale as in b. d, Spatial cell
type annotation of the brain tissue of CNSL patient P10, including zoomed-in region. Color
scale asin b. e, Spatial cell type annotation of the brain tissue of BrM patient P12. Two regions,
labelled as A and B have been zoomed-in. Color scale as in b. f, Spatial cell type annotation
of the brain tissue of GB patient P02, including zoomed-in region. Color scale as in b. g, Spatial
cell type annotation of the brain tissue of BrM patient P09, including zoomed-in region. Color

scale as in b.
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Discussion

Utilizing liquid biopsies from the CSF provides a minimally-invasive approach to track disease
dynamics in brain tumor patients over time. This holds potential for deciphering mechanisms
of therapy response and resistance as well as disease progression®>2>2¢, Our results show
how LMD in defined CNS neoplasms (CNSL, BrM, GB), in comparison to non-cancerous
neuro-inflammatory diseases and healthy controls, induces a particular CSF environment.
Through single-cell profiling, we provide a detailed exploration of immune cell types and states
in the CSF, deepening our understanding of immune responses as well as deciphering tumor
cell heterogeneity and mechanisms of disease progression. The technological transfer of
innovative single-cell tools and their application in a unique cohort, substantially expanded
previous research®, delving in-depth into functional and metabolic states of both lymphoid
and myeloid CSF cells. The focus on LMD patients offers a unique opportunity to explore
immune-tumor cell interactions, tumor heterogeneity and potential treatment resistance
mechanisms in the CSF.

We observed distinct disease-associated T cell profiles in the CSF across the different CNS
disorders. The lymphoid-dominated CSF landscape of CNSL patients was characterized by T
cell activation and TCR clonal expansion, in contrast to BrM and GB patients, who showed a
myeloid-dominated CSF. Of note, our findings suggest the trafficking of T cells between blood
and CSF. The majority of the TCR clones expanded in CSF could be found in blood, with
enriched clonal expansion detected in the CSF compartment. This suggests an anti-tumor
immune response detectable in the CSF, especially in tumor types with strong T cell activation,
such as CNSL?26667 |dentifying tumor-reactive TCR sequences from the CSF could pave the
way for the development of CSF-guided TCR cloning strategies for cell-based therapies, such
as TCR-T, CAR-T cells or TCR-based vaccines®-"t, Such advanced treatment options could
further improve the treatments of primary CNSL, an aggressive subtype of lymphomas with a
unique immunological environment’?-74,

Myeloid cells, a second key component of the immune landscape in CSF, likewise displayed
disease-associated gene expression programs, highlighting the dynamic roles myeloid cells
play in the CSF environment in healthy and diseased conditions. Our findings revealed two
distinct origins of myeloid cells within the CSF, which correlated with the disease contexts. In
GB and BrM, myeloid cells exhibited a resident-like profile (modules MM1 and MM10),
suggesting the contribution of CNS-resident macrophages. In contrast, CSF myeloid cells in
CNSL and neuroinflammatory conditions displayed blood-infiltrative profiles (modules MM9
and MM11), indicative of peripheral immune cell recruitment. The presence of resident-like
macrophages in GB and BrM likely reflects the critical role of CNS-resident macrophages,
such as microglia, in tumor progression and immune evasion. Notably, tumor-associated

resident-like macrophages could serve as cellular biomarkers for patient stratification or as
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therapeutic targets’. Future investigations focusing on resident-like macrophages have to
provide additional insights into their functional roles in malignancy and their targetability
through immunotherapies. Interestingly, our results also suggest a metabolic switch, indicated
by modules MM3, MM5, MM6, in CSF myeloid cells during activation under pathological
conditions, likely reflecting shifts in immune-metabolism. The causal role of changes in gene
expression programs were underscored through the correlation of elevated lactate
concentrations in the CSF with respective myeloid subpopulations. Considering that metabolic
reprogramming is a hallmark of cancer’®, these finding become highly relevant. Specifically,
alterations in glucose metabolism and mitochondrial respiration, such as the Warburg effect’’,
play a key role in tumor progression. Such pivotal mechanisms in cancer cells have been
recently expanded to the tumor immune metabolism, highlighting interactions between
metabolic pathways in tumor and immune cells. For instance, in the GB, lactate
dehydrogenase A (LDHA) has been implicated in synergistic tumor-macrophage
interactions’®.

Our profiling of tumor cells in CSF suggests the potential to monitor tumor phenotypes and
tumor resistance mechanisms over time. Here we tracked the clonal evolution during
resistance to methotrexate chemotherapy in patient P12 and explored how immune cell
interactions might drive resistance to immune checkpoint inhibitors in patient P09. These
findings underlined the importance and potential for both disease- and patient-centric
analyses, with opportunities for personalized therapies, drug development, and clinical trial
designs. In conclusion, we offer a holistic characterization of immune and tumor cell states in
the CSF, shedding light on the disease-specific complexities of CSF microenvironments in
patients with brain and leptomeningeal neoplasms. The insights gained from this work
highlight the potential of LB, combined with novel, high-resolution technologies for
understanding patho-physiological mechanisms in CNS neoplasms and especially LMD. As a
conseguence, cellular profiling of the CSF can guide uncovering patient-specific mechanisms
of disease progression, the identification of prognostic and predictive biomarker candidates
and the development of personalized therapy approaches. Our dataset is publicly available
and represents a valuable resource to deepen our understanding of cells in the CSF in health

and disease and to guide the design of larger prospective studies.
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Online Methods

Patient cohorts

The patient cohort comprises scRNA-seq data from 20 CSF samples retrospectively collected
from 16 patients (Fig. 1, Sup. table 1). Inclusion criteria for the 12 patients with CNS
neoplasms were the detection of parenchymal CNS tumor lesions as well as clinical
parameters indicating leptomeningeal involvement (such as elevated CSF cell counts,
detection of suspicious or clearly malignant cells in CSF cytology, and radiological signs of
LMD). We aimed to cover a comprehensive spectrum of entities and therefore included
patients with brain and leptomeningeal neoplasms from GB (n=2), CNSL (n=5), and BrMfrom
lung adenocarcinoma (n=2), breast cancer (n=2) and melanoma (n=1). Four patients served
as a non-cancer CNS inflammatory control condition suffering from viral meningitis (n=1),
cerebral abscess with bacterial meningitis and ventriculitis (Eikanella spp. bacteria) or the CNS
autoimmune disease neurosarcoidosis (n=2). The median age at the time of CSF sampling
was 59 years (range 33 to 73), with six of 16 patients being female (38%). Serial CSF samples
at different time points were obtained from four patients of this cohort: patient P10 with CNS-
DLBCL, patient P12 with breast cancer BrM and LMD and patient PO7 with cerebral abscess.
Additionally, PBMCs corresponding to the CSF samples were obtained from blood samples of
patients P06 (CNS-DLBCL), P07 (cerebral abscess), P10 (CNS-DLBCL) and P12 (breast
cancer BrM and LMD) with two timepoints available for patient PO7 and patient P10 for
scRNA-seq. Further, FFPE tissue for spatial transcriptomics was available for six patients of
our cohort (patients P01 and P10 with CNS-DLBCL, patient P02 with GB, patient P07 with
cerebral abscess, patient P09 with melanoma BrM and LMD, and patient P12 with breast
cancer BrM and LMD).

All patients were diagnosed and treated at the University Hospital Frankfurt. Routine
pathological or neuropathological workup of tissue was performed at the Departments of
Pathology and/or Neuropathology (Edinger Institute). Demographic and other clinical data
(such as routine CSF parameters: protein and lactate (assessed in the Department of
Neurology), and cytology (assessed by cytomorphology and/or immunocytochemistry and/or
flow cytometry in the Departments of Neurology, Neuropathology, Pathology and Hematology)
were extracted from patients’ records, pseudonymized, and entered into password-protected

databases.

Ethics and inclusion

All patients included in the study gave consent towards biomaterial collection and analyses.
The study protocol was approved by the ethical committee of the medical faculty of the Goethe
University Frankfurt, Germany (SNO-9-2022).
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Collection and cryopreservation of cells from cerebrospinal fluid and peripheral blood
mononuclear cells

All CSF samples were collected during routine clinical care, primarily through lumbar puncture,
except for four samples collected by ventricular CSF sampling. CSF samples were
immediately centrifuged at 400 g for 10 min to separate cell-free from cellular components.
Supernatant was transferred to cryo-vials and shock frozen in liquid nitrogen. CSF cells were
resuspended in 1ml of 90% FCS and 10% DMSO and slowly frozen -80°C using a Mr.
Frosty™. Whole blood was withdrawn in EDTA tubes and peripheral blood mononuclear cells
(PBMCs) isolated using Lymphoprep (Serumwerk Bernburg) according to the manufacturer's
protocol. Cells were counted by automatic cell counting using a Countess 3 FL (Invitrogen).
Cells were resuspended in 90% FCS and 10% DMSO. 1ml of cell suspension with 5 million
cells per ml was transferred to a cryo vial and slowly frozen at -80°C in a Mr. Frosty™. For

storage, all samples were transferred into liquid nitrogen.

Single-Cell RNA-sequencing

Cryopreserved CSF samples were thawed in a 37°C water bath and transferred to a 15 ml
Falcon tube containing 10 ml of pre-warmed, pre-filtered RPMI medium supplemented with
10% FBS (Thermo Fisher Scientific). The samples were centrifuged at 400 x g for 10 minutes
at room temperature, and the supernatant was removed, leaving behind a small volume of
approximately 100 pl. One milliliter of pre-chilled RPMI medium was added to resuspend the
pellets, and the cell content was estimated using the LUNA-FL counter (LogosBiosystems)
after staining with Acridine Orange/Propidium lodide. Up to 5 ml of cold RPMI medium was
then added to wash the cells, followed by centrifugation at 400 x g for 10 minutes at 4°C.
Based on cell concentration and assuming ~30-40% cell loss during centrifugation, the
samples were resuspended in an appropriate volume of cold RPMI medium to achieve a
concentration of approximately 1000 cells/ul. The LUNA-FL counter was used again to verify
the final cell concentration and viability of the samples.

Samples were loaded onto the Chromium X instrument (10X Genomics) and encapsulated for
a target cell recovery of between 1,000 and 10,000 cells, using the standard throughput
Chromium Next GEM Single Cell 5' Reagent Kit v2 (10X Genomics, PN-1000263). Libraries
were prepared following the manufacturer’s instructions (protocol CG000331). Briefly, after
GEM-RT cleanup, cDNA was amplified over 13 cycles, purified, and quantified on an Agilent
Bioanalyzer High Sensitivity chip (Agilent Technologies). To construct the gene expression
(GEX) library, 10 to 50 ng of cDNA were fragmented, end-repaired, A-tailed, and sample-
indexed using the Chromium Single Cell 5’ Library Construction Kit (10X Genomics, PN-
1000190) and the Dual Index Kit TT Set A (10X Genomics, PN-1000215). Human T and B cell
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receptor sequences were enriched from the amplified full-length cDNA using the Chromium
Single Cell Human TCR/BCR Amplification Kit (PN-1000252/1000253). Fragmentation, end-
repair, A-tailing, and library indexing of the enriched cDNA were performed using the
aforementioned kits. Finally, the size distribution and concentration of the 5 GEX and
TCR/BCR libraries were verified on an Agilent Bioanalyzer High Sensitivity chip. Sequencing
was performed on a NovaSeq 6000 system (lllumina), aiming for approximately 40,000 and
10,000 read pairs per cell for the GEX and TCR/BCR libraries, respectively. The sequencing
conditions were 28 bp (Read 1) + 10 bp (i7 index) + 10 bp (i5 index) + 90 bp (Read 2).

Nanopore-sequencing of cell-free DNA from cerebrospinal fluid

The cfDNA was extracted from the cell free CSF fraction of the samples of 13 patients (Sup.
Table 1) using the QIAmp MinElute ccfDNA Mini Kit (Qiagen) according to the manufacturer’s
protocols. Quantification of cfDNA was performed with a Qubit Fluorometer (Invitrogen) and
using an Agilent tape station device (Agilent Technologies). Sequencing libraries were
prepared using the Ligation Sequenzing kit (Oxford Nanopore) with 2.7-43.3 ng input
depending on sample yield. Nanopore whole-genome sequencing with ~9.58M (SD: 6.99M)
read-pairs per sample was performed using the MinlON instrument (Oxford Nanopore).
Sequence data were mapped to the human reference genome (hgl19) within the NanoDx
pipeline. Copy number profiles as well as the estimation of circulating tumor DNA fractions

from CSF cfDNA were assessed by use of the NanoDx pipeline 52,53.

Xenium In Situ Analyzer

The human Spatial Transcriptomics brain data was generated on the Xenium In Situ platform
using the pre-designed Xenium Human Immuno-Oncology panel targeting 380 genes
(chemistry version 1, cat #: 1000654). Archived human brain tissues were processed
according to the manufacturer’s instructions (CG000578 — Rev C) after assessing sample
quality by H&E and DAPI staining in adjacent tissue sections from the same blocks. 6 formalin-
fixed paraffin-embedded brain sections (5 microns thick) were mounted onto two Xenium
slides, incubated at 42°C for 3h and dried overnight at room temperature in a desiccator.
Xenium slides were processed and analysed 4 days after sectioning. Sections were
deparaffinized and de-crosslinked (CG000580 — Rev C), and then hybridized with the pre-
designed probes at 50 °C overnight (~ 20 h), followed by post-hybridization washes, ligation,
amplification, multimodal cell segmentation staining and autofluorescence-quenching as
described in user guide CG000749 — Rev A. Xenium slides were loaded on the Xenium
Analyzer instrument for imaging and analysis under software version 1.3.3.0, following the
Imaging user guide CG000584 — Rev E.
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scRNA-seq data pre-processing and quality control
To profile the cellular transcriptome, we processed the sequencing reads with 10X Genomics
Inc.’s software CellRanger’ (version 7.0.0) and mapped them against the human reference
transcriptome, GRCh38 (Genome Reference Consortium Human Build 38 Organism, version
2020-A). For the TCR libraries, the corresponding VDJ human reference was also used
(version 5.0.0).
For all CSF and PBMCs scRNA-seq datasets, we performed quality control (QC) on the raw
dataset count matrices by taking into account the main cell metrics: number of genes, library
size/number of UMIs (uniqgue molecular identifiers) and percentage of mitochondrial RNA
content per cell. Metrics distributions were visualized across libraries and, consequently, we
removed low quality observations using permissive thresholds. We applied the following filters
in order to select only good quality cells from downstream analysis.

e Library size between 800 and 25000 UMIls

e Number of genes between 350 and 6000

e Mitochondrial content lower than 20%
For one of the CSF batches, where the numbers of cells loaded and recovered were lower
than the others, we applied more permissive filters by lowering the library size lower threshold
to 500, minimum number of genes to 200 and allowed up to 25% of mitochondrial content.
Doubet detection algorithm, scrublet®®, was applied to compute the probability of each cell-
barcode to capture a doublet rather than a single cell. However, we didn't filter out any cells
during QC based on the doublet score. During downstream analysis, we did further filter out
bad quality cell clusters, which exhibited high mitochondrial content or a high doublet score

overall.

Healthy Cohort
We downloaded raw data (fastq files) from Piehl, Natalie, et al. Cell (2022), from GEO
(GSE200164) and processed them following the same pipeline as the rest of the CSF

samples.

Normalization and clustering

Each scRNA-seq sample data (CSF from healthy and diseases and blood samples) was
analyzed independently in order to do a preliminary cell annotation which would allow us to
evaluate integration performance in later steps. For this we used functions from the Seurat
package®! (version 4.4.0). Normalization by library size is applied to account for differences in
sequencing depth across cells. Values are then scaled by a fixed factor of 10"4 and log
transformed as standard single cell best practice®?. Following normalization, highly variable

genes (HVGSs) are identified to capture cell-to-cell transcriptomic variation, a critical step in
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defining cellular heterogeneity. We selected the top 3000 HVGs per sample. After HVG
identification, the data are scaled to standardize expression across genes. This centers the
data by subtracting the mean expression level and divides by the standard deviation, resulting
in a z-score for each gene within each cell. Standardization is essential for ensuring that
differences in expression magnitudes do not disproportionately influence downstream
analyses. We ran principal component analysis (PCA) and then selected the top principal
components (PCs) based on explained variance and the elbow method, to capture the most
biologically relevant patterns. Subsequently, neighbor identification and clustering was applied
to group cells into transcriptionally similar clusters, representing distinct cell populations.
Several clustering resolutions were explored. Furthermore, Uniform Manifold Approximation
and Projection (UMAP) was applied to further reduce the data's dimensionality and visualize
complex transcriptional landscapes in two dimensions. This low-dimensional visualization
facilitates exploration of cellular heterogeneity. We used the top 20 PCs for neighbor

identification, clustering and UMAP.

General annotation

General annotation of the major cell populations was performed looking at the per-cluster
expression of canonical genes: PTPRC/CD45 (immune cells), CD79A, CD19 (B cells), MZB1,
IGHA1, IGHG1 (Plasma cells), CD14, CD68 (Macrophages), S100A8, LYZ, VCAN
(Monocytes), CD1C, CLEC9A, IL3R (Dendritic cells), CD3E, CD4 (CD4 T cells), CD3E, CD8A,
CD8B (CD8 T cells), NCAM1, NKG7, GNLY (NK cells). This per-sample preliminary annotation

allowed us to then validate the integration downstream.

Integration and in-depth annotation

We then integrated the pre-processed CSF or blood samples with the python package scVI83
(version 1.0.4). We integrated all disease CSF samples together, but also only the CSF
myeloid cells and the CSF T cells independently, as well as all blood samples and healthy
CSF samples to correct for technical artifacts and batch effects. We decided to not integrate
healthy and disease CSF samples together, as the disease state and batch of origin were
confounded and integration would not allow us to correctly eliminate spurious effects and
accurately compare samples. For scVI integration, we adjusted parameters (number of nodes
per hidden layer, dimensionality of the latent space and number of hidden layers used for
encoder and decoder neural networks) for each dataset. Neighbor identification and clustering
using the python package scanpy® (version 1.9.6), accompanied integration. We followed a
top-down approach, where we first integrated and clustered all cells to annotate the major cell
populations and then re-integrated and clustered each of the interesting major cell populations

alone to find subpopulations. Clustering resolution was adjusted for each dataset and, in some
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cases, clusters were split or merged after looking at the expression profiles. In some cases,
bad quality or doublet clusters emerged and were removed from downstream analysis. UMAP
was also applied after integration, to obtain a harmonized two-dimensional embedding where
cells from different samples are comparable within the same low-dimensional space.

In depth characterization of T and myeloid populations was carried out by immunology experts
by looking at the differentially expressed genes in each cluster and comparing it to populations

described in the literature.

Tumor cell identification in CSF scRNA-seq

To identify tumor cells in scRNA-seq data, we used different approaches depending on the
type of brain tumor. For GB BrM CSF samples, tumor cell signatures and relevant markers
were quantified in CD45-negative cells. If some expression of the corresponding signature or
markers was detected, we considered a sample positive for the presence of tumor cells.

In CNSL samples, we determined the kappa-to-lambda immunoglobulin light chain ratio on B
cells, as a monoclonal light chain shift is indicative of malignancy in lymphomas. To
differentiate malignant B cells from non-malignant B cells, we leveraged the fact that malignant
B cells express only a single type of immunoglobulin light chain, either kappa (k) or lambda
(\)®. We annotated each B cell as k or A based on the expression levels of the genes IGKC
(which encodes a constant region of the k chain) and IGLC1, IGLC2, IGLCS3, IGLC4, IGLC5
and IGLC6 (A chain). Unfortunately, dropout events led to varying numbers of unknown B cells
in each sample. Following a similar approach to the one used by Zhao Y. et al. 2022%, we
calculated the k/A B cell ratio for each sample. If either type represented more than 50% of the
B cells of a sample, we considered it positive for malignant cells. However, although the shift
might have been present in most CNSL samples, unknown immunoglobulin light chains
prevented us from confidently discerning the presence of malignant cells in all samples.

For inconclusive cases, additionally, we assessed genomic instability by detecting copy
number variations (CNVs) using inferCNV (inferCNV of the Trinity CTAT Project.
https://github.com/broadinstitute/inferCNV) version 1.3.3 in CD45-negative cells from BrM

samples, as well as in B cells from CNSL samples. We configured inferCNV to analyze cells
individually (analysis_mode = "cells"), using a cutoff value of 0.1, which is optimized for 10x
Genomics data, as described by the package authors. CNV detection was performed in a
denoised mode to minimize noise in gene expression data while enabling Hidden Markov
Model (HMM)-based CNV inference. The HMM analysis was set to output consensus-based
results across cells (HMM_report_by = "consensus"), employing the “i3” model, which is
recommended for distinguishing between three CNV states (insertion, deletion and
neutral/none). This approach allowed us to infer CNV profiles across cell populations, aiding

in the identification of chromosomal regions with possible copy number gains or losses.
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Reference cell types for BrM samples were all immune cells while we only used myeloid and
T cells in the case of CNSL samples.

TCR data analysis

We defined TCR clonotypes as T cells with an exact overlap in beta-chain receptor amino acid
sequence. We used scRepertoire®® (version 1.12.0) to combine gene expression and TCR
information from the same cells. Only TCR sequences associated with cells annotated as T

cells by RNAseq were kept for downstream analysis.

Signature scoring and pseudobulk analysis

Signature scoring was performed in two different ways. At the single cell level, signatures were
computed by cell, using the UCell R package®’ (version 2.6.2). At the patient or disease level,
we first aggregated the counts for a specific cell type or across all the cells for each patient or
disease, by computing a “pseudobulk” using the presto R package®® (version 1.0.0) which
were then normalized. We then scored signatures using decoupleR® (version 2.8.0), on the
pseudobulks by applying either a multivariate linear model (MLM) or a weighted sum (WSUM)
method. For the Xenium data, signature scores per cell were computed using AUCell*® and
divided by the cell area. Then score values within the range between the 1st and 99th
percentiles of each signature were selected and scaled prior to visualization. A table with the

complete signatures used in each case can be found in Sup. Table 4.

Compositional analysis

To estimate changes in cell population proportions across various diseases, we used the
scCODA Python package®, a Bayesian modeling tool designed to account for the
compositional nature of single-cell data and reduce the likelihood of false discoveries. It
enables us to infer shifts between conditions while incorporating additional covariates. It
detects differences between a reference cell type, assumed to remain constant across
conditions, and the other cell types. To conduct our analysis in an unsupervised manner, we
allowed scCODA to automatically select this reference. scCODA takes as input the number of
cells of each cell type in each patient and outputs the list of proportion changes for cell types,
along with corresponding corrected p-values (adjusted through the False Discovery Rate

procedure, FDR).

Gene co-expression network analysis
We performed weighted gene co-expression network analysis within the myeloid cell
population of our scRNA-seq dataset using the R package hdWGCNA%% (version 0.4.0).

Genes expressed in fewer than 5% of cells were excluded, yielding 9,982 genes. We next
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used the hdWGCNA function MetacellsByGroups to construct de-noised metacell gene
expression profiles for each patient using the level 2 cell annotations. A soft-power threshold
on the gene-gene co-expression network was optimized using the hdWGCNA function
TestSoftPower. Using the hdWGCNA function ConstructNetwork, we computed a topological
overlap matrix (TOM) to represent the gene co-expression network and grouped genes into
14 modules with the Dynamic Tree Cut algorithm. One of these modules was removed from
downstream analysis, as it was the smallest of them and contained only 56 genes. Specific
parameters for these functions can be found in the GitHub repository associated with this
manuscript. The steps of this co-expression network analysis were repeated for the myeloid
cell population in the healthy CSF scRNA-seq dataset to facilitate comparisons at the network
level. We performed a pairwise gene set overlap analysis between modules identified in the
disease CSF dataset versus the healthy CSF dataset using the R package GeneOverlap®
(version 1.38.0), which performs a Fisher’s exact test to quantify statistical significance and

effect size of the overlap compared to a background set of genes.

Cell communication analysis

For cell-cell communication analysis, we used the CellChat R package® [cite] (version 2.1.2),
which infers intercellular communication networks by analyzing ligand-receptor gene pairs in
ScRNA-seq data. Starting with a normalized, clustered single-cell dataset, we first created a
CellChat object for each interesting sample, patient or disease group, to store the expression
data and metadata information (general cell types). We then subset the data to include only
expressed genes, to retain ligand-receptor pairs with significant expression in each cluster,
following the recommended pipeline described by the package authors. We then mapped
gene expression data onto the known CellChat database of human ligand-receptor
interactions. We identified cell populations with significant changes in sending or receiving

interacting signals and visualized the inferred communication strengths and directions.

Xenium data analysis

Raw Xenium data were QC-ed to remove only empty cells (cells containing no transcripts). In
order to annotate the cells to a general level, we combined information from the immuno-
oncology panel annotation and canonical marker expression and aggregated the transcript
counts in each cell, by cell type. Cells were annotated as the cell type they contained more
transcripts of, therefore some cells were labeled as unknown. We validated this annotation
method by computing cell-type signature scores with the R package AUCell*®® (version 1.24.0),

using the same gene sets for each cell type.

Statistical analysis and data visualization
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All analyses presented in this manuscript were carried out using the programming languages
R, versions 4.2.3 (2023-03-15) and 4.3.3 (2024-02-29), and Python version 3.8.5. More details
about specific packages and functions used can be found in the Github repository associated
with this publication. Detailed information on the statistical analyses and significant levels are
indicated in the figure legends and text when necessary. lllustrations were created with

Biorender (https://www.biorender.com/) and figures were put together using Inkscape

(https://inkscape.app/).

Box Plots

To summarize and visualize the distribution of the data, we used geom_boxplot() from the
ggplot2 package in R% (version 3.5.1). This function generates a box plot, which provides an
overview of key summary statistics, including the median, interquartile range (IQR), and
potential outliers. The box plot allows for an efficient comparison of distributions across
different groups within the data. The central box represents the interquartile range (IQR) of
the data, which spans from the 25th percentile (the first quartile, Q1) to the 75th percentile
(the third quartile, Q3). Within this box, a horizontal line marks the median (50th percentile) of
the data, providing a measure of central tendency. The "whiskers" extend from the box up to
a maximum of 1.5 times the IQR above Q3 and below Q1, covering most of the non-outlier
data points. Points beyond the whiskers are considered potential outliers and are plotted
individually as dots.

Data and code availability

Raw single-cell RNA sequencing data of CSF samples is deposited in GEO (GSE286518).
Xenium spatial transcriptomics raw data is deposited in Zenodo
(DOI:10.5281/zen0d0.14510199). Access and exploration of processed CSF data is available
through the CELLXGENE portal (https://cellxgene.cziscience.com/collections/573e2e06-8af0-
4d96-bfdd-7d64a4bb9c21). All code, scripts and notebooks related to this publication are
available on GitHub (https://github.com/Single-Cell-Genomics-Group-CNAG-CRG/CSF).

Additional information is available upon reasonable request to the corresponding authors.
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Supplementary figures and table legends

Supplementary Figure 1. a, Square chart depicting all data modalities across patients
samples generated for this study. b, Barplot showing CSF cell numbers across samples and
diseases. Serial samples are also included. n = 22 samples. ¢, Dotplot showing average
expression and percentage of cells expressing Brain Metastasis, non-small cell lung cancer
(NSCLC) and Glioblastoma signatures as well as known tumor markers on non-immune cells
of the corresponding patients. Disease color scale is the same as a. d, Pie charts showing B
cell type composition per patient in CNSL and inflammatory patients. Disease color scale is
the same as a. e, Barplot showing cell numbers across all healthy CSF samples. f, Integrated
UMAP of all cells in healthy CSF samples (56.010 cells). Cell type color scale is the same as
in f. g, Barplot showing the CSF composition of the healthy samples at a general resolution. n
= 44 samples.

Supplementary Figures 2 and 3. Copy number profile of suspicious tumor cells in SCRNA-
seq CSF of cancer samples, computed at the scRNA-seq level with inferCNV (left column).
Cell-free DNA copy-number profile obtained through nanopore low-pass cfDNA WGS, when
available (right column).

Supplementary Figure 4. a, Barplot showing T cell subtype composition across all pre-
treatment CSF samples. b, Barplot showing total number of TCRs captured per sample. c,
Boxplots showing mean clone size by sample and disease split in CD4 and CD8 TCRs. A
Wilcoxon rank sum test was applied to compare each disease against healthy, independently
for CD4 and CD8 TCRs. Comparisons with n < 3 samples (GB) were not performed. Disease
color scale is the same as in b. d, Boxplots showing proportion of expanded TCRs by sample
and disease split in CD4 and CD8 TCRs. A TCR was considered expanded if it was found in
at least 5 cells. A Wilcoxon rank sum test was applied to compare each disease against
healthy, independently for CD4 and CD8 TCRs. Comparisons with n < 3 samples (GB) were

not performed. Disease color scale is the same as in b.

Supplementary Figure 5. a, Heatmap showing BD and MG origin signature scores on the
matching blood samples. Computed using a multivariate linear model on pseudo-bulked
myeloid cells. All signature associates p-values were lower than 0.01. b, Scatterplot showing
the correlation between BD and MG signatures across healthy and disease patients. ¢, Barplot
showing the myeloid CSF composition of the pre-treatment sample of all patients. Disease
color scale is the same as in a. d, UMAP showing the functional modules’ expression on the

myeloid cell populations. e, f, Dotplots showing myeloid module expression across myeloid
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subpopulations and diseases, respectively. g, Network plot showing the correlation between
phenotypic and functional modules, respectively. h, Scatterplot showing the correlation
between module MM6 score and the measured CSF levels of lactate.

Supplementary Figure 6. a, Scatterplot showing incoming and outgoing interaction strength
of the general populations found in healthy CSF including all samples. b, Scatterplot showing
TCR clone size and phenotype across pre-treatment samples of all CNSL patients. c, d,
Number of tumor cells of each clone and/or time point for patient P12 (c) and P09 (d). e, Copy

number profile of the ctDNA tumor fraction of Patient P09.

Supplementary Figure 7. a, Dotplot showing marker gene expression across all general
populations found in the brain tissue. b, Table showing area and number of cells of the tissue
sections profiled with Xenium. c, Scaled pro-inflammatory signature score on myeloid cells in
brain tissue section of inflammatory patient PO7. d, Scaled activated and cytotoxic signature
scores on t cells in brain tissue section of CNSL patient PO1. e, Scaled TILs signature score
on T cells in the zoomed-in region of brain tissue section of CNSL patient P10. f, Scaled anti-
inflammatory signature score on myeloid cells in both zoomed-in regions (A and B) of brain
tissue section of BrM patient P12 g, Scaled TILs signature score on T cells in the zoomed-in
region of brain tissue section of GB patient P02. h, Scaled anti-inflammatory and TILs
signature score on myeloid and T cells, respectively on the zoomed-in region of brain tissue

section of BrM patient P09.

Supplementary Table 1: Table containing the description of the samples and patient cohort
as well as the biochemical and other parameters measured in the CSF. Reference values for

each parameter are detailed between parentheses.

Supplementary Table 2: Table containing the genes associated to each of the myeloid
modules identified respectively in healthy and disease CSF myeloid cells as well as the

intensity of said association (KME).

Supplementary Table 3: Table containing the description of the myeloid modules in disease
CSF samples. Column one contains the module number, column two, the given name; column
three the description of the role of the module and column four some genes selected from the

top genes in each module network, representative for the given name and function.

Supplementary Table 4: Table containing the full signature lists used throughout the paper,

both for the single-cell and the spatial data.
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