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Abstract 

 

Assessing anti-tumor immune responses and immune microenvironments in central nervous 

system (CNS) neoplasms, such as brain tumors and leptomeningeal disease (LMD), provides 

prognostic insights and predictive biomarkers. Liquid biopsy of the cerebrospinal fluid (CSF) 

represents a promising minimally-invasive approach, but its ability to reflect immune 

responses against tumors remains unclear. Here, we used single-cell sequencing of CSF cells 

and spatial transcriptomics of CNS lesions to compare and contrast LMD patients with CNS 

lymphoma (CNSL), glioblastoma (GB) and brain metastases (BrM), to neuroinflammatory 

CNS disorders. We identified disease-specific CSF environments, reflecting parenchymal 

tumor microenvironment features. CNSL showed robust T cell responses, while BrM and GB 

were dominated by both blood-derived and tissue-resident myeloid cells. Longitudinal CSF 

sampling unveiled mechanisms of disease progression and therapy resistance, highlighting 

the potential of CSF liquid biopsies for uncovering disease biology, discovering cellular 

biomarkers and developing personalized therapies for CNS neoplasms.  
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Introduction 

 

Organ and tumor factors shape the tumor microenvironment (TME), which is crucial for tumor 

progression and the effectiveness of treatment. Despite an inherently reduced immune 

response capacity of the central nervous system (CNS)1–5, immune cells ensure surveillance 

and anti-tumor response also in the TME of CNS tumors6–10. This opens therapeutic avenues 

for patients with brain and leptomeningeal neoplasms11–15, for whom conventional treatments, 

including immunotherapies, have yielded limited success16–20. This is particularly relevant for 

patients with leptomeningeal disease (LMD) arising in the context of brain metastases (BrM) 

from solid tumors, most commonly breast cancer, lung cancer, and melanoma21. It is also 

relevant for less common forms of LMD, such as those associated with glioblastoma (GB). 

Moreover, while immunotherapies are effective in extra-cerebral hematological malignancies, 

they remain challenging in CNS lymphomas (CNSL)15,22,23, especially in case of accompanying 

LMD, due to the distinct CNS immunobiology and aggressive tumor profile. Overall, the 

mechanisms of LMD formation, defined as a spread of tumor cells to the leptomeninges and 

the CSF, are not fully understood15,24. There is an urgent need to decipher disease-specific 

mechanisms and address the unique challenges of LMD to refine therapeutic strategies.  

The minimally-invasive liquid biopsy (LB) of the cerebrospinal fluid (CSF) is particularly 

advantageous for diagnosis and longitudinal disease monitoring in patients with CNS 

neoplasms and especially LMD. Emerging CSF LB technologies hold promise for predicting 

prognostic outcomes15,25,26. Single-cell sequencing technologies have revolutionized our 

understanding of cellular diversity by providing comprehensive maps of cell types, states, and 

functions at unprecedented resolution27–30. Furthermore, single-cell analysis enabled refined 

patient stratification, aiding in the identification of distinct disease types and paving the way 

for more precise therapeutic interventions31,32. Here, we provide evidence how single-cell 

technologies can expand the LB analyses, providing valuable insights into immune 

mechanisms beyond the standard cell-free CSF analytes15. 

While LMD shows both adherent growth and floating tumor cells in the CSF24,33, the latter 

represent an ideal target for emerging single-cell-based LB tools that hold potential for clinical 

decision-making20,21. Although healthy CSF displays low cell density, it contains diverse 

lymphocytic and myeloid immune cell phenotypes. Healthy CSF mainly contains CD4 central 

memory T cells and low levels of CD8 cytotoxic T cells, myeloid and B cells22,23. Origins and 

phenotypes of myeloid CSF cells are described to resemble tissue-resident border-associated 

macrophages (BAMs) and fate mapping technologies suggest a similarity to the CNS-resident 

microglia4,34. In CNS disorders and leptomeningeal diseases, the cellular composition of CSF 

changes significantly, with an increase in immune cells, reflecting the immune response in the 

CSF21,35. Previous studies in BrM patients identified identical T cell receptor (TCR) clonotypes 
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in tumor tissue and the CSF, suggesting T cell trafficking between brain parenchyma and the 

CSF36. However, the degree to which immune response mechanisms in patients with brain 

tumors and LMD are reflected in the CSF requires further exploration. This study aimed to 

decode the CSF cellular landscapes in patients with LMD across different tumor entities as 

well as neuro-inflammatory disorders using single-cell RNA and TCR sequencing. We further 

extended our analysis to longitudinal profiling and to additional compartments, such as the 

blood and the brain tissue, through deep TCR sequencing and spatial transcriptomics, 

respectively. The improved understanding of the cellular diversity and dynamics in the CSF of 

patients with brain and leptomeningeal neoplasms will help tailoring personalized treatment 

strategies, addressing the pressing clinical need to optimize therapeutic approaches for these 

challenging tumors. 

 

 

Results 

 

Single-cell analysis of CSF reveals distinct immune cell composition in CNS diseases 

To generate a landscape of cells in the CSF, we applied single-cell RNA sequencing (scRNA-

seq) with paired T cell receptor sequencing (scTCR-seq) in patients with defined brain and 

leptomeningeal neoplasms (CNSL, GB, and BrM) as well as autoimmune and pathogen-driven 

inflammatory CNS disorders (Sup. table 1). The CSF data was compared to the peripheral 

blood adaptive immune response and the immune microenvironment of corresponding 

parenchymal CNS lesions using deep immune receptor sequencing (OS-TCR) or spatial 

transcriptomics (Xenium), respectively. Additionally, circulating tumor DNA (ctDNA) was 

assessed in the cell-free CSF fraction by Nanopore sequencing (Fig. 1a, Sup. Fig. 1a).  

After sequencing and quality filtering, we obtained 72,695 CSF cells across 20 CSF samples 

from 16 patients (including 4 serial CSF samples), with cell numbers ranging from 21 to 7880 

cells per sample (AVR = 3634, SD = 2632, Sup. Fig. 1b). We initially compared the sensitivity 

of scRNA-seq in detecting tumor cells in the CSF to indirect LMD parameters (elevated protein 

or lactate levels) and cytopathological tumor cell detection assessed during clinical routine 

(Fig. 1b, Sup. table 1, see Methods). Tumor cells were identified by scRNA-seq using gene 

expression and genomic features, quantifying the expression of GB37 and BrM38–40 tumor cell 

signatures in CD45-negative CSF cells (Sup. Fig. 1c). For the identification of CSF tumor cells 

in CNSL patients, we computed the ratio of B cell kappa to lambda immunoglobulin chains, 

with monoclonality being an indicator of malignant transformation in lymphomas41 (Sup. Fig. 

1d, see Methods). Further, copy number aberrations, as a hallmark of genomic instability, 

were inferred from the single-cell transcriptome genomic distribution (inferCNV42,43, Sup. Fig. 

2 & 3, see Methods). Single-cell sequencing detected tumor cells in 9 of 12 patients and 11 
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of 16 samples (including serial samples) from patients with CNS neoplasms. In contrast, 

cytological assessment in clinical routine diagnosed neoplastic cells in the CSF of 8 of 12 

patients and 8 of 16 samples.  In four CSF samples (P01, P10-T1, P12-T2 and P12-T3) with 

unclear (suspicious but not clearly identified neoplastic cells) or even negative 

cytopathological assessment, we detected tumor cells at scRNA-seq level. Noteworthy, we 

detected CD45-negative cells with a NSCLC signature and copy number aberrations in patient 

P03 with NSCLC-BrM and LMD (Supp. Fig. 2), in line with the cytopathological assessment 

that identified as single tumor cell in the CSF sample. These findings highlight the sensitivity 

of single-cell sequencing to detect even low frequencies of diverse tumor cell types and to 

characterize the cellular landscape of the CSF in patients with brain and leptomeningeal 

neoplasms. 

We next applied SCVI44 to integrate scRNA-seq samples and to remove technical artifacts 

(Fig. 1c). On the corrected data, we applied clustering to assign cells the major cell types, 

based on canonical gene expression markers, namely B cells (CD79A, CD19), plasma cells 

(MZB1, IGHA1, IGHG1), macrophages (CD14, CD68), monocytes (S100A8, LYZ, VCAN), 

dendritic cells (CD1C, CLEC9A, IL3R), CD4 T cells (CD3E, CD4), CD8 T cells (CD3E, CD8A, 

CD8B), NK cells (NCAM1, NKG7, GNLY) and non-immune cells (PTPRC negative; Fig. 1c,d). 

An in-depth phenotyping of cell states was conducted by further recursive clustering, resulting 

in a detailed annotation of the cellular CSF landscape (Fig. 1e). To decipher the global impact 

of neurological diseases onto the CSF environment, we also included 44 healthy CSF samples 

(56,010 cells, Sup. Fig. 1e,f,g)35. Healthy CSF samples contained the expected proportion of 

approximately 80% lymphoid cells (Fig. 1f).  Despite apparent interpatient heterogeneity, we 

identified disease-specific CSF immune cell compositions with a lymphoid-dominated profile 

in patients with CNSL and inflammatory conditions, in contrast to a myeloid-dominated CSF 

immune landscape in patients with solid brain tumors (GB and BrM; Fig. 1d,f).  

To confirm disease-related shifts in the CSF immune cell landscape, we performed differential 

cell type abundance testing of CNSL, BrM, GB and neuro-inflammatory patients with the 

healthy CSF samples (see Methods, Fig. 1g). Here, the myeloid-dominated CSF profile of 

GB and BrM patients was confirmed for several myeloid cell types, accompanied by a 

significant reduction of both CD4 and CD8 T cells. The generally low levels of CSF B cells and 

plasma cells increased in neuro-inflammatory pathologies and GB patients. The strong 

increase of B cells in CNSL patients could be explained by the infiltration of neoplastic B cells 

into the CSF. CNSL patients also showed a decrease of CD4 T cells compared to healthy 

CSF, in line with a significantly reduced CD4/CD8 T cell ratio compared to healthy CSF 

(Wilcoxon rank sum test, p = 0.012; Fig. 1g,h). 

Given the strong association of macrophage polarization as well as T cell activation and 

exhaustion states to the tumor pathophysiology8,45,46, respective signatures were compared in 
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CSF immune cells across neuro-oncological and neuro-inflammatory diseases with healthy 

controls. While macrophages and T cells in the healthy CSF did not show an enrichment of 

these signatures, CSF cells in neuro-inflammatory disorders showed an increase in pro-

inflammatory macrophages (Fig. 1i). In the CNS tumor patients, we observed an enrichment 

of T cell activation and pro- and anti-inflammatory macrophages. Of note, CNSL patients were 

characterized by a particularly strong enrichment of T cell activation and exhaustion 

signatures, suggesting an active immune response against CNSL cells in the CSF35. The 

myeloid-dominated CSF of GB patients showed a mixed enrichment of pro- and anti-

inflammatory macrophage signatures and a decreased T cell activation score. Together, these 

results indicate the CSF immune profiles to reflect the respective TME and suggest the CSF 

as a resource for cellular biomarker discovery and the tailoring of treatment strategies, 

including advanced immunotherapies. 
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Figure 1: Single-cell phenotyping of CSF reveals complex environments driven by CNS 

diseases. a, Study workflow. Schematics were created using biorender. b, Square chart 

showing all CSF samples, several clinical parameters as well as the detection, or lack thereof, 

of tumor cells by scRNA-seq. c, Integrated UMAP of all cells in the CSF across patients and 

diseases (72695 cells). Cell type color scale is the same as in d. d, Barplot showing the CSF 

composition of the pre-treatment sample of all patients at the general resolution. Disease color 

scale is the same as in b. e, Sankey plot of the detailed annotation of the cellular CSF 

landscape. f, Barplot showing Myeloid and T cell composition across healthy and disease CSF 

samples. Dashed line shows the approximate clinical healthy ratio. The number of healthy 

samples is 44. g, Dotplot showing the results of applying scCODA on the general annotation 

comparing the disease groups against the healthy. Reference cell type used was NK cells and 

the false-discovery rate set at 0.35. Only populations with significant changes are shown. h, 

Boxplots showing CD4 to CD8 ratio per patient and disease. A Wilcoxon rank sum test was 

applied to compare BrM, CNSL and Inflammatory groups against healthy. Comparisons with 

n < 3 samples (GB) were not performed. Disease color scale is the same as in f. i, Heatmap 

showing scaled signature scores computed with a multivariate linear model on pseudo-bulked 

T cells or macrophages, respective of the signature, across conditions. Significant score p-

values (< 0.05) are noted with asterisks. 
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CSF is a dynamic environment reflecting T cell activity in CNS diseases 

To gain a deeper understanding of the CSF T cell response in the different CNS neoplasms, 

we reintegrated, clustered and annotated 43,780 T cells from all samples, identifying 12 

subpopulations (Fig. 2a,b). Six distinct CD4 T cells clusters included naïve and memory 

subpopulations, T helper (specifically Th17 cells) and T regulatory cells. Similarly to CNS 

tumor microenvironments, we distinguished two distinct CD8 exhausted populations47–50; a 

terminally exhausted (HAVCR2, LAG3 and ENTPD1) and a pre-exhausted subtype with lower 

levels of HAVCR2, ENTPD1 and LAG3, but high expression of PDCD1. We also found 

conventional CD8 populations, such as cytotoxic and effector memory (EM), together with an 

NK/Gamma-Delta population and proliferating T cells.  

To determine whether the T cell subpopulation heterogeneity across the patients is a 

consequence of the diseases (Sup. Fig. 4a), we performed an integrated analysis by 

projecting the transcriptomic profiles of the T cell subpopulations onto the T cell compartment 

of the healthy CSF samples (see Methods). In healthy CSF, we observed a predominance of 

naïve and central memory (CM) CD4 phenotypes and cytotoxic CD8 T cells. No exhausted or 

pre-exhausted T cells were found, and we detected only very low levels of T regulatory cells 

in the healthy CSF (Fig. 2c). Using canonical signatures of naive, T regulatory and exhausted 

T cells, we confirmed the depletion of regulatory and exhausted phenotypes in healthy CSF 

(Fig. 2d). Differential abundance analysis further validated these findings, detecting a 

significant increase in proliferative, pre-exhausted, and exhausted T cell subtypes compared 

to healthy controls (Fig. 2e). In contrast, naive T cell populations were significantly reduced in 

patients with CNS tumors. The analysis also corroborated increased levels in regulatory T 

cells in neuro-inflammatory and BrM patients compared to healthy controls. Our in-depth 

phenotyping of CSF adaptive immune cells suggests a different T cell environment in the CSF 

of CNSL patients, characterized by an enrichment of cytotoxic, pre-exhausted and exhausted 

T cells. Clinically, an increase of pre-exhausted CD8 T cell population in the CSF of CNS 

tumor patients represents a candidate biomarker for immunotherapy treatment to potentiate 

the ongoing anti-tumor reactivity47,51. On the contrary, the increase of T regulatory and IFN-

responding CD4 phenotypes in patients with BrM and GB, could be causally linked to the 

active suppression of an effective anti-cancer response52,53,54.  

To further understand T cell dynamics in the CSF, we profiled TCRs at single-cell resolution 

and analyzed the activity and expansion of T cell subpopulations in CSF and matched blood 

samples. Despite a heterogeneity in the repertoire size across samples (MEAN = 2638.81, SD 

= 1917.68, Sup. Fig. 4b), we observed a significant decrease of TCR diversity in the CSF of 

CNSL patients, compared to the healthy controls and other disease cohorts (Wilcoxon rank 

sum test, p = 0.02; Fig. 2f). In line, T cell expansion, indicated by the proportion of expanded 

clones (Wilcoxon rank sum test, p = 0.026) and the mean clone size (Wilcoxon rank sum test, 
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p = 0.02) per patient, was significantly higher in CNSL patients (Fig. 2g, Sup. Fig. 4c). 

Notably, T cell expansion in the CSF of CNSL patients was predominantly observed in CD8 T 

cells, while CD4 T cell clones exhibited minimal expansion (Fig. 2h, Sup. Fig. 4d). Therefore, 

we examined the phenotypes of the top five most expanded CD8 TCR clones per patient, 

revealing an overall expansion of predominantly cytotoxic T cells, along with smaller 

proportions of pre-exhausted and exhausted phenotypes (Fig. 2i). Noteworthy, patient P15 

with a secondary CNSL exhibited the most pronounced T cell expansion, characterized by a 

predominance of exhausted phenotypes, contrasting with the remaining patients with primarily 

cytotoxic profiles. Together, these findings reflect the dynamics of T cells and their TCR 

repertoire in the CSF, pointing to the distinct strength of T cell responses of patients across 

CNS diseases. 

To determine whether CSF clonal expansion happens locally or arises from the periphery, we 

compared TCR clones in the CSF and blood of five patients. This included two patients with 

primary CNS lymphoma (CNS-DLBCL): P10 had clearly identifiable CSF tumor cells in two 

serial matched samples. In P06 malignant B cells could not be clearly identified (by neither 

scRNA-seq nor cytopathological assessment) but showed increased numbers of CSF immune 

cells and signs of lymphoid activation in clinical CSF assessment. We also analyzed two serial 

matched samples of P07 with a bacterial infection and cerebral abscess caused by Eikenella 

spp. bacteria. Surprisingly, deep TCR sequencing (OS-TCR) of the blood samples revealed 

>75% of expanded T cell clones in the CSF to be traceable in matching PBMC samples (AVR 

= 88.72%; Fig. 2j), indicating peripheral T cell representation of CNS-related clonotypes. 

However, we observed a higher clonal expansion and lower TCR repertoire diversity in the 

CSF, compared to the blood and healthy CSF controls (Fig. 2k,l), pointing to a local activity 

of disease-reactive T cell clones in the CSF. These results support the representation of a 

disease-specific immune profile in the CSF compartment of patients. It is worth speculating 

that these T cell clones expanded in the CNS, before draining to the CSF compartment, further 

supporting the CSF as a mechanistic proxy of the diseased sites.  
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Figure 2: CSF is a dynamic T cell environment reflecting T cell activity in CNS diseases. 

a, Integrated UMAP of T cells in the CSF across patients and diseases (43780 T cells). Cell 

type color scale is the same as in b. b, Dotplot showing marker gene expression across T cell 

subpopulations. CM: central memory, IFN: interferon, EM: effector-memory, NK-gd: natural 

killer cells and gamma-delta T cells. c, Integrated UMAP of T cells in healthy CSF (56010 

cells) annotated with the projected T cell subtypes in disease CSF. Barplot showing 

composition across all healthy samples below. Cell type color scale is the same as in b. d, 

Boxplots showing signature scores of the main changing T cell phenotypes, computed with a 

multivariate linear model on pseudo-bulked T cells by patient. A Wilcoxon rank sum test was 

applied to compare BrM, CNSL and Inflammatory groups against healthy. Comparisons with 

n < 3 samples (GB) were not performed. e, Dotplot showing the results of applying scCODA 

on the T cell subtypes comparing the disease groups against the healthy. Reference cell type 

used was CD8 EM and the false-discovery rate set at 0.25. Only populations with significant 

changes are shown. f, Boxplot showing TCR repertoire diversity across patients and disease 

by computing the percentage of distinct TCR clones by sample. A Wilcoxon rank sum test was 

applied to compare the disease groups against the healthy. Comparisons with n < 3 samples 

(GB) were not performed. g, Boxplot showing TCR repertoire expansion across patients and 

disease by computing the average TCR clone size by sample. A Wilcoxon rank sum test was 

applied to compare the disease groups against the healthy. Comparisons with n < 3 samples 

(GB) were not performed. h, Boxplot showing TCR repertoire expansion across patients and 

disease by computing the proportion of expanded TCR clones by sample. A TCR was 

considered expanded if it was found in at least 5 cells. A Wilcoxon rank sum test was applied 

to compare the disease groups against the healthy. Comparisons with n < 3 samples (GB) 

were not performed. i, Barplot showing the top 5 most expanded CD8 TCR clones per patient 

and colored by the phenotype of the cells sharing each TCR. Cell type color scale is the same 

as in b. j, Barplot showing the percentage of expanded TCR clones in the CSF found in blood 

for each sample. Dashed line shows the average at 88.72%. k, Boxplot showing TCR 

repertoire diversity in healthy CSF samples and disease samples with matched blood 

samples. A Wilcoxon rank sum test was applied to compare the CSF and blood. l, Boxplot 

showing TCR repertoire expansion in healthy CSF samples and disease samples with 

matched blood samples. A TCR was considered expanded if it was found in more than one 

cell. A Wilcoxon rank sum test was applied to compare the CSF and blood. 
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Distinctive myeloid profiles modulate the CSF milieu in CNS diseases 

We next conducted an in-depth characterization of myeloid cells in the CSF. Integrating and 

clustering myeloid cells alone guided the annotation of 12 distinct myeloid phenotypes, 

including several macrophage, monocyte and dendritic cell subtypes (Fig. 3a,b). Interestingly, 

we identified three populations (CNS border-associated macrophages, BAMs; microglia-like 

and anti-inflammatory macrophages) that expressed CNS-resident markers (LYVE1, TREM2, 

APOE, TMEM119 and CSF1R)4,46. Conversely, we detected two monocyte populations likely 

originating from blood. We also identified a myeloid cell population of mitochondrial resident-

tissue macrophages in the CSF that was recently described as resident tissue macrophages 

with low levels of monocyte-related genes (MT-RTMs, resident macrophage population with 

high mitochondrial activity)55. Dendritic-cell subsets in the CSF included Mreg (CCR7, 

LAMP3), DC1 (CLEC9A, XCR1), DC2 (CD1C, FCER1A), DC5 (ITGAX, SIGLEC6) and pDCs 

(LILRA4, CLEC4C).  

To further elucidate the origins of macrophage and monocyte subsets in the CSF, we applied 

signatures indicative of either CNS-resident (MG, microglia-like) or blood-derived (BD)7,56,57 

origins, the latter invading the CSF from the periphery. To validate the signatures, we 

confirmed that the myeloid signature in all blood samples, regardless of the disease, was BD 

(Sup. Fig. 5a, all p-values < 0.01). In line with the gene marker-based annotation, the CNS-

resident signature was high in the three myeloid populations of potential resident origin, 

whereas the BD signature was enriched in the two monocyte populations (Fig. 3c). Both 

signatures helped to determine the origin of most myeloid populations, except MT-RTMs, 

which have previously been described to derive from circulating monocytes55. Myeloid cells in 

the CSF of healthy controls showed significantly higher expression of the CNS-resident 

signature, in contrast to patients with neuro-inflammatory and neuro-oncological disorders, 

who, in turn, were enriched in the BD signature (Fig. 3d,e). The two signatures showed a 

strong negative correlation across all CSF samples, indicating the predominance of an either 

microglial or blood-derived origin of myeloid cells (R = -0.63, p-value < 0.01).  This also shows 

the CSF from CNS diseases to have more blood infiltration of myeloid cells, especially high in 

inflammatory diseases and CNSL (Sup. Fig. 5b).  

We next sought to understand the myeloid landscape in the CSF of patients with neuro-

inflammatory and neuro-oncological diseases compared to healthy homeostatic conditions. 

We performed an integrated analysis by projecting the transcriptomic profiles of the patient 

cohort onto healthy controls (see Methods, Fig. 3g). Albeit in different proportions, all myeloid 

cell types from pathological conditions were also present in the healthy CSF, except for 

intermediate monocytes that were absent in controls (Fig. 3h). Differential abundance testing 

against healthy CSF confirmed a higher abundance of monocytes in the CSF of GB and BrM 

patients (Fig. 3f). BrM patients exhibited a significant reduction in DC populations in the CSF 
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(Sup. Fig. 5c). Vice versa, neuro-inflammatory diseases showed an enrichment of most DC 

subtypes compared to healthy CSF (Fig. 3f, h). DCs have been linked to antigen presentation, 

anti-tumor response and T cell priming, activation and cytotoxicity58–61, a process that might 

be disrupted in brain cancers. 

To gain a deeper understanding of the functional properties of myeloid populations in the CSF, 

we performed network analysis to identify gene modules of highly co-expressed genes 

(hdWGCNA, see Methods). We identified 11 independently computed modules for the healthy 

and 13 for the disease cohorts (Sup. Table 2). Next, we analyzed the overlap of healthy and 

disease modules. Notably, all healthy modules exhibited certain similarity to disease modules. 

However, two modules were disease-specific: MM11 and MM12, suggestive of a specific 

remodeling through these programs (One-sided Fisher’s exact test; Fig. 3i). Particularly, 

module MM12 presented interferon-related genes, suggesting interferon signaling pathways 

to be upregulated in CSF myeloid cells in inflammatory diseases and CNSL patients. 

We then annotated the disease modules based on their hub genes (Sup. Table 3), identifying 

“phenotypic” modules (MM1, MM4, MM9, MM10, MM11 and MM13) and “functional” modules 

(MM2, MM3, MM5, MM6, MM7 and MM8, MM12; Fig. 3j, Sup. Fig. 5d). Signature scoring of 

the top 50 genes per module revealed distinct activities across diseases. We observed that 

MM1 (enriched in BAMs) was significantly depleted in the inflammatory group when compared 

to the healthy patients (Wilcoxon rank sum test, p = 0.00019), validating the findings of cellular 

phenotyping. Similarly, MM10 (brain resident populations) showed similar pattern to MM1 and 

a clear MG origin (Fig. 3k, Sup. Fig. 5e,f). MM4 (plasmacytoid dendritic cells) was significantly 

enriched in the inflammatory group (Wilcoxon rank sum test, p = 0.003), confirming results of 

differential abundance testing (Fig. 3f and 3j). MM11, representing a specific subset of 

dendritic cells (DC1), was found exclusive to the disease groups, further supporting the 

depletion of the DC subtype in the healthy myeloid compartment (Fig. 3j and 3k, Sup. Fig. 5 

e,f). On the other hand, hdWGCNA analysis revealed a positive correlation between modules, 

such as MM3, MM5 and MM6 (Sup. Fig. 5g). These modules reflect a metabolic shift in 

myeloid cells: MM3, related to oxidative phosphorylation (OXPHOS); MM5, associated with 

mitochondrial activity; and MM6, linked to lactate production (Sup. Table 2). We observed 

downregulation of both the OXPHOS module and the mitochondrial activity module in CSF 

myeloid cells across inflammatory, BrM and GB groups compared to healthy CSF (Fig. 3k). 

The lactate module MM6 was enriched in CSF myeloid cells from patients with BrM and GB 

(Fig. 1f and 3k) and particularly enriched in the MT-RTMs population (Sup. Fig. 5f). These 

findings indicate a metabolic switch in CSF myeloid cells of patients with BrM and GB. 

Interestingly, we observed a positive correlation between the MM6 expression score and CSF 

lactate levels assessed in clinical routine diagnostics (Sup. Fig. 5h). These findings suggest 
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the MT-RTM population to be CSF-resident and to have a relevant role in local lactate 

production.  

 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2025. ; https://doi.org/10.1101/2025.01.27.634744doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.27.634744
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2025. ; https://doi.org/10.1101/2025.01.27.634744doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.27.634744
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: Distinctive myeloid profiles modulate CSF milieu in CNS diseases. a, 

Integrated UMAP of myeloid cells in the CSF across patients and diseases (13994 cells). Cell 

type color scale is the same as in b.  b, Dotplot showing marker gene expression across T cell 

subpopulations. BAMs: border associates macrophages, MT-RTM: mitochondrial resident 

tissue macrophages. DC: dendritic cells. c, Heatmap showing scaled signature scores across 

myeloid subpopulations. DB: blood-derived, MG: microglia-derived. All signature scores had 

a significant associated p-value (> 0.01). d, e,  Boxplots showing MG and BD scores across 

patients and diseases. A Wilcoxon test was applied to compare BrM, CNSL and Inflammatory 

groups against healthy. f, Dotplot showing the results of applying scCODA on the myeloid 

subtypes comparing the disease groups against the healthy. Reference cell type used was 

DC2 and the false-discovery rate was set at 0.35. Only populations with significant changes 

are shown. g, Integrated UMAP of myeloid cells in healthy CSF (9703 cells) annotated with 

the projected myeloid subtypes in disease CSF. h, Barplot showing myeloid subpopulation 

composition across diseases and healthy CSF. i, Heatmap showing gene set overlap between 

healthy and disease myeloid modules by computing the pairwise odds ratio. Asterisks indicate 

the level of significance of the associated p-values: * p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 0.001. j, 

UMAP showing the phenotypic modules’ expression on the myeloid cell populations. k, 

Boxplots showing signature scores of selected myeloid module genes across patients and 

conditions, computed with a multivariate linear model on pseudo-bulked myeloid cells by 

patient. A Wilcoxon rank sum test was applied to compare BrM, CNSL and Inflammatory 

groups against healthy. Comparisons with n < 3 samples (GB) were not performed. 
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CSF liquid biopsy: a resource for individual disease monitoring  

In addition to identifying disease-driven features of myeloid and lymphoid cell types that 

indicate mechanisms of anti-tumor immune responses, we were also able to temporally track 

patient-specific alterations within the CSF landscape. Therefore, we first pinpointed 

macrophage polarization and T cell activation states, which are closely linked to tumor 

pathophysiology, in individual patients across various neuro-oncological and neuro-

inflammatory diseases and healthy controls (Fig. 4a,b). In healthy individuals, macrophages 

and T cells in the CSF did not show enrichment in pro- or anti-inflammatory activation 

signatures, nor significant T cell exhaustion. However, on an individual patient level, we 

observed strong enrichment of anti-inflammatory macrophage signatures and a more 

exhausted T cell environment in several brain tumor patients, such as P09 (melanoma BrM 

and LMD) and P12 (breast cancer BrM and LMD). Notably, P10, who experienced an 

aggressive course of primary CNSL with LMD, was characterized by T cell exhaustion in the 

CSF. In contrast, P01, whose primary CNSL (which also involved LMD at first diagnosis) 

showed a sustained response to high-dose chemotherapy and autologous stem cell 

transplantation, demonstrated pro-inflammatory macrophage and activated T cell signatures, 

indicating a functional anti-tumor response (Fig. 4a,b).  

Next, we performed an in-depth investigation of the dynamics underlying patient-specific 

immune responses. We sought to understand if the cellular composition of the CSF reflects 

the disease course and/or treatment response of individual patients. The serial CSF profiling 

in P07 with a cerebral abscess, purulent meningitis and ventriculitis caused by Eikanella spp. 

bacteria exemplifies non-cancer immune mechanisms in the CSF. As shown previously, P07, 

displayed a T cell-driven environment (Fig. 1d, Fig 4c). Cell communication analysis showed 

CD8 T cells receiving the majority of signals from other CSF cells, highlighting their active 

response to the infection (Fig. 4d, Sup. Fig. 6a). Over a two-month period of antibiotic 

treatment, we observed an increase of B cells and a reduction of DC (Fig. 4d). Further, the 

adaptive immune response of P07 was characterized by a diverse clonal TCR expansion of a 

broad variety of adaptive immune cell types, especially cytotoxic CD8 T cells (Fig. 4e). These 

cellular dynamics represent the course of a healing immune response against the infection, 

leading to a full patient recovery reflected in the CSF. 

We then conducted an in-depth analysis of the CSF characteristics using examples from brain 

tumor patients. P10 (aggressive primary CNSL with LMD) exhibited a CSF landscape 

characterized by T cell activation and exhaustion, with higher levels of CD8 than CD4 T cells 

and low proportions of myeloid cells (Fig. 4b). After one week of steroid treatment, we 

observed a shift in the relative composition of the CSF, with several immune cell types, 

including plasma cells and myeloid populations, decreasing after treatment, while the relative 

proportions of B cells increased (Fig. 4g). However, cell interaction analysis revealed that 
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monocytes had a relevant role in both receiving (incoming, receptor on monocytes) and 

producing (outgoing, ligand on monocytes) interactions, suggesting their key role in 

modulating the environment, despite the T cell-dominated environment. TCR analysis showed 

an expansion of both cytotoxic and exhausted T cell clones over a short one-week monitoring 

interval (Fig. 4f). Classification of the patient into the five CNSL states using EcoTyper 

signatures62, revealed a more adverse lymphoma state at the first time point (S4-5) compared 

to the second (S1-3; Fig. 4i) and CNV analysis evidenced a clonal evolution. While these 

findings suggest an anti-tumor immune response against malignant B cells in the CSF of P10, 

there was only a moderate improvement of the patient’s condition with high-dose steroid 

treatment. 

In P12 (triple negative breast cancer with BrM and LMD), we identified mechanisms of tumor 

evolution through serial CSF profiling. Here, tumor cell numbers in the CSF increased 

throughout the monitoring period, particularly at time point 3, when the patient experienced 

progression of LMD despite intrathecal chemotherapy with methotrexate (Fig. 4j). Cell 

communication analysis confirmed previous findings of myeloid cells, specifically, 

macrophages, to modulate the CSF environment, while T cells showed reduced engagement 

(Fig. 4k). Copy number variation analysis revealed the presence of a dominant clone (Cl01) 

in the first time point, while a different clone (Cl02) emerged just one week after the initiation 

of methotrexate. The Cl02 clone subsequently proliferated and became the dominant tumor 

cell population at time point 3, coinciding with clinically evident disease progression (Fig. 4m). 

Using CancerSEA63 tumor profile signatures, we explored the predominant gene programs 

during clonal evolution in this patient. Interestingly, the methotrexate-resistant clone Cl02 also 

exhibited a distinct phenotype. While clone Cl01 at baseline displayed signatures of 

metastasis, hypoxia and DNA damage, clone Cl02 shifted to signatures of differentiation and 

angiogenesis with downregulation of inflammation (Fig. 4 l).  

P09 had an advanced BRAF-mutated melanoma with BrM and LMD and with high numbers 

of tumor cells in the CSF (Fig. 4n, Sup. Fig. 6d). Myeloid cells, specifically macrophages, 

modulate the CSF environment, with T cells showing a reduced engagement (Fig. 4o). In line, 

we detected limited clonal T cell expansion (Fig. 4p). We identified three distinct tumor clones, 

all resembling the CNV profile derived from ctDNA Nanopore sequencing (Cl01, Cl02, and 

Cl03; Fig. 4r, Sup. Fig. 2). Notably, we identified distinct tumor phenotypes, with dominant 

gene programs of metastasis, invasion, hypoxia, epithelial-to-mesenchymal transition (EMT), 

DNA damage and cell cycle. At the time of the CSF sampling, Cl01 was the most abundant 

clone (Sup. Fig. 6d), although Cl02 had the most aggressive characteristics (Fig. 4q). These 

results demonstrate the potential of CSF LB, paired with single-cell sequencing to determine 

tumor clone heterogeneity, essential to track tumor evolution and to understand therapy 

resistance mechanisms. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2025. ; https://doi.org/10.1101/2025.01.27.634744doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.27.634744
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2025. ; https://doi.org/10.1101/2025.01.27.634744doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.27.634744
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: CSF liquid biopsy: a resource for individual disease monitoring in brain tumor 

patients. a, b, Scatterplots showing the main macrophage (a) and T cell (b) signatures across 

all patients. Selected patients are labeled. c, Barplot showing population composition changes 

across timepoints of patient P07. d, Scatterplot showing incoming and outgoing interaction 

strength of the general populations found in the CSF of P07. e, Scatter plot showing TCR 

clone size in logarithmic scale, as well as the phenotype of the shared clones before and after 

treatment CSF samples of patient P07. f, Barplot showing population composition changes 

across timepoints of patient P07. g, Scatterplot showing incoming and outgoing interaction 

strength of the general populations found in the CSF of P10. h, Scatter plot showing TCR 

clone size in logarithmic scale, as well as the phenotype of the shared clones before and after 

treatment CSF samples of patient P10. T cell phenotype color scale as in e. i, Heatmap 

showing scaled signature scores across patient P10 samples’ B cells of the five lymphoma 

states from EcoTyper. j, Barplot showing population composition changes across timepoints 

of patient P12. k, Scatterplot showing incoming and outgoing interaction strength of the 

general populations found in the CSF of P12. l, Heatmap showing scaled signature scores of 

CancerSEA’s cancer programs signatures across tumor clones and timepoints. m, Copy 

number variation profiles of the two tumor clones found across all timepoints of patient P12. 

n, Barplot showing P09 composition. o, Scatterplot showing incoming and outgoing interaction 

strength of the general populations found in the CSF of patient P09. p, Scatterplot showing 

TCR clone size and phenotype of P09. Phenotype color scale as in e. q, Heatmap showing 

scaled signature scores of CancerSEA’s cancer programs signatures across tumor clones of 

patient P09. r, Copy number variation profiles of the three tumor clones found in CSF and the 

ctDNA profile of patient P09. 
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CSF-resident cell phenotypes mirror the immune microenvironment of CNS lesions 

To explore the potential of the CSF profiling to profile the characteristics of corresponding 

parenchymal CNS lesions, we analyzed tissue sections of six patients alongside their matched 

CSF using the spatial transcriptomics Xenium platform. Matched pairs of CSF and tissue were 

available for CNSL (P01 and P10), BrM (P09 and P12), GB (P02) and the inflammatory patient 

P07. We generated spatially-resolved gene expression data for a targeted panel of 390 genes 

using the Xenium Human Immuno-Oncology panel. To assess the local immune 

environments, we projected signatures derived from the CSF cells onto the tissue lesions (Fig. 

5a). In P07 (bacterial cerebral abscess), we observed an enrichment of the pro-inflammatory 

signature in the CNS sample, similar to the matched CSF sample. The CNSL tissue samples 

(P01 and P10) displayed high levels of T cell activation closely matching the CSF T cell 

profiles, while we observed distinct myeloid compartments in these patients. BrM tissue (P09, 

melanoma; P12, triple negative breast cancer) showed less T cell activation and cytotoxic 

signatures, with P12 displaying an enriched T regulatory signature and P09 high levels of anti-

inflammatory myeloid cells. Matching the T cell rich profile of the CSF, the GB tumor (P02) 

presented signatures pointing to frequent tumor-infiltrating lymphocytes (cytotoxic and 

regulatory). 

Next, we combined the genes from the Xenium panel with genes used for annotating CSF 

cells to compare the cellular composition between the CSF and the corresponding tissue 

samples. Here, we identified a variety of immune cell types in the tissue, including B and 

plasma cells, macrophages, microglia, T cells, tumor cells, neutrophils and a heterogeneous 

group of non-immune cells, most likely containing neurons and other brain cell types (Sup Fig. 

7a). The sample size and cell numbers varied depending on available tissue sample (Sup Fig. 

7b). The tissue lesion of patient P07 (prior to antibiotic treatment), displayed an immune 

composition with a prominent presence of B and plasma cells alongside microglia and 

macrophages (Fig. 5b). The myeloid cells showed a low pro-inflammatory signature, 

suggesting a reduced immune response prior to treatment (Sup Fig. 7c). In the CNSL patient 

(P01), we identified a dense accumulation of malignant B cells in the CNS (Fig. 5c) and 

validated the presence of activated and cytotoxic T cells in the tumor mass (Sup Fig. 7d). 

CNSL patient P10 exhibited high concentration of malignant B and plasma cells in the brain 

parenchyma and around blood vessel-like structures (Fig. 5d). Using CXCL13 as a proxy for 

T cell infiltration64,65, we validated the co-occurrence of infiltrating T lymphocytes localized with 

the malignant B cells around blood vessel-like structures. The BrM tissue of P12 revealed a 

prominent angiogenic phenotype, with numerous blood vessel-like structures interspersed 

among tumor cells (Fig. 5e, regions A and B). This vascularization suggests the tumor to 

drive angiogenesis, a property we previously identified in the tumor clone (Cl02) that emerged 

in the CSF upon treatment. Immune cell infiltration in this patient was sparse, with the TME 
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dominated by pro- and anti-inflammatory macrophages, with the latter localizing 

predominantly around blood vessel-like structures. The CSF immune profile of patient P12 

showed also similarities to the TME, featuring a myeloid-dominated environment. GB patient 

P02 showed localized levels of T cell infiltration around blood vessel-like structures (Fig. 5f; 

Sup. Fig. 7g), matching the T cell-enriched CSF profile. In P09 (melanoma BrM), we observed 

a focal infiltration of macrophages, B and plasma cells, microglia and T cells, with tumor 

microenvironment dominated by anti-inflammatory macrophages (Sup Fig. 7h).  

These results strongly suggest an active exchange of T cells between the brain and CSF 

during neuro-inflammatory and neuro-oncological disorders, as evidenced by the similarity of 

phenotypes across both compartments. In contrast, myeloid cells appeared to mostly operate 

based on their local environment, indicating distinct functional roles in the tissue 

microenvironment versus the CSF.  
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Figure 5: CSF cell phenotypes mirror the immune microenvironment of CNS diseases. 

a, Heatmap showing scaled signature scores computed using corrected weighted sum, on 

pseudo-bulked T cells or macrophages and microglia, respective of the signature, in the brain 

tissue. b, Spatial cell type annotation of the brain tissue of inflammatory patient P07. c, Spatial 

cell type annotation of the brain tissue of CNSL patient P01. Color scale as in b. d, Spatial cell 

type annotation of the brain tissue of CNSL patient P10, including zoomed-in region. Color 

scale as in b. e, Spatial cell type annotation of the brain tissue of BrM patient P12. Two regions, 

labelled as A and B have been zoomed-in. Color scale as in b. f, Spatial cell type annotation 

of the brain tissue of GB patient P02, including zoomed-in region. Color scale as in b. g, Spatial 

cell type annotation of the brain tissue of BrM patient P09, including zoomed-in region. Color 

scale as in b. 
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Discussion 

Utilizing liquid biopsies from the CSF provides a minimally-invasive approach to track disease 

dynamics in brain tumor patients over time. This holds potential for deciphering mechanisms 

of therapy response and resistance as well as disease progression15,25,26. Our results show 

how LMD in defined CNS neoplasms (CNSL, BrM, GB), in comparison to non-cancerous 

neuro-inflammatory diseases and healthy controls, induces a particular CSF environment. 

Through single-cell profiling, we provide a detailed exploration of immune cell types and states 

in the CSF, deepening our understanding of immune responses as well as deciphering tumor 

cell heterogeneity and mechanisms of disease progression. The technological transfer of 

innovative single-cell tools and their application in a unique cohort, substantially expanded 

previous research36, delving in-depth into functional and metabolic states of both lymphoid 

and myeloid CSF cells. The focus on LMD patients offers a unique opportunity to explore 

immune-tumor cell interactions, tumor heterogeneity and potential treatment resistance 

mechanisms in the CSF.  

We observed distinct disease-associated T cell profiles in the CSF across the different CNS 

disorders. The lymphoid-dominated CSF landscape of CNSL patients was characterized by T 

cell activation and TCR clonal expansion, in contrast to BrM and GB patients, who showed a 

myeloid-dominated CSF. Of note, our findings suggest the trafficking of T cells between blood 

and CSF. The majority of the TCR clones expanded in CSF could be found in blood, with 

enriched clonal expansion detected in the CSF compartment. This suggests an anti-tumor 

immune response detectable in the CSF, especially in tumor types with strong T cell activation, 

such as CNSL22,66,67. Identifying tumor-reactive TCR sequences from the CSF could pave the 

way for the development of CSF-guided TCR cloning strategies for cell-based therapies, such 

as TCR-T, CAR-T cells or TCR-based vaccines68–71. Such advanced treatment options could 

further improve the treatments of primary CNSL, an aggressive subtype of lymphomas with a 

unique immunological environment72–74. 

Myeloid cells, a second key component of the immune landscape in CSF, likewise displayed 

disease-associated gene expression programs, highlighting the dynamic roles myeloid cells 

play in the CSF environment in healthy and diseased conditions. Our findings revealed two 

distinct origins of myeloid cells within the CSF, which correlated with the disease contexts. In 

GB and BrM, myeloid cells exhibited a resident-like profile (modules MM1 and MM10), 

suggesting the contribution of CNS-resident macrophages. In contrast, CSF myeloid cells in 

CNSL and neuroinflammatory conditions displayed blood-infiltrative profiles (modules MM9 

and MM11), indicative of peripheral immune cell recruitment. The presence of resident-like 

macrophages in GB and BrM likely reflects the critical role of CNS-resident macrophages, 

such as microglia, in tumor progression and immune evasion. Notably, tumor-associated 

resident-like macrophages could serve as cellular biomarkers for patient stratification or as 
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therapeutic targets75. Future investigations focusing on resident-like macrophages have to 

provide additional insights into their functional roles in malignancy and their targetability 

through immunotherapies. Interestingly, our results also suggest a metabolic switch, indicated 

by modules MM3, MM5, MM6, in CSF myeloid cells during activation under pathological 

conditions, likely reflecting shifts in immune-metabolism. The causal role of changes in gene 

expression programs were underscored through the correlation of elevated lactate 

concentrations in the CSF with respective myeloid subpopulations. Considering that metabolic 

reprogramming is a hallmark of cancer76, these finding become highly relevant. Specifically, 

alterations in glucose metabolism and mitochondrial respiration, such as the Warburg effect77, 

play a key role in tumor progression. Such pivotal mechanisms in cancer cells have been 

recently expanded to the tumor immune metabolism, highlighting interactions between 

metabolic pathways in tumor and immune cells. For instance, in the GB, lactate 

dehydrogenase A (LDHA) has been implicated in synergistic tumor-macrophage 

interactions78. 

Our profiling of tumor cells in CSF suggests the potential to monitor tumor phenotypes and 

tumor resistance mechanisms over time. Here we tracked the clonal evolution during 

resistance to methotrexate chemotherapy in patient P12 and explored how immune cell 

interactions might drive resistance to immune checkpoint inhibitors in patient P09. These 

findings underlined the importance and potential for both disease- and patient-centric 

analyses, with opportunities for personalized therapies, drug development, and clinical trial 

designs. In conclusion, we offer a holistic characterization of immune and tumor cell states in 

the CSF, shedding light on the disease-specific complexities of CSF microenvironments in 

patients with brain and leptomeningeal neoplasms. The insights gained from this work 

highlight the potential of LB, combined with novel, high-resolution technologies for 

understanding patho-physiological mechanisms in CNS neoplasms and especially LMD. As a 

consequence, cellular profiling of the CSF can guide uncovering patient-specific mechanisms 

of disease progression, the identification of prognostic and predictive biomarker candidates 

and the development of personalized therapy approaches. Our dataset is publicly available 

and represents a valuable resource to deepen our understanding of cells in the CSF in health 

and disease and to guide the design of larger prospective studies.  
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Online Methods 

 

Patient cohorts 

The patient cohort comprises scRNA-seq data from 20 CSF samples retrospectively collected 

from 16 patients (Fig. 1, Sup. table 1). Inclusion criteria for the 12 patients with CNS 

neoplasms were the detection of parenchymal CNS tumor lesions as well as clinical 

parameters indicating leptomeningeal involvement (such as elevated CSF cell counts, 

detection of suspicious or clearly malignant cells in CSF cytology, and radiological signs of 

LMD). We aimed to cover a comprehensive spectrum of entities and therefore included 

patients with brain and leptomeningeal neoplasms from GB (n=2), CNSL (n=5), and BrMfrom 

lung adenocarcinoma (n=2), breast cancer (n=2) and melanoma (n=1). Four patients served 

as a non-cancer CNS inflammatory control condition suffering from viral meningitis (n=1), 

cerebral abscess with bacterial meningitis and ventriculitis (Eikanella spp. bacteria) or the CNS 

autoimmune disease neurosarcoidosis (n=2). The median age at the time of CSF sampling 

was 59 years (range 33 to 73), with six of 16 patients being female (38%). Serial CSF samples 

at different time points were obtained from four patients of this cohort: patient P10 with CNS-

DLBCL, patient P12 with breast cancer BrM and LMD and patient P07 with cerebral abscess. 

Additionally, PBMCs corresponding to the CSF samples were obtained from blood samples of 

patients P06 (CNS-DLBCL), P07 (cerebral abscess), P10 (CNS-DLBCL) and P12 (breast 

cancer BrM and LMD) with two timepoints available for patient P07 and patient P10  for 

scRNA-seq. Further, FFPE tissue for spatial transcriptomics was available for six patients of 

our cohort (patients P01 and P10 with CNS-DLBCL, patient P02 with GB, patient P07 with 

cerebral abscess, patient P09 with melanoma BrM and LMD, and patient P12 with breast 

cancer BrM and LMD).  

All patients were diagnosed and treated at the University Hospital Frankfurt. Routine 

pathological or neuropathological workup of tissue was performed at the Departments of 

Pathology and/or Neuropathology (Edinger Institute). Demographic and other clinical data 

(such as routine CSF parameters: protein and lactate (assessed in the Department of 

Neurology), and cytology (assessed by cytomorphology and/or immunocytochemistry and/or 

flow cytometry in the Departments of Neurology, Neuropathology, Pathology and Hematology) 

were extracted from patients’ records, pseudonymized, and entered into password-protected 

databases.  

 

Ethics and inclusion 

All patients included in the study gave consent towards biomaterial collection and analyses. 

The study protocol was approved by the ethical committee of the medical faculty of the Goethe 

University Frankfurt, Germany (SNO-9-2022). 
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Collection and cryopreservation of cells from cerebrospinal fluid and peripheral blood 

mononuclear cells 

All CSF samples were collected during routine clinical care, primarily through lumbar puncture, 

except for four samples collected by ventricular CSF sampling. CSF samples were 

immediately centrifuged at 400 g for 10 min to separate cell-free from cellular components. 

Supernatant was transferred to cryo-vials and shock frozen in liquid nitrogen. CSF cells were 

resuspended in 1ml of 90% FCS and 10% DMSO and slowly frozen -80°C using a Mr. 

Frosty™. Whole blood was withdrawn in EDTA tubes and peripheral blood mononuclear cells 

(PBMCs) isolated using Lymphoprep (Serumwerk Bernburg) according to the manufacturer's 

protocol. Cells were counted by automatic cell counting using a Countess 3 FL (Invitrogen). 

Cells were resuspended in 90% FCS and 10% DMSO. 1ml of cell suspension with 5 million 

cells per ml was transferred to a cryo vial and slowly frozen at -80°C in a Mr. Frosty™. For 

storage, all samples were transferred into liquid nitrogen. 

 

Single-Cell RNA-sequencing 

Cryopreserved CSF samples were thawed in a 37ºC water bath and transferred to a 15 ml 

Falcon tube containing 10 ml of pre-warmed, pre-filtered RPMI medium supplemented with 

10% FBS (Thermo Fisher Scientific). The samples were centrifuged at 400 × g for 10 minutes 

at room temperature, and the supernatant was removed, leaving behind a small volume of 

approximately 100 µl. One milliliter of pre-chilled RPMI medium was added to resuspend the 

pellets, and the cell content was estimated using the LUNA-FL counter (LogosBiosystems) 

after staining with Acridine Orange/Propidium Iodide. Up to 5 ml of cold RPMI medium was 

then added to wash the cells, followed by centrifugation at 400 × g for 10 minutes at 4ºC. 

Based on cell concentration and assuming ~30-40% cell loss during centrifugation, the 

samples were resuspended in an appropriate volume of cold RPMI medium to achieve a 

concentration of approximately 1000 cells/µl. The LUNA-FL counter was used again to verify 

the final cell concentration and viability of the samples. 

Samples were loaded onto the Chromium X instrument (10X Genomics) and encapsulated for 

a target cell recovery of between 1,000 and 10,000 cells, using the standard throughput 

Chromium Next GEM Single Cell 5' Reagent Kit v2 (10X Genomics, PN-1000263). Libraries 

were prepared following the manufacturer’s instructions (protocol CG000331). Briefly, after 

GEM-RT cleanup, cDNA was amplified over 13 cycles, purified, and quantified on an Agilent 

Bioanalyzer High Sensitivity chip (Agilent Technologies). To construct the gene expression 

(GEX) library, 10 to 50 ng of cDNA were fragmented, end-repaired, A-tailed, and sample-

indexed using the Chromium Single Cell 5’ Library Construction Kit (10X Genomics, PN-

1000190) and the Dual Index Kit TT Set A (10X Genomics, PN-1000215). Human T and B cell 
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receptor sequences were enriched from the amplified full-length cDNA using the Chromium 

Single Cell Human TCR/BCR Amplification Kit (PN-1000252/1000253). Fragmentation, end-

repair, A-tailing, and library indexing of the enriched cDNA were performed using the 

aforementioned kits. Finally, the size distribution and concentration of the 5' GEX and 

TCR/BCR libraries were verified on an Agilent Bioanalyzer High Sensitivity chip. Sequencing 

was performed on a NovaSeq 6000 system (Illumina), aiming for approximately 40,000 and 

10,000 read pairs per cell for the GEX and TCR/BCR libraries, respectively. The sequencing 

conditions were 28 bp (Read 1) + 10 bp (i7 index) + 10 bp (i5 index) + 90 bp (Read 2).  

 

Nanopore-sequencing of cell-free DNA from cerebrospinal fluid 

The cfDNA was extracted from the cell free CSF fraction of the samples of 13 patients (Sup. 

Table 1) using the QIAmp MinElute ccfDNA Mini Kit (Qiagen) according to the manufacturer’s 

protocols. Quantification of cfDNA was performed with a Qubit Fluorometer (Invitrogen) and 

using an Agilent tape station device (Agilent Technologies). Sequencing libraries were 

prepared using the Ligation Sequenzing kit (Oxford Nanopore) with 2.7-43.3 ng input 

depending on sample yield. Nanopore whole-genome sequencing with ~9.58M (SD: 6.99M) 

read-pairs per sample was performed using the MinION instrument (Oxford Nanopore). 

Sequence data were mapped to the human reference genome (hg19) within the NanoDx 

pipeline. Copy number profiles as well as the estimation of circulating tumor DNA fractions 

from CSF cfDNA were assessed by use of the NanoDx pipeline 52,53.  

 

Xenium In Situ Analyzer 

The human Spatial Transcriptomics brain data was generated on the Xenium In Situ platform 

using the pre-designed Xenium Human Immuno-Oncology panel targeting 380 genes 

(chemistry version 1, cat #: 1000654). Archived human brain tissues were processed 

according to the manufacturer’s instructions (CG000578 – Rev C) after assessing sample 

quality by H&E and DAPI staining in adjacent tissue sections from the same blocks. 6 formalin-

fixed paraffin-embedded brain sections (5 microns thick) were mounted onto two Xenium 

slides, incubated at 42ºC for 3h and dried overnight at room temperature in a desiccator. 

Xenium slides were processed and analysed 4 days after sectioning. Sections were 

deparaffinized and de-crosslinked (CG000580 – Rev C), and then hybridized with the pre-

designed probes at 50 °C overnight (~ 20 h), followed by post-hybridization washes, ligation, 

amplification, multimodal cell segmentation staining and autofluorescence-quenching as 

described in user guide CG000749 – Rev A. Xenium slides were loaded on the Xenium 

Analyzer instrument for imaging and analysis under software version 1.3.3.0, following the 

Imaging user guide CG000584 – Rev E. 
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scRNA-seq data pre-processing and quality control 

To profile the cellular transcriptome, we processed the sequencing reads with 10X Genomics 

Inc.’s software CellRanger79 (version 7.0.0) and mapped them against the human reference 

transcriptome, GRCh38 (Genome Reference Consortium Human Build 38 Organism, version 

2020-A). For the TCR libraries, the corresponding VDJ human reference was also used 

(version 5.0.0). 

For all CSF and PBMCs scRNA-seq datasets, we performed quality control (QC) on the raw 

dataset count matrices by taking into account the main cell metrics: number of genes, library 

size/number of UMIs (unique molecular identifiers) and percentage of mitochondrial RNA 

content per cell. Metrics distributions were visualized across libraries and, consequently, we 

removed low quality observations using permissive thresholds. We applied the following filters 

in order to select only good quality cells from downstream analysis.  

● Library size between 800 and 25000 UMIs 

● Number of genes between 350 and 6000 

● Mitochondrial content lower than 20% 

For one of the CSF batches, where the numbers of cells loaded and recovered were lower 

than the others, we applied more permissive filters by lowering the library size lower threshold 

to 500, minimum number of genes to 200 and allowed up to 25% of mitochondrial content. 

Doubet detection algorithm, scrublet80, was applied to compute the probability of each cell-

barcode to capture a doublet rather than a single cell. However, we didn’t filter out any cells 

during QC based on the doublet score. During downstream analysis, we did further filter out 

bad quality cell clusters, which exhibited high mitochondrial content or a high doublet score 

overall. 

 

Healthy Cohort 

We downloaded raw data (fastq files) from Piehl, Natalie, et al. Cell (2022), from GEO 

(GSE200164) and processed them following the same pipeline as the rest of the CSF 

samples.  

 

Normalization and clustering 

Each scRNA-seq sample data (CSF from healthy and diseases and blood samples) was 

analyzed independently in order to do a preliminary cell annotation which would allow us to 

evaluate integration performance in later steps. For this we used functions from the Seurat 

package81 (version 4.4.0). Normalization by library size is applied to account for differences in 

sequencing depth across cells. Values are then scaled by a fixed factor of 10^4 and log 

transformed as standard single cell best practice82. Following normalization, highly variable 

genes (HVGs) are identified to capture cell-to-cell transcriptomic variation, a critical step in 
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defining cellular heterogeneity. We selected the top 3000 HVGs per sample. After HVG 

identification, the data are scaled to standardize expression across genes. This centers the 

data by subtracting the mean expression level and divides by the standard deviation, resulting 

in a z-score for each gene within each cell. Standardization is essential for ensuring that 

differences in expression magnitudes do not disproportionately influence downstream 

analyses. We ran principal component analysis (PCA) and then selected the top principal 

components (PCs) based on explained variance and the elbow method, to capture the most 

biologically relevant patterns. Subsequently, neighbor identification and clustering was applied 

to group cells into transcriptionally similar clusters, representing distinct cell populations. 

Several clustering resolutions were explored. Furthermore, Uniform Manifold Approximation 

and Projection (UMAP) was applied to further reduce the data's dimensionality and visualize 

complex transcriptional landscapes in two dimensions. This low-dimensional visualization 

facilitates exploration of cellular heterogeneity. We used the top 20 PCs for neighbor 

identification, clustering and UMAP. 

 

General annotation 

General annotation of the major cell populations was performed looking at the per-cluster 

expression of canonical genes: PTPRC/CD45 (immune cells), CD79A, CD19 (B cells), MZB1, 

IGHA1, IGHG1 (Plasma cells), CD14, CD68 (Macrophages), S100A8, LYZ, VCAN 

(Monocytes), CD1C, CLEC9A, IL3R (Dendritic cells), CD3E, CD4 (CD4 T cells), CD3E, CD8A, 

CD8B (CD8 T cells), NCAM1, NKG7, GNLY (NK cells). This per-sample preliminary annotation 

allowed us to then validate the integration downstream. 

 

Integration and in-depth annotation 

We then integrated the pre-processed CSF or blood samples with the python package scVI83 

(version 1.0.4). We integrated all disease CSF samples together, but also only the CSF 

myeloid cells and the CSF T cells independently, as well as all blood samples and healthy 

CSF samples to correct for technical artifacts and batch effects. We decided to not integrate 

healthy and disease CSF samples together, as the disease state and batch of origin were 

confounded and integration would not allow us to correctly eliminate spurious effects and 

accurately compare samples. For scVI integration, we adjusted parameters (number of nodes 

per hidden layer, dimensionality of the latent space and number of hidden layers used for 

encoder and decoder neural networks) for each dataset. Neighbor identification and clustering 

using the python package scanpy84 (version 1.9.6), accompanied integration. We followed a 

top-down approach, where we first integrated and clustered all cells to annotate the major cell 

populations and then re-integrated and clustered each of the interesting major cell populations 

alone to find subpopulations. Clustering resolution was adjusted for each dataset and, in some 
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cases, clusters were split or merged after looking at the expression profiles. In some cases, 

bad quality or doublet clusters emerged and were removed from downstream analysis. UMAP 

was also applied after integration, to obtain a harmonized two-dimensional embedding where 

cells from different samples are comparable within the same low-dimensional space. 

In depth characterization of T and myeloid populations was carried out by immunology experts 

by looking at the differentially expressed genes in each cluster and comparing it to populations 

described in the literature. 

 

Tumor cell identification in CSF scRNA-seq 

To identify tumor cells in scRNA-seq data, we used different approaches depending on the 

type of brain tumor. For GB BrM CSF samples, tumor cell signatures and relevant markers 

were quantified in CD45-negative cells. If some expression of the corresponding signature or 

markers was detected, we considered a sample positive for the presence of tumor cells. 

In CNSL samples, we determined the kappa-to-lambda immunoglobulin light chain ratio on B 

cells, as a monoclonal light chain shift is indicative of malignancy in lymphomas. To 

differentiate malignant B cells from non-malignant B cells, we leveraged the fact that malignant 

B cells express only a single type of immunoglobulin light chain, either kappa (κ) or lambda 

(λ)85. We annotated each B cell as κ or λ based on the expression levels of the genes IGKC 

(which encodes a constant region of the κ chain) and IGLC1, IGLC2, IGLC3, IGLC4, IGLC5 

and IGLC6 (λ chain). Unfortunately, dropout events led to varying numbers of unknown B cells 

in each sample. Following a similar approach to the one used by Zhao Y. et al. 202241, we 

calculated the κ/λ B cell ratio for each sample. If either type represented more than 50% of the 

B cells of a sample, we considered it positive for malignant cells. However, although the shift 

might have been present in most CNSL samples, unknown immunoglobulin light chains 

prevented us from confidently discerning the presence of malignant cells in all samples. 

For inconclusive cases, additionally, we assessed genomic instability by detecting copy 

number variations (CNVs) using inferCNV (inferCNV of the Trinity CTAT Project.  

https://github.com/broadinstitute/inferCNV) version 1.3.3 in CD45-negative cells from BrM 

samples, as well as in B cells from CNSL samples. We configured inferCNV to analyze cells 

individually (analysis_mode = "cells"), using a cutoff value of 0.1, which is optimized for 10x 

Genomics data, as described by the package authors. CNV detection was performed in a 

denoised mode to minimize noise in gene expression data while enabling Hidden Markov 

Model (HMM)-based CNV inference. The HMM analysis was set to output consensus-based 

results across cells (HMM_report_by = "consensus"), employing the “i3” model, which is 

recommended for distinguishing between three CNV states (insertion, deletion and 

neutral/none). This approach allowed us to infer CNV profiles across cell populations, aiding 

in the identification of chromosomal regions with possible copy number gains or losses. 
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Reference cell types for BrM samples were all immune cells while we only used myeloid and 

T cells in the case of CNSL samples. 

 

TCR data analysis 

We defined TCR clonotypes as T cells with an exact overlap in beta-chain receptor amino acid 

sequence. We used scRepertoire86 (version 1.12.0) to combine gene expression and TCR 

information from the same cells. Only TCR sequences associated with cells annotated as T 

cells by RNAseq were kept for downstream analysis. 

 

Signature scoring and pseudobulk analysis 

Signature scoring was performed in two different ways. At the single cell level, signatures were 

computed by cell, using the UCell R package87 (version 2.6.2). At the patient or disease level, 

we first aggregated the counts for a specific cell type or across all the cells for each patient or 

disease, by computing a “pseudobulk” using the presto R package88 (version 1.0.0) which 

were then normalized. We then scored signatures using decoupleR89 (version 2.8.0), on the 

pseudobulks by applying either a multivariate linear model (MLM) or a weighted sum (WSUM) 

method. For the Xenium data, signature scores per cell were computed using AUCell90 and 

divided by the cell area. Then score values within the range between the 1st and 99th 

percentiles of each signature were selected and scaled prior to visualization. A table with the 

complete signatures used in each case can be found in Sup. Table 4. 

 

Compositional analysis  

To estimate changes in cell population proportions across various diseases, we used the 

scCODA Python package91, a Bayesian modeling tool designed to account for the 

compositional nature of single-cell data and reduce the likelihood of false discoveries. It 

enables us to infer shifts between conditions while incorporating additional covariates. It 

detects differences between a reference cell type, assumed to remain constant across 

conditions, and the other cell types. To conduct our analysis in an unsupervised manner, we 

allowed scCODA to automatically select this reference. scCODA takes as input the number of 

cells of each cell type in each patient and outputs the list of proportion changes for cell types, 

along with corresponding corrected p-values (adjusted through the False Discovery Rate 

procedure, FDR). 

 

Gene co-expression network analysis  

We performed weighted gene co-expression network analysis within the myeloid cell 

population of our scRNA-seq dataset using the R package hdWGCNA92,93 (version 0.4.0). 

Genes expressed in fewer than 5% of cells were excluded, yielding 9,982 genes. We next 
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used the hdWGCNA function MetacellsByGroups to construct de-noised metacell gene 

expression profiles for each patient using the level 2 cell annotations. A soft-power threshold 

on the gene-gene co-expression network was optimized using the hdWGCNA function 

TestSoftPower. Using the hdWGCNA function ConstructNetwork, we computed a topological 

overlap matrix (TOM) to represent the gene co-expression network and grouped genes into 

14 modules with the Dynamic Tree Cut algorithm. One of these modules was removed from 

downstream analysis, as it was the smallest of them and contained only 56 genes. Specific 

parameters for these functions can be found in the GitHub repository associated with this 

manuscript. The steps of this co-expression network analysis were repeated for the myeloid 

cell population in the healthy CSF scRNA-seq dataset to facilitate comparisons at the network 

level. We performed a pairwise gene set overlap analysis between modules identified in the 

disease CSF dataset versus the healthy CSF dataset using the R package GeneOverlap94 

(version 1.38.0), which performs a Fisher’s exact test to quantify statistical significance and 

effect size of the overlap compared to a background set of genes. 

 

Cell communication analysis 

For cell-cell communication analysis, we used the CellChat R package95 [cite] (version 2.1.2), 

which infers intercellular communication networks by analyzing ligand-receptor gene pairs in 

scRNA-seq data. Starting with a normalized, clustered single-cell dataset, we first created a 

CellChat object for each interesting sample, patient or disease group,  to store the expression 

data and metadata information (general cell types). We then subset the data to include only 

expressed genes, to retain ligand-receptor pairs with significant expression in each cluster, 

following the recommended pipeline described by the package authors. We then mapped 

gene expression data onto the known CellChat database of human ligand-receptor 

interactions. We identified cell populations with significant changes in sending or receiving 

interacting signals and visualized the inferred communication strengths and directions. 

 

Xenium data analysis 

Raw Xenium data were QC-ed to remove only empty cells (cells containing no transcripts). In 

order to annotate the cells to a general level, we combined information from the immuno-

oncology panel annotation and canonical marker expression and aggregated the transcript 

counts in each cell, by cell type. Cells were annotated as the cell type they contained more 

transcripts of, therefore some cells were labeled as unknown. We validated this annotation 

method by computing cell-type signature scores with the R package AUCell90 (version 1.24.0), 

using the same gene sets for each cell type. 

  

Statistical analysis and data visualization 
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All analyses presented in this manuscript were carried out using the programming languages 

R, versions 4.2.3 (2023-03-15) and 4.3.3 (2024-02-29), and Python version 3.8.5. More details 

about specific packages and functions used can be found in the Github repository associated 

with this publication. Detailed information on the statistical analyses and significant levels are 

indicated in the figure legends and text when necessary. Illustrations were created with 

Biorender (https://www.biorender.com/) and figures were put together using Inkscape 

(https://inkscape.app/).  

 

Box Plots 

To summarize and visualize the distribution of the data, we used geom_boxplot() from the 

ggplot2 package in R96 (version 3.5.1). This function generates a box plot, which provides an 

overview of key summary statistics, including the median, interquartile range (IQR), and 

potential outliers. The box plot allows for an efficient comparison of distributions across 

different groups within the data. The central box represents the interquartile range (IQR) of 

the data, which spans from the 25th percentile (the first quartile, Q1) to the 75th percentile 

(the third quartile, Q3). Within this box, a horizontal line marks the median (50th percentile) of 

the data, providing a measure of central tendency. The "whiskers" extend from the box up to 

a maximum of 1.5 times the IQR above Q3 and below Q1, covering most of the non-outlier 

data points. Points beyond the whiskers are considered potential outliers and are plotted 

individually as dots. 

  

Data and code availability 

Raw single-cell RNA sequencing data of CSF samples is deposited in GEO (GSE286518). 

Xenium spatial transcriptomics raw data is deposited in Zenodo 

(DOI:10.5281/zenodo.14510199). Access and exploration of processed CSF data is available 

through the CELLxGENE portal (https://cellxgene.cziscience.com/collections/573e2e06-8af0-

4d96-bfdd-7d64a4bb9c21). All code, scripts and notebooks related to this publication are 

available on GitHub (https://github.com/Single-Cell-Genomics-Group-CNAG-CRG/CSF). 

Additional information is available upon reasonable request to the corresponding authors. 
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Supplementary figures and table legends 

 

Supplementary Figure 1. a, Square chart depicting all data modalities across patients 

samples generated for this study. b, Barplot showing CSF cell numbers across samples and 

diseases. Serial samples are also included. n = 22 samples. c, Dotplot showing average 

expression and percentage of cells expressing Brain Metastasis, non-small cell lung cancer 

(NSCLC) and Glioblastoma signatures as well as known tumor markers on non-immune cells 

of the corresponding patients. Disease color scale is the same as a. d, Pie charts showing B 

cell type composition per patient in CNSL and inflammatory patients. Disease color scale is 

the same as a. e, Barplot showing cell numbers across all healthy CSF samples. f, Integrated 

UMAP of all cells in healthy CSF samples (56.010 cells). Cell type color scale is the same as 

in f. g, Barplot showing the CSF composition of the healthy samples at a general resolution. n 

= 44 samples. 

 

Supplementary Figures 2 and 3. Copy number profile of suspicious tumor cells in scRNA-

seq CSF of cancer samples, computed at the scRNA-seq level with inferCNV (left column). 

Cell-free DNA copy-number profile obtained through nanopore low-pass cfDNA WGS, when 

available (right column). 

 

Supplementary Figure 4. a, Barplot showing T cell subtype composition across all pre-

treatment CSF samples. b, Barplot showing total number of TCRs captured per sample. c, 

Boxplots showing mean clone size by sample and disease split in CD4 and CD8 TCRs. A 

Wilcoxon rank sum test was applied to compare each disease against healthy, independently 

for CD4 and CD8 TCRs. Comparisons with n < 3 samples (GB) were not performed. Disease 

color scale is the same as in b. d, Boxplots showing proportion of expanded TCRs by sample 

and disease split in CD4 and CD8 TCRs. A TCR was considered expanded if it was found in 

at least 5 cells. A Wilcoxon rank sum test was applied to compare each disease against 

healthy, independently for CD4 and CD8 TCRs. Comparisons with n < 3 samples (GB) were 

not performed. Disease color scale is the same as in b. 

 

Supplementary Figure 5. a, Heatmap showing BD and MG origin signature scores on the 

matching blood samples. Computed using a multivariate linear model on pseudo-bulked 

myeloid cells. All signature associates p-values were lower than 0.01.  b, Scatterplot showing 

the correlation between BD and MG signatures across healthy and disease patients. c, Barplot 

showing the myeloid CSF composition of the pre-treatment sample of all patients. Disease 

color scale is the same as in a. d,  UMAP showing the functional modules’ expression on the 

myeloid cell populations. e, f,  Dotplots showing myeloid module expression across myeloid 
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subpopulations and diseases, respectively. g, Network plot showing the correlation between 

phenotypic and functional modules, respectively. h, Scatterplot showing the correlation 

between module MM6 score and the measured CSF levels of lactate. 

 

Supplementary Figure 6. a, Scatterplot showing incoming and outgoing interaction strength 

of the general populations found in healthy CSF including all samples. b, Scatterplot showing 

TCR clone size and phenotype across pre-treatment samples of all CNSL patients. c, d, 

Number of tumor cells of each clone and/or time point for patient P12 (c) and P09 (d). e, Copy 

number profile of the ctDNA tumor fraction of Patient P09. 

 

Supplementary Figure 7. a, Dotplot showing marker gene expression across all general 

populations found in the brain tissue. b, Table showing area and number of cells of the tissue 

sections profiled with Xenium. c, Scaled pro-inflammatory signature score on myeloid cells in 

brain tissue section of inflammatory patient P07. d, Scaled activated and cytotoxic signature 

scores on t cells in brain tissue section of CNSL patient P01. e, Scaled TILs signature score 

on T cells in the zoomed-in region of brain tissue section of CNSL patient P10. f, Scaled anti-

inflammatory signature score on myeloid cells in both zoomed-in regions (A and B) of brain 

tissue section of BrM patient P12 g, Scaled TILs signature score on T cells in the zoomed-in 

region of brain tissue section of GB patient P02. h, Scaled anti-inflammatory and TILs 

signature score on myeloid and T cells, respectively on the zoomed-in region of brain tissue 

section of BrM patient P09. 

 

Supplementary Table 1: Table containing the description of the samples and patient cohort 

as well as the biochemical and other parameters measured in the CSF. Reference values for 

each parameter are detailed between parentheses. 

 

Supplementary Table 2: Table containing the genes associated to each of the myeloid 

modules identified respectively in healthy and disease CSF myeloid cells as well as the 

intensity of said association (kME). 

 

Supplementary Table 3: Table containing the description of the myeloid modules in disease 

CSF samples. Column one contains the module number, column two, the given name; column 

three the description of the role of the module and column four some genes selected from the 

top genes in each module network, representative for the given name and function.  

 

Supplementary Table 4: Table containing the full signature lists used throughout the paper, 

both for the single-cell and the spatial data. 
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