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N E U R O S C I E N C E

Single-nucleus multi-omics identifies shared and 
distinct pathways in Pick’s and Alzheimer’s disease
Zechuan Shi1,2†, Sudeshna Das1,2†, Samuel Morabito1,2,3†, Jennifer Stocksdale1,4, Emily Miyoshi1,2, 
Shushrruth Sai Srinivasan1,2,5, Nora Emerson1,2, Arshi Shahin1, Negin Rahimzadeh1,3,  
Zhenkun Cao1, Justine Silva1, Andres A. Castaneda1, Elizabeth Head6,  
Leslie Thompson1,2,4, Vivek Swarup1,2,3*

The study of transcriptomic and epigenomic variations in neurodegenerative diseases, particularly tauopathies 
like Pick’s disease (PiD) and Alzheimer’s disease (AD), offers insights into their underlying regulatory mechanisms. 
Here, we identified critical regulatory changes driving disease progression, revealing potential therapeutic tar-
gets. Our comparative analyses uncovered disease-enriched noncoding regions and genome-wide transcription 
factor (TF) binding differences, linking them to target genes. Notably, we identified a distal human-gained en-
hancer (HGE) associated with E3 ubiquitin ligase (UBE3A), highlighting disease-specific regulatory alterations. 
Additionally, fine mapping of AD risk genes uncovered loci enriched in microglial enhancers and accessible in 
other cell types. Shared and distinct TF binding patterns were observed in neurons and glial cells across PiD and 
AD. We validated our findings using CRISPR to excise a predicted enhancer region in UBE3A and developed an in-
teractive database, scROAD, to visualize predicted single-cell TF occupancy and regulatory networks.

INTRODUCTION
Neurodegeneration is a key aspect of many neurological disorders, 
each with distinct molecular mechanisms and etiologies. Alzheim-
er’s disease (AD) is the most prevalent neurodegenerative disorder 
and is pathologically characterized by the progressive accumulation 
of amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs) of tau 
(1). Conversely, Pick’s disease (PiD) is a rare behavioral variant of 
frontotemporal dementia (FTD) (2, 3), which has a prevalence of 15 
to 22 per 100,000 individuals and an incidence of 2.7 to 4.1 per 
100,000 individuals per year (4). PiD is characterized by the pres-
ence of pathological tau aggregates known as Pick bodies (5). Ab-
normal tau aggregates such as NFTs and Pick bodies alter cellular 
and molecular functions in the brain, but we currently do not un-
derstand the differences and similarities between these cellular 
changes across different tauopathies like AD and PiD (6).

Efforts by large-scale consortia, such as the Genetic Frontotem-
poral Dementia Initiative (GENFI) and ARTFL LEFFTDS Longitu-
dinal Frontotemporal Lobar Degeneration (ALLFTD), have been 
instrumental in tracking and understanding brain changes before 
symptoms occur and in the early and moderate stages of the disease. 
However, PiD’s rare prevalence, combined with challenges in clini-
cal diagnosis, has hindered comprehensive research into its patho-
physiology. The scarcity of postmortem brain samples further limits 
our understanding of the genetic and epigenetic underpinnings of 
PiD. To address these challenges, comparative functional genomic 
analyses of different tauopathies can provide insights into shared 

and distinct molecular mechanisms. One recent study (7) has begun 
to explore the molecular landscapes of PiD and related tauopathies 
using multi-omic approaches, which have provided invaluable in-
sights into disease-specific gene-regulatory networks (GRNs) across 
brain regions like the insular cortex, motor cortex, and visual cortex. 
However, critical regions such as the prefrontal cortex (PFC), which 
is involved in higher-order cognitive functions and social behavior, 
remain relatively understudied. Transcriptomic and epigenomic al-
terations in the PFC associated with PiD have not been extensively 
explored, necessitating the focus of our current study.

While recent genome-wide association studies (GWASs) and 
fine-mapping analyses have implicated numerous genetic loci in 
neurodegeneration (8–13), much of the attention in this area is cur-
rently focused on AD over other disorders (6), and the functional 
roles of these loci are often ambiguous since they frequently reside 
in noncoding regions (14–16). The advent of single-cell epigenom-
ics has allowed us to provide additional context for these genetic risk 
variants in specific cell types (17), while single-cell transcriptomics 
has provided insights into the molecular states of NFT-bearing neu-
rons and NFT susceptibility in AD (18). While these technologies 
have broadened our understanding of altered cellular states and 
gene-regulatory programs in AD (17, 19–27), much work remains 
to characterize these changes in other neurodegenerative disorders 
and to understand their shared and unique molecular signatures.

Here, we used single-nucleus assay for transposase-accessible 
chromatin using sequencing (snATAC-seq) to characterize the open 
chromatin landscape and single-nucleus RNA-sequencing (snRNA-
seq) to profile the gene expression of the frontal cortex in PiD donors 
and cognitively normal controls. We performed parallel compara-
tive analyses of PiD datasets with our previous AD datasets to fa-
cilitate our understanding of PiD. We leveraged cell type–specific 
chromatin accessibility information to model the gene-regulatory 
landscape of PiD and AD, identifying sets of promoter-gene links 
for each disease in each cell type. We intersected these links with 
our internally conducted fine-mapping analyses, considering link-
age disequilibrium (LD), at selected disease risk loci to nominate 
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candidate cell types and genes associated with noncoding risk single-
nucleotide polymorphisms (SNPs). Further, we modeled transcrip-
tion factor (TF) binding activity in each cell type for disease and 
control to characterize regulatory networks and key gene-regulatory 
mechanisms mediated by enhancer-promoter links, allowing us 
to focus our attention directly on the regulators of these GWAS 
genes, differentially expressed genes (DEGs) and TFs. Furthermore, 
snRNA-seq of PiD donors corroborated some of our findings at the 
transcriptomic level. To validate the robustness of our insights, we 
highlighted a previously unknown human-gained enhancer (HGE) 
in excitatory neurons regulating UBE3A, known for its role in regu-
lating synaptic activity, that is altered in both PiD and AD. Using 
CRISPR-Cas9, we excised this HGE in induced pluripotent stem cell 
(iPSC)–derived neurons, and we observed a subsequent down-
regulation of UBE3A using RNA-seq. Our data suggest both shared 
and distinct patterns of gene regulation in PiD and AD, particularly 
evident in the disease-enriched and specific TF activity. Further-
more, disruption in the imputed enhancer accessibility provides 
validation for the accurate identification of enhancer regions located 
more than 40 kilo–base pairs (kbp) away from the untranslated re-
gion (UTR) of the disease-relevant gene.

RESULTS
Single-nucleus ATAC and RNA profile PiD and AD PFC
We performed snATAC-seq on frontal cortical tissue sections of 
PiD and cognitively normal control cases (10x Genomics; n = 7 PiD, 
n = 9 control) and snRNA-seq on the same PiD and control cases 
(Parse Biosciences; n = 5 PiD, n = 3 control). To our knowledge, our 
study is the first to delineate the molecular landscape within frontal 
cortical regions of PiD at the single-cell level. We processed our 
single-nucleus data separately in PiD from our previously generated 
snATAC-seq data of AD (10x Genomics; n = 12 late-stage AD, n = 8 
control) (17) and snRNA-seq (10x Genomics; n = 11 late-stage AD, 
n = 7 control) (Fig. 1A) (17, 28). After quality control (QC) filtering, 
83,938 snATAC-seq and 66,661 snRNA-seq profiles came from the 
newly generated PiD dataset (Fig. 1, B to D; fig. S1, A and B; and 
Materials and Methods), and 114,784 nuclei originated from previ-
ously generated AD snATAC-seq and 57,950 nuclei were from AD 
snRNA-seq. In snATAC-seq, clustering analyses revealed seven 
major brain cell types in this dataset—excitatory neurons (EX), 
inhibitory neurons (INH), astrocytes (ASC), microglia (MG), oli-
godendrocytes (ODC), oligodendrocyte progenitor cells (OPC), 
and pericytes and endothelial cells (PER-END)—annotated based 
on chromatin accessibility at the promoter regions of known marker 
genes (Fig. 1, B, D, and E). We performed label transfer using the 
AD dataset (17) as a reference and then confirmed the annotation of 
our excitatory and inhibitory neurons based on previously identi-
fied marker genes, namely, SYNPR for both EX and INH neurons, 
SLC17A for EX, and GAD2 for INH. Similarly, we annotated our 
glial subpopulations, including astrocyte cluster based on the GFAP 
promoter, which has been shown to increase in disease (29); mi-
croglia cluster based on the CSF1R promoter; oligodendrocyte clus-
ter based on the MOBP promoter; OPC cluster based on the 
PDGFRA promoter; and PER-END cluster based on the CLDN5 
promoter (Fig. 1E and fig. S1F). Additionally, we further confirmed 
cell type identities by gene activity shown in the panel of canonical 
cell type marker genes (table S1C) (30). In the snRNA-seq dataset, 
we first clustered and identified seven major brain cell types in PiD 

using a panel of canonical cell type marker genes (Fig. 1, C and D; 
fig. S1, D and E; table S1D; and Materials and Methods). These ro-
bust cell type identifications enabled us to explore cell type–specific 
alterations and molecular mechanisms underlying PiD pathogene-
sis with a high degree of confidence.

Promoter-enhancer linkages improve chromatin 
accessibility characterization
From these snATAC-seq libraries, we compiled a combined set of 
609,675 reproducible peaks using ArchR (table S2A) (30). To assess 
the robustness of our peak set, we evaluated the consistency of peak 
calling by comparing our data with Xiong et al.’s dataset (27). Over-
lapping peaks were defined as intersections of at least 10 bp. We ob-
served that 57% of our peaks overlapped with those reported by 
Xiong et al. (fig. S2A), demonstrating a high degree of concordance. 
Approximately half of these overlapping peaks intersected with 
more than one peak from Xiong et al.’s dataset (fig. S2B), further 
highlighting the alignment of our data with previously published 
findings. This consistency provides confidence in the reliability of 
our peak set as a foundation for downstream analyses.

Building upon this robust peak set, we sought to provide func-
tional context for noncoding distal regulatory elements with respect 
to cell type and disease status. Using cis co-accessibility analyses 
with Cicero (31), we identified linkages between promoters and dis-
tal elements (Fig. 2A and Materials and Methods). Subsequently, we 
applied non-negative matrix factorization (NMF) to pseudobulk 
chromatin accessibility profiles of all distal regulatory elements 
linked to gene promoter regions. This analysis revealed matrix fac-
tors corresponding to epigenetic signatures of biological processes 
and specific cell states (Fig. 2B). We grouped cis-regulatory elements 
(CREs) into discrete epigenetic modules based on the matrix factor 
with the highest loading for each CRE and then performed gene 
ontology (GO) analyses of the regulatory target genes of each mod-
ule. This revealed cell type function–related pathways and processes 
regulated by these noncoding CREs, such as pathways associated 
with postsynaptic and synaptic activity in EX and INH, cell prolif-
eration and migration-linked ERBB2 signaling pathway in ODC, and 
processes such as apoptotic cell clearance in MG. Next, using the cis 
co-accessibility linkages, we compared the co-accessibility strength of 
chromatin peak links from PiD and AD samples across the major cell 
lineages (Fig. 2C). These analyses revealed relatively higher correla-
tions between PiD and AD in ODCs (Pearson R = 0.35) and ASCs 
(R = 0.32), with weaker correlations in other cell types. Overall, this 
highlights both conserved epigenomic linkages across PiD and AD 
and unique regulatory landscapes specific to each condition.

To identify CREs with altered chromatin accessibility in disease, 
we systematically performed differential chromatin accessibility anal-
yses in each cell type comparing PiD to controls and AD to controls, 
yielding a set of differentially accessible peaks (table  S2C). Our 
chromatin accessibility regions were broadly categorized by genom-
ic features, including gene promoter, exonic, intronic, or distal re-
gions, and we investigated these differential peaks in PiD and AD 
based on these categories (Fig. 2D). Most of the differential peaks in 
PiD (54%) and AD (53%) were located within intronic regions. Ap-
proximately 30% of the differential peaks in both PiD and AD were 
distal, while 9% and 10% corresponded to promoters specifically in 
PiD and AD, respectively. Less than 10% of the identified differen-
tial peaks were exonic in both PiD and AD (Fig. 2D and table S2B). 
These percentages were generally consistent with the peak type 
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Fig. 1. Single-nucleus multi-omics for the study of cellular diversity in the PiD and AD brain. (A) Immunofluorescence characterization of PiD, AD, and control, and 
schematic representation of the samples used in this study, sequencing experiments and downstream bioinformatic analyses. Created in BioRender. Swarup, V. (2025) 
https://BioRender.com/yuv8gcj. Representative quadruple immunofluorescence images for IBA1 (red), GFAP (magenta), amyloid plaque (blue), and AT8/p-tau (green) 
from PFC region of postmortem human brain tissues of age- and sex-matched control (n = 3), AD (n = 5), and PiD (n = 5) cases. Images were captured using Nikon ECLIPSE 
Ti2 inverted microscope (20×). (B and C) UMAP visualizations for snATAC-seq data (B) and snRNA-seq data (C) from PiD and age-matched control. (D) UMAP visualizations 
for snATAC-seq and snRNA-seq data from AD and age-matched control. (E) Coverage plots for canonical cell type markers: GFAP (chr17:44905000-44916000) for astro-
cytes, SYNPR (chr3:63278010-63278510) for neurons, SLC17A6 (chr11:22338004-22345067) for excitatory neurons, GAD2 (chr10:26214210-26241766) for inhibitory neu-
rons, CSF1R (chr5:150056500-150087500) for microglia, MOBP (chr3:39467000-39488000) for oligodendrocytes, and PDGFRA (chr4:54224871-54300000) for pericytes and 
endothelial cells in the PiD dataset. The gray bar within each box highlights the promoter regions.

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 13, 2025

https://BioRender.com/yuv8gcj


Shi et al., Sci. Adv. 11, eads7973 (2025)     12 November 2025

S c i e n c e  A d v an  c e s  |  R e s e ar  c h  A r t i c l e

4 of 23

Fig. 2. Open chromatin classification and epigenetically distinct cell types through putative promoter-enhancer links in the human PiD and AD PFC. (A) Sche-
matics of putative promoter-enhancer linkage. (B) NMF heatmap of putative enhancer scaled chromatin activity in PiD, AD, and their matching controls. (C) Correlation 
heatmap of putative promoter-enhancer co-accessibility. (D) Peak type and biotype classification of differentially accessible peaks (P < 0.05). (E) Heatmaps of fold chang-
es (disease versus control) on normalized chromatin accessibility of differential accessible promoters and distal in excitatory neurons, astrocytes, microglia, and oligoden-
drocytes [FDR-adjusted P < 0.05 and abs(log2FC) > 0.5], with GO acquired from GREAT and examples of promoters and distal regions’ cis-regulatory linked gene as in (A).
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distribution of the entire peak set, where distal peaks comprised ap-
proximately 32%, promoter peaks made up 5%, intronic peaks con-
stituted 55%, and exonic peaks represented 7% (table S2A). Similar 
percentages were also observed in other published studies, reinforc-
ing the robustness and consistency of our findings across different 
datasets (27, 32). Although EX was not the most sampled cell type 
in PiD, our differential analyses revealed that the largest variance 
in the activity of CREs in the PiD dataset was observed in EX. Con-
versely, ASC exhibited the highest differential activity in the AD 
dataset (fig. S2C).

Using this cis-regulatory linkage approach coupled with differ-
ential analyses, we used heatmaps to depict the fold changes of nor-
malized chromatin accessibility for differentially accessible promoters, 
distal and intronic regions across cell types EX, ASC, MG, and ODC 
(Fig. 2E and fig. S2E). Additionally, we incorporated GO informa-
tion obtained from GREAT, presenting cluster numbers alongside 
representative gene names. Notably, by inspecting the distal, intron-
ic, and promoter chromatin regions and their linked regulatory tar-
get genes, we identified changes containing AD and FTD genetic 
risk loci, including TMEM106B, ADAM10, SORL1, KAT8, CLU, 
BIN1, and genes involved in essential cellular activity, such as 
UBE3A. Moreover, while examining the absolute fold change of nor-
malized chromatin accessibility, genes in EX in PiD exhibited much 
more robust changes than those in AD (Fig. 2E). This potentially 
indicates that the neuronal changes are more pronounced in PiD, 
likely reflecting age-associated regional differences in pathological 
progression, particularly in frontal cortical regions (2, 3). These 
differences align with the observation that patients with fronto-
temporal lobar degeneration, including PiD, often exhibit a dis-
tinct regional vulnerability (7) and a more rapid clinical progression 
compared to AD (33).

Fine mapping identifies cell type–specific epigenomic 
annotations in FTD and AD
Given that most variants reside in noncoding regions, around 
80% of chromatin-accessible peaks in distal and intronic regions 
(Fig.  2D), a pattern further supported by overlapped quantitative 
trait loci (QTLs) with chromatin-accessible peaks (34–37) (fig. S3D), 
and the limited research on disease-associated gene identification 
for PiD, we assert the importance of using closely related FTD and 
AD GWAS data as reference points. Our analysis approach, an inte-
grative method combining data from multiple modalities intro-
duced here, involves overlapping snATAC-seq accessible peaks with 
fine-mapped GWAS SNPs, enabling us to determine whether chro-
mosomal regions surrounding these disease-related SNPs exhibit 
accessibility in our dataset (fig.  S3A). However, it is important to 
acknowledge the inherent limitations of our study, particularly the 
rarity of PiD and the consequent unavailability of PiD-specific 
GWAS summary data with sufficient statistical power. This limi-
tation restricts our analyses to leveraging existing knowledge and 
datasets to explore potential gene targets for PiD, rather than con-
ducting direct PiD GWAS analyses. We conducted comprehensive 
fine mapping, annotation, and cell type–specific gene expression 
analyses, in addition to collecting publicly available predicted loss-
of-function data (gnomAD v4.0 UCSC; Materials and Methods) 
(38). These efforts aimed to identify causal variants and explore the 
association of genetic variant–related genes with the risk of AD (12) 
and FTD (13) (Fig. 3). The fine-mapping analyses identified 77 lead 
GWAS risk SNPs with 113 credible sets, groups of genetic variants, 

in LD within the AD and FTD brain [posterior inclusion probability 
(PIP) > 0.95] overlapping with accessible peaks from the seven ma-
jor cell types. We found that 36 of 113 fine-mapped causal credible 
sets overlapped with accessible peaks of one or two cell types, and 16 
of 113 were present in all cell types (Fig. 3, middle; fig. S3B; and ta-
ble S3A), suggesting that some disease risk variants are relevant to a 
particular cell type, while others influence gene regulation across 
several cell types. To expand on this, we assessed the overlap be-
tween our fine-mapped SNPs and Xiong et al.’s ROSMAP snATAC-
seq cell type–specific peaks (27) across seven major cell types (Fig. 3, 
middle). In addition, we examined the uniqueness of cell type over-
laps for these fine-mapped SNPs, defined as the number of cell types 
with overlapping peaks. The high proportion of overlapping peaks 
and the similar patterns in cell type–specific overlaps observed in 
Xiong et al.’s data further support the concordance between the two 
datasets (fig.  S3C). To reinforce this notion, we integrated the 
snRNA-seq dataset from three previous studies of the AD cortex 
(17,  20,  39) and plotted the expression of genes identified from 
GWAS summary statistics, where each gene was associated with the 
lead causal SNP, from its respective control group of distinct cell 
types (Fig. 3, left). Additionally, we corroborated the association of 
the lead SNP and other fine-mapped SNPs in LD with their associ-
ated genes by cross-referencing candidate CREs (cCREs) and target 
genes, data that can be accessed through our online interactive data-
base, scROAD.

For AD, our analyses revealed that more than half of the 113 fine-
mapped signals overlapped with accessible peaks found in microg-
lia, a cell type of particular interest in AD research. Notably, these 
peaks encompassed several known AD GWAS genes that have 
been extensively studied in microglia, including ABCA1, ADAM10, 
ADAM17, BIN1, INPP5D, NCK2, PICALM, and TREM2 (Fig.  3, 
middle). The enrichment of GWAS risk signals within microglia was 
consistent with the established pathophysiological role of these cells, 
particularly their involvement in inflammation in AD (40). AD risk 
variants at the INPP5D locus were found in accessible chromatin 
regions exclusively in microglia, and the INPP5D gene was ex-
pressed almost specifically in microglia as well (Fig. 3, middle).

While previous studies have demonstrated the enrichment of AD 
genetic risk SNPs specifically in microglia (17), we note that these 
risk genes are expressed in several cell types. For example, the risk 
variants of ADAM10 overlapped with accessible peaks from EX, 
INH, MG, and ODC and its gene expression was detected across all 
cell types. As the major constituent of α-secretase, ADAM10 cleaves 
APP toward a non-amyloidogenic pathway, thereby preventing Aβ 
generation (41). Furthermore, fine-mapping analyses revealed that 
BIN1 risk variants, a major risk factor for AD known to induce tau- 
and isoform-dependent neurotoxicity (42, 43), predominantly lo-
calize to accessible peaks associated with ASC, MG, ODC, and OPC. 
These findings give credence to previously reported disparate find-
ings on the effects of BIN1 SNPs in microglia (44) and oligodendro-
cytes (17). Considering that a given gene can often be expressed in 
multiple cell types, it is crucial to exercise caution when analyzing 
the effects of variants, as these effects may vary greatly among differ-
ent cell types. Similarly, GWAS variants in the TREM2 gene were 
identified within accessible peaks primarily associated with MG and 
EX. TREM2 plays a crucial role in various cellular processes, including 
cell proliferation, survival, phagocytosis, and regulation of inflamma-
tion (45). Notably, its defensive response against AD pathology, cou-
pled with its up-regulation in reactive microglia surrounding amyloid 
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Fig. 3. Cell type–specific fine-mapped causal SNPs from FTD and AD GWAS risk loci. (Left) The left dot plot shows the gene expression in each cell type from the 
control samples of three public snRNA-seq datasets (17, 20, 39). (Middle) Fine-mapped SNPs from identified FTD and AD GWAS risk loci showing overlap with OCRs from 
snATAC-seq and GWAS risk gene expression in major cell types. The fine-mapping column using SuSiE shows all of the snATAC-seq cell type–specific OCRs overlapping 
credible sets, defined as the groups of SNPs containing the causal variant (PIP > 0.95). The closest gene to the credible set is indicated on the left. The r2 indicates the aver-
age correlation between the SNPs in the credible set. Both the pLI and loss-of-function observed/expected upper bound fraction (LOEUF) are from gnomAD (38) (gnomAD 
v4.0 UCSC). In the pLI column, a value closer to 1 indicates that the gene cannot tolerate protein-truncating variation. In the LOEUF column, a value closer to 0 indicates 
that the GWAS risk gene is constrained or mutation intolerant. The overlapped snATAC-seq OCR columns, including SNPs overlapped with peaks in this study and in Xiong et al. 
(27), reflect the cell types of those causal SNPs from a credible set that are present or absent. (Right) The two dot plots on the right show the snRNA-seq differentially ex-
pressed GWAS genes in each cell type between PiD and age-matched control samples, and between AD and age-matched control samples (17). A complete set of the 
fine-mapped SNPs and credible sets with a PIP > 0.95 shown for FTD and AD is available in table S3. Data on fine-mapped SNPs with cCREs and their associated target 
genes can be accessed through our online interactive database, scROAD.
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plaques, has been consistently observed across multiple studies, in 
both mouse models and human samples (40, 46, 47).

Complementing our analyses of AD risk loci, we also performed 
fine-mapping analyses on GWAS risk loci for FTD, aiming to pro-
pose possible risk genes for FTD subtype PiD (Fig. 3 and table S3, A 
and B), with five of them intersecting with accessible chromatin re-
gions in our snATAC-seq dataset. For example, one of the fine-
mapped FTD risk loci, SLC30A8, encodes a zinc transporter and is a 
susceptible GWAS locus for type 2 diabetes (48). Strikingly, there is 
a notable increase in the prevalence of both type 2 diabetes and de-
mentia in older adults (49). We speculate that SLC30A8 could be an 
indirectly related risk locus for FTD. Moreover, among the identi-
fied FTD risk loci, GLDN stands out as another intriguing candi-
date. GLDN encodes gliomedin, a crucial protein involved in the 
formation of the nodes of Ranvier (50). These nodes are critical 
structures along the neural axons where action potentials are regen-
erated. Disruption of the nodes of Ranvier can result in the failure of 
the electrically resistive seal between the myelin and the axon, ulti-
mately contributing to various neurological diseases (51). Given the 
fundamental role of gliomedin in maintaining axonal integrity, in-
vestigating GLDN variants within specific cell types may provide 
valuable insights into their potential involvement in FTD pathogen-
esis. In particular, our snRNA-seq differential analyses between 
PiD and age-matched controls revealed that GLDN was statisti-
cally significantly down-regulated (Fig. 3, right). Besides GLDN, 
in our snRNA-seq analyses, some of the AD GWAS genes, such as 
ADAM10, ADAM17, BIN1, APP, CLU, JAZF1, MAPT, PICALM, 
PLEKHA1, SLC24A4, SORL1, and UMAD1, were also differentially 
expressed in PiD (table S4, A and B). While risk loci have been iden-
tified in our GWAS studies and cis-regulatory–linked risk genes, 
several open chromatin regions (OCRs) that overlap with AD/FTD 
GWAS SNPs (Fig. 3) are also differentially accessible regions (DARs) 
in the PiD or AD versus their age-matched control comparison. 
There are 41 EX DARs and 12 ODC DARs in the PiD dataset and 21 
DARs in the AD dataset, of which some overlap with SNPs identi-
fied in the AD/FTD GWAS fine mapping (fig. S3E). These findings 
underscore the shared genetic mechanisms across tauopathies while 
also reflecting cell type–specific chromatin accessibility differences. 
Furthermore, AD GWAS genes show a strong overlap with DEGs in 
PiD (Fisher’s exact test: P < 2.2 × 10−16; table S3C), suggesting that 
these associations are not random. However, it remains crucial to 
determine how fine-mapped signals specifically relate to PiD. By in-
tegrating these genetic findings with our multi-omics data, we can 
gain deeper insights into the complex interplay between genetic risk 
factors and cellular processes contributing to PiD and AD patholo-
gy, particularly with regard to regulatory noncoding regions and 
gene expression in the corresponding cell types.

Neuron TF binding occupancy reveals dysregulation in 
PiD and AD
To uncover gene-regulatory mechanisms affecting neurons and 
glial cells in PiD and AD, we investigated co-accessible enhancer-
promoter regions, focusing on genome-wide and gene-specific TF dif-
ferential binding activities. Various GRN approaches (52, 53) based 
on motif enrichment analyses often infer TF activity from overrep-
resented motifs without distinguishing functional binding from chro-
matin relaxation (24, 54), resulting in false positives (55), where 
“relaxed” OCRs may not always indicate meaningful regulatory 
activity (fig. S4, A and B). To address this limitation, our approach 

incorporates TF footprinting using the TOBIAS tool (56) to directly 
measure TF occupancy. This strategy resolves functional from non-
functional motif occurrences by identifying functional enhancer-
TF interactions and advances our understanding of FTD and AD 
genetic risk signals, including the role of fine-mapped SNPs in puta-
tive regulatory functions. We performed chromatin cis co-accessibility 
and TF occupancy prediction analyses on 609,675 cCREs (table S2A) 
to examine disease-enriched signals in both PiD and AD. For each 
predominant cell type, we implemented cis-regulatory co-accessibility 
(31) and trans-regulatory occupancy prediction (56), dividing the 
cells into PiD, AD, and their corresponding controls for detailed ex-
amination (Fig. 4A).

Our integrated cis- and trans-regulatory analyses approach al-
lows us to explore disease-enriched enhancer-promoter links, TF 
differential binding activity, and motif binding site disruption in 
neurons. Genome-wide TF differential binding scores were calcu-
lated in PiD and AD with their matching controls in neurons 
(Fig. 4B). We identified TFs BHLHE22, a TF previously indicated to 
play a key role in neural cell fate (57), along with other TFs (P < 
0.05), which exhibit shared and enhanced binding activity in both 
PiD and AD compared with their respective controls. JDP2, a TF 
involved in apoptosis (58), along with other TFs, demonstrates in-
creased binding activity only in AD. CTCF, a transcriptional regu-
lator that acts on enhancers, promoters, and gene bodies (59), 
together with other TFs in the lower left quadrant, displays de-
creased binding activity in both PiD and AD compared to their con-
trols. To ensure that the observed changes were not biased toward 
surviving neurons or influenced by sampling QC, we calculated a 
neuronal vulnerability module score based on a list of vulnerable 
genes associated with reduced expression in disease conditions col-
lected from Mathys et al. (60). This analysis demonstrated that our 
PiD snRNA-seq data include both surviving and vulnerable neu-
rons, with vulnerability module scores higher in controls compared 
to PiD (fig. S4C).

We investigated the binding of select TFs to the enhancer regions 
of their target genes in neurons to contextualize their variable bind-
ing activity (Fig. 4, C to E). To accomplish this, a GRN for the TFs 
BHLHE22, CTCF, and JDP2 was established in both PiD and AD 
datasets for excitatory neurons (Fig. 4, B and C, and fig. S4D). Sev-
eral genes implicated in AD GWAS, including JAZF1, SORL1, PLE-
KHA1, and ADAM10, exhibited differential expression in EX in 
individuals with PiD, providing possible insights into shared mo-
lecular mechanisms between PiD and AD, suggesting potential con-
vergent pathways underlying neurodegeneration in these conditions 
(Fig. 4C). Some of these fine-mapped GWAS genes within the TF 
network were further supported by significant expression quantita-
tive trait loci (eQTLs) (36) (P < 1 × 10−5) observed in EX, reinforc-
ing their importance in this cell type (fig.  S4E). The differentially 
expressed TFs and genes we identified, positioned in the center of 
the network, are under the regulation of all three highlighted fac-
tors: CTCF, JDP2, and BHLHE22. Those regulated by two or a single 
TF are depicted on the outer ring of the network. We stress that 
these findings merely represent a simplified depiction of a highly 
complex regulatory network. Gene targets within this network are 
acknowledged to be subject to regulation, but it is important to note 
that the highlighted TFs do not solely govern their regulation.

To complement our analyses of TF trans-regulatory network in 
neurons, we aimed to discern CREs and DNA binding motifs that 
are enriched in either disease or control conditions, particularly 
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Fig. 4. Excitatory neuronal related TF dysregulation and gene expression changes associated with PiD and AD pathology. (A) Schematic of co-accessible mapping 
between putative enhancer and promoter for the target gene as well as the TF binding activity at its local regions. (B) Genome-wide Tn5 bias–subtracted TF differential 
footprinting binding scores of PiD and AD in excitatory neurons (EX) compared to the corresponding controls. (C) TF-regulatory networks showing the predicted candi-
date target genes for the following TFs: CTCF, BHLHE22, and JDP2 in EX. Highlighted TFs and other differentially expressed TFs are shown in yellow. Up-regulated DEGs are 
shown in red and square. Down-regulated DEGs are shown in blue and in a circle. The gene of interest, UBE3A, is down-regulated, shown in pink and in a circle. Differen-
tially expressed GWAS risk genes are displayed in bright blue. Edges representing the linkage of TF-target gene regulation are shown in purple for PiD and sienna for AD. 
(D) Delta co-accessibility of ADAM10 and its OCRs in EX for both AD and PiD with their corresponding controls. Highlighted regions in dark yellow represent all SuSiE 
fine-mapped SNPs (Fig. 3) close to the target gene. (E) Fold changes of TFs binding in the SuSiE fine-mapped regions for both AD and PiD. (F) Dot plot of DEGs in PiD and 
AD versus their respective controls. (G) Dot plot of differentially expressed GWAS risk genes and TFs in PiD and AD versus their respective controls.
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within regions containing fine-mapped SNPs. Through the integra-
tion of the co-accessibility map with chromatin accessibility signals 
and GWAS statistics across the genomic axis, we elucidated poten-
tial disruptions in cis-regulatory relationships caused by causal dis-
ease variants in a GWAS gene, ADAM10, which is also differentially 
expressed (Fig. 4, D and E). Additionally, we conducted sequence 
analyses to identify motifs that are disrupted in comparison to con-
trol conditions. This procedure was executed with the aim of assess-
ing disease or control gene-local enhancer accessibility and predicting 
potential disruptions in TF binding.

We found alterations in the cis-regulatory mechanisms of ADAM10 
in AD, a prominent anti-amyloidogenic candidate gene in AD pa-
thology (Fig. 4D) (41). These changes were identified in proximity 
to the fine-mapped lead ADAM10 SNP, rs442495, and in its strong 
LD block, potentially disrupting the DNA binding motif. Conse-
quently, these disruptions may result in diminished TF binding ac-
tivity in disease compared to their corresponding control group. We 
further investigated the gene locus TF binding activity in those 
highlighted fine-mapped accessible regions. We selected five TFs 
from the top-ranked TFs based on the average log2(fold change) 
(log2FC) of the TF binding score. For example, we found forkhead 
box O1 (FOXO1), SATB homeobox 1 (SATB1), POU class 5 homeo-
box 1 (POU5F1), paired box 4 (PAX4), and peroxisome prolifera-
tor–activated receptor (PPAR) TFs enriched in highlighted regions 
identified for ADAM10 in EX (Fig. 4E). Previous studies have inves-
tigated the potential roles of FOXO1, SATB1, and POU5F1 in the 
development of AD (61–63). Notably, FOXO TF families were indi-
cated as mediators of stress adaptation, which promotes the resilience 
of cells as a key regulator in other pathways, such as metabolism, cell 
cycle, and redox regulation (64). The TF PAX4 has been investi-
gated in the contexts of both AD and type 2 diabetes (T2D), and is 
known to function as a key link in the common pathways of both 
diseases (65).

To thoroughly examine the differences in gene expression in EX 
between disease and control groups, we arranged and compared all 
selected DEGs and TFs side by side for PiD and AD (Fig. 4, F and 
G). The fold change in gene expression indicates the robustness of 
biological changes between diseases and highlights the role of cer-
tain genes and TFs in disease development. Among those top-
selected genes, identified based on its absolute fold change and 
cis-regulatory co-accessibility score, CALM1 has been linked to the 
progression from mild cognitive impairment (MCI) to AD through 
involvement in the neurotrophin signaling pathway, which contrib-
utes to neuronal development, survival, and plasticity (66). Addi-
tionally, CALM1 participates in dysregulated ligand-receptor (LR) 
interactions (67). Its down-regulation in both PiD [false discovery 
rate (FDR)–adjusted P  =  5.57  ×  10−6; table  S4A] and AD (FDR-
adjusted P = 0.011; table S4B) samples suggests a common role of 
CALM1 in the pathogenesis of both diseases. Similarly, TARBP1 
showed a notable decrease in both PiD and AD (Fig. 4, C and F). 
TARBP1 encodes the TAR RNA binding protein 1 (TRBP), which 
participates as a methyltransferase enzyme in posttranscriptional 
gene regulation through its involvement in RNA processing path-
ways and is associated with inattention symptoms (68). Whereas we 
had previously identified the differential regulation of the distal en-
hancer of the UBE3A gene (Fig. 2E), we further found that UBE3A 
expression was statistically significantly decreased in EX in PiD 
(FDR-adjusted P = 1.04 × 10−14; table S4A), regulated by CTCF and 
BHLHE22 (Fig. 4, C and F).

We conducted a detailed examination of the alterations in TFs’ 
expression levels between diseased and control states. Our analyses 
revealed a general trend of pervasive down-regulation of TF expres-
sion across PiD samples, when compared to the changes observed 
between AD and its respective control group, despite a few TFs 
showing up-regulation (Fig.  4G and fig.  S4, F and G). A similar 
trend was observed in Rexach et al.’s behavioral variant FTD dataset 
(7), where reduced TF expression was consistent across disease sam-
ples compared to controls (fig. S4H). This trend highlights a broader 
down-regulation of TFs in PiD but not in AD (fig.  S4G). These 
unique regulatory patterns displayed in PiD emphasize the com-
plexity of these mechanisms. Among the differentially expressed 
TFs, we observed that RORA, which plays an essential role in energy 
and lipid metabolism (69), is statistically significantly up-regulated 
in both PiD (FDR-adjusted P = 1.14 × 10−20; table S4A) and AD 
(FDR-adjusted P = 0.002; table S4B). Aberrant energy metabolism is 
the critical factor for cell integrity maintenance and neurodegenera-
tion. Another notable differentially expressed TF, STAT1, demon-
strated a different expression pattern across PiD (FDR-adjusted 
P = 4.61 × 10−14; table S4A) and AD (not statistically significant), 
implying its distinct involvement in the regulatory mechanisms un-
derlying different neurodegenerative disorders or different stages of 
disorders. Prior research has indicated that decreased STAT1 ex-
pression correlates with a higher risk of conversion to MCI and can 
be considered a preclinical indication of AD development (70). The 
preceding analyses and these data provide a likely genetic mecha-
nism for two distinct dementias, based on differential TF binding 
activity on the enhancer or promoter regions of its target gene, cou-
pled with analyses shown on gene expression.

In inhibitory neurons (INH), we highlighted two TFs, JDP2 and 
NRF1. JDP2, a TF linked to apoptosis (58), emerged as one of the top 
TFs based on Tn5 bias–subtracted TF differential footprinting bind-
ing scores in AD. NRF1, a master regulator of proteasome genes, 
plays a critical role in proteasome-mediated protein degradation, a 
process whose dysregulation has been implicated in neurodegenera-
tive diseases (71). In contrast to JDP2, although NRF1 was not among 
the top TFs with differential footprinting binding scores in excit-
atory neurons (EX), it was identified as one of the top factors within 
the INH TF network (fig. S5, A to C). Notably, both JDP2 and NRF1 
are also expressed in EX, suggesting shared regulatory mechanisms 
between these neuronal subtypes (Fig. 4, B and G, and fig. S4, F and 
G). These findings complement our results in EX, highlighting both 
cell type–specific and shared transcriptional regulatory mechanisms 
in neurons, which may have important implications for understand-
ing their roles in neurodegeneration.

TF binding occupancy reveals glial responses in PiD and AD
We investigated the regulatory role of several TFs in glial cells in PiD 
and AD. Given the importance of TFs in modulating gene expres-
sion, we focused on identifying the top differential binding TFs, dis-
tinguishing those specific to PiD and those shared with AD. Among 
the selected TFs, we explored the regulatory effects of microglial TF 
SPI1, a well-known AD GWAS risk gene (12), Friend leukemia inte-
gration 1 (FLI1), and transcription factor Dp-1 (TFDP1) (Fig. 5A 
and fig. S6D) to shed light on the potential roles of these TFs in the 
pathogenesis of PiD and AD. In our snATAC-seq analyses of mi-
croglial cells, we observed increased differential binding activities 
of FLI1 and SPI1 in both PiD and AD. SPI1 is known to be associ-
ated with the normal development of microglial cells in the brain 
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(72), and Ets-related TF FLI1 has been established as a regulator of 
gene activity during cellular differentiation (Fig. 5A) (73). However, 
TFDP1, a potential global modulator of chromatin accessibility by 
controlling histone transcription (74), shows contrasting differen-
tial binding activities when comparing PiD with AD (Fig. 5A), sug-
gesting potential discrepancy in genome-wide TFDP1 TF binding 
activity between diseases. Among the top-selected targets, we ob-
served a statistically significant down-regulation of MAF in AD 
(FDR-adjusted P = 2.28 × 10−8; table S4B), a gene identified as an 
AD GWAS risk gene and a differentially expressed TF (12), regu-
lated by SPI1. We did not observe any notable difference in MAF 
expression in PiD (Fig. 5B and fig. S6A). Additionally, another AD 
DEG, CX3CR1 (FDR-adjusted P = 1.53 × 10−25; table S4B), was also 
regulated by SPI1 but not markedly dysregulated in PiD. CX3CR1 
has been implicated in both neuroprotective and detrimental effects 

by regulating inflammation in neurological disorders (75). Further-
more, our analyses revealed the differential expression of several 
other GWAS risk genes regulated by TFDP1, FLI1, and SPI1, in-
cluding GLDN, ZFHX3, USP6NL, SORL1, MS4A4A, INPP5D, and 
RASGEF1C (12).

In astrocytes, we observed a consistent trend among most TFs, 
where most displayed either increased or decreased binding scores 
in both PiD and AD. Notably, a subgroup of TFs from the activating 
protein-1 (AP-1) family, namely, JUND, JUNB, and FOS, exhibited 
pronounced enrichment in both PiD and AD (Fig. 5C and fig. S6E). 
For instance, JUND from the AP-1 TF family, known for its strong 
correlations with pTau and Aβ (76), demonstrated similar patterns. 
Additionally, BACH1, primarily recognized as a transcriptional sup-
pressor (77), showed a positive correlation with both PiD and AD. 
These findings suggest some potential convergence of top-selected 

Fig. 5. Glial changes in TF dysregulation and gene expression in PiD and AD progression. (A, C, and E) Genome-wide Tn5 bias–subtracted TF differential footprinting 
binding score of PiD and AD in microglia (MG) (A), astrocytes (ASC) (C), and oligodendrocytes (ODC) (E) compared to their corresponding controls. (B, D, and F) TF-
regulatory networks showing the predicted candidate target genes for MG (B), ASC (D), and ODC (F). Highlighted TFs and differentially expressed TFs are shown in yellow. 
Up-regulated DEGs are shown in red and square. Down-regulated DEGs are shown in blue and in a circle. The differentially expressed GWAS risk genes are displayed in 
bright blue. Edges representing the linkage of TF-target gene regulation are shown in purple for PiD and sienna for AD.
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TFs’ activity in astrocytes across PiD and AD. Specifically, JUND’s 
inferred role in astrocyte APOE expression, which is shown to be 
down-regulated in AD (FDR-adjusted P = 3.14 × 10−4; table S4B) 
but not statistically significant in PiD (Fig. 5D and fig. S6B), under-
scores its involvement in AD-related processes. At the same time, 
we identified hypoxia-inducible factor-1α (HIF1A), regulated by 
both JUND and BACH1, as down-regulated in PiD (FDR-adjusted 
P = 4.35 × 10−6; table S4A) but not statistically significant in AD, which 
may align with previous reports suggesting that the loss of HIF1A 
within astrocytes protects neurons from cell death (78). Our observa-
tions underscore potential regulatory changes in astrocytes, character-
ized by the regulatory activation mediated by AP-1 family TFs and the 
transcriptional suppression facilitated by BACH1. Furthermore, the 
dysregulation of APOE expression and HIF1A levels in astrocytes 
highlights the complex regulatory networks that influence astrocyte 
function and contribute to disease progression in AD and PiD.

In oligodendrocytes, we observed a predominant trend where 
most TFs exhibited either increased binding activity in both PiD 
and AD or unique patterns specific to each disease state (Fig. 5E and 
fig. S6F). Noteworthy among these are the transcriptional suppres-
sors HES1 and ZBTB33 (79, 80), which displayed enriched differen-
tial binding scores in both PiD and AD. Moreover, our analyses 
revealed that these two transcriptional repressors were associated 
with the down-regulation of ADAM10, PLEKHA1, and JAZF1, and 
the up-regulation of BIN1 and MAPT, consistent with broader tran-
scriptional changes across multiple DEGs (Fig.  5E and fig.  S6C). 
This suggests the intricate and multifaceted nature of the transcrip-
tional processes, which may be relevant to both PiD and AD, or spe-
cific to one of these conditions, indicating shared or condition-specific 
regulatory mechanisms. Furthermore, MAPT, a gene encoding tau 
protein to keep the function of microtubules and axonal transport, 
which ZBTB33 also regulates, is differentially expressed in both PiD 
and AD. Additionally, the down-regulation of FOXO1, known to 
protect against age-progressive axonal degeneration (81), further 
underscores the intricate interplay between transcriptional regula-
tion and neurodegenerative processes in oligodendrocytes.

To further evaluate the reliability of the observed transcriptional 
changes, we analyzed the percentage of cells expressing selected 
genes, grouped by samples and color-coded by diagnosis (fig. S7, A 
to C). This analysis encompassed both down-regulated and up-
regulated DEGs in PiD, as well as GWAS risk genes expressed in the 
selected cell type, as highlighted in TF-regulatory network (Fig. 5, B, 
D, and F). Despite the inherent sparsity of snRNA-seq data, the per-
centage expression of genes exhibited consistent patterns across in-
dividuals, with no single sample disproportionately influencing the 
results. These stable trends across libraries and individuals affirm 
the robustness of the observed differences in gene expression and 
support the conclusions drawn from these analyses.

Cis-regulatory linked HGE affects gene expression in disease 
synaptic pathology
We have elucidated the shared and distinct changes in the pathways 
between these two frontal cortical degenerative diseases related to 
the prominent features, glial activation, neuroinflammation, synaptic 
dysfunction, and synapse loss of AD and related dementia (82, 83). 
Building upon these findings, we reasoned that these data further 
provide a unique opportunity to identify human-specific regulatory 
elements responsible for maintaining the integrity of human cortical 
neurons and driving cortical neurogenesis.

We further explored regulatory elements driving cortical neuro-
genesis unique to humans using a previously compiled gene list that 
showed increased activity specifically in the developing human 
brain, when comparing gene expression between mice, macaques, 
and humans (84). Through overlapping HGE with snATAC-seq 
peaks from PiD and AD (table S5), we identified an enhancer ele-
ment that is both a differentially accessible peak in PiD and an HGE. 
Using chromatin co-accessibility analyses, we bioinformatically linked 
this differential accessible enhancer to UBE3A, although it is located 
more than 40 kbp away from its UTRs and around 80 kbp away from 
its coding region (fig. S8A). As a gene implicated in neuronal activ-
ity, UBE3A codes for a protein that plays a critical role in neuronal 
functioning, regulating proliferation and apoptosis (85). UBE3A 
loss-of-function mutation has been observed in individuals with 
Angelman syndrome, while autism-linked UBE3A gain-of-function 
mutation was recently reported in a mouse model showing neu-
robehavioral deficits (86,  87). The cis-regulatory identified distal 
enhancers and HGE of UBE3A in neurons are more accessible in 
PiD (FDR-adjusted P = 4.40 × 10−5; table S2C) (Figs. 2E and 6A).

We hypothesized that the active HGE would enhance the expres-
sion of UBE3A or mitigate suppressive effects leading to its down-
regulation. Conversely, the elimination of this active HGE would 
presumably result in reduced levels of UBE3A. To validate whether 
this imputed enhancer is the putative enhancer of UBE3A, we con-
ducted CRISPR-edited experiments in iPSCs, wherein we targeted 
and excised the HGE region (chr15:25,479,200-25,482,595) (Fig. 6, 
A to C). CRISPR-modified [UBE3A knockdown (KD)] and isogenic 
control [wild-type (WT)] iPSCs were differentiated into cortical 
neurons using a modified NGN2 induction protocol (88) (Materials 
and Methods). After 28 days, cortical neuron populations from both 
WT and UBE3A KD lines retained some NES-positive neural pro-
genitor cells (Fig. 6B), and roughly 75% of nuclei colocalized with 
the mature neuronal marker MAP2 with no statistically significant 
difference noted with UBE3A KD (P = 0.5687, unpaired t test, two-
tailed; fig. S8B). Additionally, there was no notable expression dif-
ference in the early cortical layer marker, TBR1, seen with UBE3A 
KD (P = 0.8135, unpaired t test, two-tailed; fig. S8C), at greater than 
50% in both populations. No substantial differences in marker ex-
pression were observed, confirming the neuronal identity of both 
the edited and unedited lines. In theory, if the predicted enhancer 
does regulate gene activity, removing it would interfere with its con-
trol mechanisms, resulting in reduced activity of the target gene. 
This approach has previously been used to identify enhancers that 
regulate neocortical development (89). RNA-seq analyses performed 
on 28-day in vitro neurons revealed down-regulation of UBE3A in 
the UBE3A KD neurons, confirming that the predicted UBE3A HGE 
region regulates UBE3A expression (Fig. 6, D and E), and that the 
perturbation of UBE3A expression affected the expression of other 
genes (Fig. 6D). These genes are associated with the down-regulation 
of protein ubiquitination, apoptosis, heterochromatin organization, 
adenosine 3′,5′-monophosphate (cAMP)–dependent protein kinase 
activity, and disruptions in various metabolic processes (Fig. 6F).

Given the intricate nature of human tissue, particularly in the 
context of disease conditions, our subsequent analyses in data de-
rived from human tissue noted an enriched activity of chromatin 
accessibility (average log2FC > 0; table S2C) for all distal peaks as-
sociated with UBE3A in the EX. Despite this, we observed a decrease 
in the proteomic and transcriptomic levels of UBE3A. In our immu-
nofluorescence staining of UBE3A, we noted a statistically significant 
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Fig. 6. Mapping distal cCREs involved in synaptic function to their target genes. (A) Delta co-accessibility of UBE3A and enlarged CRISPR-edited enhancer regions of 
UBE3A in salmon and differentially accessible peaks in yellow overlap with intronic regions of long intergenic non–protein-coding RNA 22 (LINC02250). (B) iPSC-derived 
neuron assessment. Left: Representative 40× images of 28-day WT and UBE3A KD cultures showing MAP2 (magenta) and NESTIN (green) expression. Scale bar, 10 μm. Right: 
Representative 20× images showing MAP2 (magenta), NESTIN (green), TBR1 (magenta), and Hoechst (blue) expression. Scale bar, 30 μm. (C) Experimental design for HGE 
CRISPR-Cas9 for UBE3A, RNA-seq performed on iPSC-derived neurons after 28 days of development. (D) Volcano plot of DEGs from RNA-seq (UBE3AKD versus WT), n = 3 per 
group. (E) UBE3A expression from RNA-seq (UBE3AKD versus WT). (F) GO of up-regulated and down-regulated DEGs from RNA-seq (UBE3AKD versus WT). (G) Represen-
tative immunofluorescence images for UBE3A (red), neurofilament marker (green), and 4′,6-diamidino-2-phenylindole (DAPI) (blue) from postmortem human brain tissue 
(PFC) of control (n = 3), AD (n = 5), and PiD (n = 5) cases. The 60× images were captured using a Nikon ECLIPSE Ti2 inverted microscope. Scale bar, 30 μm. (H) UBE3A expression 
from snRNA-seq in EX. (I) snRNA-seq DEG analyses in EX. (J) GO of up-regulated and down-regulated DEGs from snRNA-seq (PiD versus control).
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decrease in UBE3A levels in human PFC, specifically in Pick’s dis-
ease brains. (Fig.  6G). Furthermore, our analyses of snRNA-seq 
DEGs in PiD also revealed UBE3A as one of the down-regulated 
genes (Fig. 6, H and I). In our GO analyses, we found that the down-
regulated genes were involved in various processes related to neuro-
nal integrity, brain morphogenesis, neuron cell-cell adhesion, axon 
guidance, cell fate determination via the Wnt signaling pathway, and 
UBE3A-related ubiquitin-dependent protein catabolic processes. 
Conversely, among the up-regulated terms, we observed enrich-
ment in processes related to microtubule organization and tau pro-
tein regulation (Fig. 6J).

The discordance between increased snATAC-seq enhancer signal 
and decreased snRNA-seq gene expression for UBE3A may be attrib-
uted to a regulatory phenomenon where the chromatin region be-
comes more accessible to counteract the down-regulation of its target 
genes. At the subcluster level, our integrated analysis of EX revealed 
consistent down-regulation of UBE3A gene expression accompanied 
by increased chromatin accessibility at the UBE3A enhancer across 
most subclusters (fig. S9, A to C). Subclusters EX4 and EX8, where 
fewer than 5% of cells exhibited accessible UBE3A enhancers, were 
excluded from this interpretation. The remaining subclusters (EX1 to 
EX3, EX5 to EX7) showed a consistent pattern of decreased UBE3A 
expression alongside elevated enhancer accessibility. This observation 
suggests that the discrepancy between increased snATAC-seq en-
hancer signal and decreased snRNA-seq gene expression for UBE3A 
cannot be explained solely by subcluster-specific differences, indicat-
ing the involvement of broader regulatory mechanisms. These find-
ings underscore the complexity of regulatory dynamics within the 
disease context and highlight the need for further investigation into 
the regulatory processes underlying these observations.

DISCUSSION
Single-cell sequencing has been used to characterize the cell type– 
and cell state–specific changes in AD pathology extensively. While 
recent efforts have extended these approaches to other tauopathies 
(7, 90, 91), they remain comparatively understudied, particularly in 
PiD. Here, we generated single-nucleus epigenomic and transcrip-
tomic data from postmortem human brain tissue samples of PiD and 
cognitively normal controls. By integrating the analyses on cis- and 
trans-regulatory mechanisms with gene expression data, our ap-
proach at single-cell resolution enabled us to investigate the cellular 
diversity of the human PFC to compare shared and distinct regula-
tory mechanisms between these two tauopathies in excitatory neu-
rons, astrocytes, microglia, and oligodendrocytes, and pinpoint the 
cell type–specific, disease-associated alterations. Meta-analyses in 
GWASs, supplemented with the assistance of snATAC and snRNA 
data, used AD and FTD GWAS genes and revealed putative and dys-
regulated risk genes for PiD. Systematic analyses of alteration in TF 
binding activity on promoter-enhancer links in both a genome-wide 
scale and gene-local region in PiD and AD revealed distinct and 
shared TF-regulatory networks from neurons and glial cells. Our 
single-nucleus data and customized approach to investigating cis- 
and trans-regulatory mechanisms altered in PiD and AD pathology 
led to the creation of an online interactive database, scROAD, which 
researchers are free to explore. We additionally generated RNA-seq 
data from iPSC-derived neurons following CRISPR-Cas9 editing, al-
lowing us to validate imputed promoter-enhancer regulatory link-
age from possible target genes involved in disease progression.

Although the precise molecular mechanisms driving PiD pathol-
ogy remain elusive, our study provides insights into the intricate 
landscape of gene regulation in PiD, particularly the challenges in 
interpreting distal regulatory elements. Our differential analyses 
highlight the utility of our identified promoter-enhancer links in 
elucidating regulatory mechanisms and revealed widespread chro-
matin accessibility and gene expression changes linked to PiD and 
AD pathology across major cell types. These alterations, spanning 
chromatin accessibility and expression of genes tied to synaptic sig-
naling, apoptotic pathways, neuronal activity regulation, cellular stress 
responses, and intercellular communication, may indicate compensa-
tory neuron-oligodendrocyte cross-talk that attempts to reestablish 
homeostasis by differentially modulating specific gene programs. 
Some promoter-enhancer connections facilitated increased chroma-
tin accessibility, potentially serving as a compensatory mechanism 
to mitigate the dysregulation of target genes. Other alterations, in-
cluding positive regulation of endocytosis, genes responsible for cel-
lular metabolic processes, and genes encoding cellular response to 
unfolded/misfolded protein in astrocytes and microglia, may con-
tribute to glial cell differentiation or immune activation in PiD and 
AD. Disruptions in the metabolic processes and cellular stress re-
sponse compromise the balance in the cellular microenvironment 
and consequently contribute to the progression of PiD and AD.

While the causative molecular mechanisms of PiD remain un-
known, our work offers insights that assist in unraveling the nature 
of gene regulation in PiD, especially regarding genomic loci with 
well-described heritable disease risk. We capitalized on the AD and 
FTD GWAS data to identify genes associated with phenotypic vari-
ability between PiD and AD because of similar pathological and 
clinical traits, such as tauopathies and cognitive decline. GWAS have 
been widely used to enhance our understanding of polygenic hu-
man traits and to reveal clinically relevant risk variants for neuro-
degeneration. Notably, we identified genetic risk variants that 
overlapped with specific cell types to narrow down the potential 
noncoding variants underlying disease susceptibility. Furthermore, 
our analysis revealed that AD GWAS genes showed a substantial 
overlap with DEGs in PiD cases, suggesting that these associations 
are not random. This highlights the potential convergent regulatory 
mechanisms that may be shared between PiD and AD, despite the 
distinct clinical manifestations. Although this method has enabled 
the investigation of cell type–specific disease-associated regulatory 
mechanisms, key limitations of the snATAC-seq assay without vari-
ant calling in PiD samples leave the opportunity for future studies 
and improvements.

Cell demise constitutes a defining characteristic of neurodegen-
erative ailments, including PiD and AD. More pronounced altera-
tions in chromatin accessibility and gene expression were observed 
in excitatory neurons and oligodendrocytes in PiD compared to 
AD. In agreement with a previously observed association of rapid 
progression and early disease onset in PiD compared to AD (3, 33), 
as well as spatiotemporal differences (7), we found an elevation in 
the fold change in chromatin accessibility of dysregulation among 
genes and TFs, especially in excitatory neurons. Additionally, in ex-
citatory neurons from PiD, we observed a complex regulatory 
mechanism that down-regulated genes strongly associated with in-
creased chromatin-accessible regions for the same genes through 
cis-regulated promoter-enhancer links, including genes responsible 
for neuronal activity and signaling, for example, UBE3A. A major con-
tribution of our study lies in the identification of cell type–specific 

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 13, 2025



Shi et al., Sci. Adv. 11, eads7973 (2025)     12 November 2025

S c i e n c e  A d v an  c e s  |  R e s e ar  c h  A r t i c l e

14 of 23

enhancer-promoter pairs, potentially facilitating gene-regulatory 
alterations in PiD and AD, along with the TFs likely to bind to these 
regulatory elements within the respective cell types. Our investiga-
tion into CREs and DNA binding motifs, particularly in regions 
harboring fine-mapped SNPs, has uncovered potential disruptions 
in regulatory relationships, exemplified by the anti-amyloidogenic 
gene ADAM10. These disruptions, proximal to disease-associated 
SNPs, may lead to diminished TF binding activity and subsequent 
dysregulation of target gene expression. Furthermore, our analyses 
used the gene-specific enhancer-binding TFs’ information to con-
struct a TF-regulatory network in neurons and demonstrated altera-
tions in PiD and AD. We also provide insights into the regulatory 
landscape of TFs in glial cells across PiD and AD. We identified dif-
ferential binding activities of TFs, such as SPI1, known as a major 
AD GWAS risk gene in microglia and associated with its develop-
ment, JUND in astrocytes, known for its strong correlations with 
pTau and Aβ, and transcriptional suppressors HES1 and ZBTB33 in 
oligodendrocytes, shedding light on their potential roles in disease 
pathogenesis. Moreover, the downstream dysregulation of TFs and 
genes associated with the highlighted TFs, including CX3CR1, MAPT, 
and FOXO1, emphasizes the intricate regulatory mechanisms im-
plicated in neurodegenerative processes, with some alterations 
shared between PiD and AD, while others are uniquely observed in 
either condition.

The identification of functional regulatory elements in human 
excitatory neurons and the validation of their functions in iPSC-
derived neurons enhance our understanding of epigenomic discovery. 
Leveraging these findings, we identified human-specific regulatory 
elements crucial for maintaining the integrity of cortical neurons in 
a neurodegenerative disorder, providing valuable annotations. Subse-
quent CRISPR-edited experiments in iPSCs confirmed the regulatory 
role of a putative enhancer in UBE3A expression. Furthermore, our 
observation of enriched chromatin accessibility near UBE3A in excit-
atory neurons, despite decreased UBE3A expression in snRNA-seq, 
highlights the complexity of gene regulation in the context of disease.

This study represents an important step in identifying PiD risk 
genes and leveraging TF occupancy to predict regulatory mecha-
nisms but has notable limitations. Small sample sizes, especially for 
rare cell types, limited the power of analyses, making it difficult to 
detect subtle gene expression changes and chromatin accessibility 
patterns at refined subcluster levels. Statistical noise and variability 
inherent to snRNA-seq and snATAC-seq data further complicated 
these analyses. DARs in snATAC-seq were not interpreted in isola-
tion in our study; instead, they were used in conjunction with TF 
differential binding analyses to support the identification of putative 
CREs linked to DEGs. This integrative approach mitigates the risk of 
overinterpreting noisy DARs and strengthens the biological relevance 
of our regulatory inferences. Nonetheless, to further improve statisti-
cal power and resolution, larger datasets and higher-resolution tech-
niques will be essential to improve robustness and resolution in 
future studies. Discrepancies in library preparation between PiD 
and AD datasets could introduce biases in data interpretation. To 
mitigate this, we compared disease versus control data within each 
study, applied stringent QC, and used normalization and batch ef-
fect correction to harmonize data while preserving biological sig-
nals. Additionally, the relatively high abundance of oligodendrocytes 
in our dataset may partially reflect technical factors related to nuclei 
isolation and capture efficiency; nonetheless, emerging evidence 
suggests that oligodendrocytes contribute to neurodegenerative 

processes, and future studies focusing on this cell type may offer 
valuable insights into the pathogenesis of PiD and AD.

Survival bias is another key limitation. Although we calculated 
a neuronal vulnerability module score, per Mathys et al. (60), to 
account for surviving neurons, this issue remains a challenge in 
single-cell studies. While our analysis included both surviving and 
vulnerable neurons in the PiD dataset, further investigation in dedi-
cated studies is needed. The absence of PiD-specific GWAS data 
presents another constraint, limiting the direct applicability of FTD 
GWAS fine-mapping results to PiD. Despite incorporating AD and 
FTD GWAS data for overlap analysis, PiD’s rarity and unique pa-
thology underscore the need for targeted genetic studies. Technical 
limitations, such as insufficient sequencing coverage and challenges 
with polymerase chain reaction (PCR)–based library preparation, 
also restricted our ability to analyze MAPT haplotypes (92), hinder-
ing a full exploration of the MAPT locus in PiD pathology.

Although the study highlights key regulatory dynamics, such as 
increased UBE3A enhancer accessibility, these changes do not al-
ways result in corresponding gene expression increases. Additional 
layers, such as nonsense-mediated mRNA decay (NMD) or disease-
related chromatin changes like relaxation and heterochromatin loss, 
could intervene and complicate these relationships. Future studies 
integrating advanced multi-omic approaches, including chromatin 
conformation assays and proteomics, will be crucial for unraveling 
the complex interplay between chromatin accessibility, gene expres-
sion, and disease-associated regulatory mechanisms in PiD.

Overall, our findings offer critical insights into the regulatory 
landscapes of PiD and AD, underscoring the value of integrated ge-
nomic approaches in unraveling the molecular mechanisms under-
lying neurodegenerative disorders. By highlighting the intricate 
interplay between transcriptional regulation and disease progres-
sion, this work emphasizes the need for a deeper understanding of 
these regulatory networks as a foundation for developing targeted 
and effective therapeutic strategies.

MATERIALS AND METHODS
Postmortem human brain tissue
Human postmortem frontal cortex brain samples were obtained 
from University of California, Irvine (UCI) MIND’s Alzheimer’s 
Disease Research Center (ADRC), Harvard, and Mt. Sinai tissue re-
positories. All participants, or participants’ legal representatives, 
provided written informed consent for the study. Tissue (50 mg) 
from each sample (n = 9 control brain and n = 7 Pick’s brain) was 
dissected and aliquoted into a 1.5-ml tube inside a prechilled tissue 
dissection box as described previously (93). Samples were also se-
lected based on several covariates, including age, sex, postmortem 
interval (PMI), and disease comorbidity. Sample information is 
available in table S1.

Immunofluorescence
Paraformaldehyde (PFA)–fixed human postmortem brain tissues 
(PFC region) were sectioned at 30 μm using a cryotome (Leica 
SM2010R). Sections were then rehydrated and washed in 1× sterile 
phosphate-buffered saline (PBS) and permeabilized using 1× sodium 
citrate buffer pH 6.0 (heated at 95°C for 10 min). After blocking 
with 3% bovine serum albumin (BSA) solution or serum, sections 
were incubated with diluted primary antibodies (as per the manu-
facturer’s recommendation) at 4°C overnight [IBA1 antibody, 
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catalog no. NC9288364, 1:1000, Fisher Scientific; GFAP polyclonal an-
tibody, catalog no. PA3-16727, 1:500, Thermo Fisher Scientific; p-tau 
(AT8), catalog no. MN1020, 1:250, Thermo Fisher Scientific; UBE3A, 
catalog no. 10344-1-AP, 1:1000, Proteintech; anti-neurofilament 
protein, catalog no. 837904, 1:1000, BioLegend]. Secondary anti-
bodies were selected and diluted according to the manufacturer’s 
instruction and incubated for 1.5 to 2 hours. Sections were then 
washed (3× with PBS), mounted, and coverslipped using anti-fade 
mounting medium. Slides were imaged (20×/40×/60×) using a 
Nikon ECLIPSE Ti2 inverted microscope. Images from three ran-
domly selected areas of each slice were used for analyses.

snATAC-seq tissue processing and nuclei isolation
Frozen brain tissue pieces were placed in 500 μl of chilled 0.1× Lysis 
Buffer [1× lysis buffer diluted with lysis dilution buffer; please refer 
to snATAC-seq protocol (93) for more details] and immediately ho-
mogenized 15 times using a pellet pestle (Fisherbrand Pellet Pestle 
Cordless Motor with RNase-Free Disposable Pellet Pestles, catalog 
no. 12-141-364). The homogenized tissues were then incubated for 
15 min followed by addition of 500 μl of chilled Wash Buffer and 
filtration through a 70-μm cell strainer (Miltenyi Biotec). In the next 
step, a sucrose gradient (Nuclei PURE Prep Nuclei Isolation Kit, 
catalog no. NUC201-1KT, Sigma-Aldrich) was prepared and nuclei 
were spun at 13,000g for 45 min at 4°C. After centrifugation, the 
debris and myelin from the top of the sucrose gradient were re-
moved. Nuclei were resuspended, washed, filtered (through a 40-μm 
cell strainer), counted (using a cell counter), and then incubated in 
a Transposition Mix.

snATAC-seq library preparation and sequencing
Transposed nuclei were loaded on 10x Genomics Next GEM Chip H 
(10x Genomics) to generate single-cell Gel Bead-in-emulsions (GEMs). 
GEMs were then transferred, incubated, and cleaned for further pro-
cessing. snATAC-seq libraries were prepared using the Chromium 
Single Cell ATAC v2 (10x Genomics) reagent kit as per the manu-
facturer’s instructions. Library size distribution and average frag-
ment length of each library were assessed with Agilent TapeStation 
High Sensitivity D5000 ScreenTapes, and the concentrations were 
quantified using a Qubit Fluorometer. Libraries were sequenced on 
a NovaSeq 6000 (Illumina) in paired-end mode (read 1N: 50 cycles, 
index i7: 8 cycles, index i5: 16 cycles, read 2N: 50 cycles) to generate 
approximately 500 million reads per sample.

snRNA-seq library preparation and sequencing
Fresh frozen brain tissue (PFC) (45 to 50 mg) was homogenized in 
EZ Lysis buffer (catalog no. NUC101-1KT, Sigma-Aldrich) and in-
cubated for 10 min on ice before being passed through a 70-μm fil-
ter. The fresh tube with filtered homogenate was then centrifuged at 
500g for 5 min at 4°C and resuspended in an additional 1 ml of lysis 
buffer. After another centrifugation, samples were incubated in 
Nuclei Wash and Resuspension buffer [1× PBS, 1% BSA, 0.2 U/liter 
ribonuclease (RNase) inhibitor] for 5 min. To remove myelin con-
taminants and debris, we prepared sucrose gradients and centri-
fuged the tubes at 13,000g for 45 min at 4°C. Next, a debris removal 
solution (catalog no. 130-109-398, Miltenyi Biotec) was added to the 
nuclei suspension (and centrifuged at 3000g for 10 min at 4°C) for a 
second round of cleanup. Debris-free clean nuclei suspension was 
then diluted in nuclei buffer (with BSA and RNase) before process-
ing with the Nuclei Fixation Kit (Parse Biosciences). After fixation 

and permeabilization, nuclei were cryopreserved with dimethyl 
sulfoxide (DMSO) until the day of library preparation. Libraries 
were prepared using EVERCODE WT V3 kit (Parse Biosciences) 
and quantified using Qubit dsDNA HS assay kit (catalog no. Q32851, 
Invitrogen). D5000 HS kit (catalog nos. 5067-5592 and 5067-5593; 
Agilent) was used for measuring the average fragment length of 
each library. Libraries were sequenced using Illumina NovaSeq 6000 
S4 platform (paired-end sequencing) for a sequencing depth of 
50,000 read pairs/nuclei.

Human iPSCs
The ADRC76 iPSC line (94) was provided by the UCI ADRC In-
duced Pluripotent Stem Cell Core. ADRC76 was generated from fi-
broblasts from an 83-year-old white male with no known disease. 
CRISPR/Cas9 editing was performed by UCI’s Stem Cell Research 
Center CRISPR Core to generate a homozygous deletion of the 
UBE3A enhancer region. Two guide RNAs were designed to the 
UBE3A enhancer region (chr15:25,479,200-25,482,595) and deliv-
ered with Cas9 as a ribonucleoprotein (RNP) complex via electro-
poration. Clone C-14 (UBE3A KD) was selected and used for all 
experiments. Sanger sequencing was used to confirm the deletion, 
revealing a 1-bp allelic difference in the deletion due to nonhomolo-
gous end joining (NHEJ) based DNA repair. Karyotyping was per-
formed by Cell Line Genetics to ensure genomic integrity after 
CRISPR/Cas9 editing. Immunocytochemistry was used to confirm 
expression of pluripotency markers OCT4, SOX2, and SSEA4.

Cortical neuron pellet generation
Cortical neurons were generated as previously described (88) with 
some modifications. Induced pluripotent cell lines were maintained 
in mTeSR Plus medium (STEMCELL Technologies, catalog no. 100-
0276) on GelTrex basement membrane (Thermo Fisher Scientific, 
catalog no. A1413302) and passaged using ReLeSR (STEMCELL 
Technologies catalog no. 100-0484) at 80% confluence in the presence 
of CEPT (Chroman1, Tocris, catalog no. 7163; Emricasan, Seleck 
Chemicals, catalog no. S7775; polyamine supplement, Sigma-Aldrich, 
catalog no. P8483; Trans-ISRIB, R&D Systems, catalog no. 5284) (95). 
UBE3A mutant and parental lines were transfected via Nucleofection 
(LONZA, catalog no. VPH-5022) of the PB-TO-hNGN2 (Addgene, 
catalog no. 172115*) plasmid and purified in the presence of puro-
mycin (200 ng/ml) (InvivoGen, ant-pr-1) until most cells showed 
plasmid expression as determined by blue fluorescent protein (BFP) 
expression. Once a high BFP expression had been established, iPSCs 
dissociated to single cell with Accutase (Thermo Fisher Scientific, 
catalog no. NC9464543) and seeded at 1 × 106 cells per GelTrex-
coated six well in Induction medium: Knockout Dulbecco’s modified 
Eagle’s medium (DMEM)/F12 (Thermo Fisher Scientific), N2 supple-
ment 100× (Thermo Fisher Scientific), and nonessential amino acids 
100× (Thermo Fisher Scientific), and supplemented with doxycycline 
at a final concentration of 1 μM (Sigma-Aldrich) and CEPT. The 
medium was changed every day. After 3 days, uridine (U) and fluoro-
deoxyuridine (FdU) were both added at 1 mM (Sigma-Aldrich, cata-
log nos. 3750 and 0503). On day 4, the induced cells were passaged 
as single cells with Accutase and seeded at 2 × 106 cells per poly-
d-lysine–coated six wells (Sigma-Aldrich, catalog no. P6407) in 
Cortical Neuron Culture Medium 1 (CM1): 1:1 Knockout DMEM/
F12:BrainPhys neuronal medium without phenol red (STEMCELL 
Technologies); B27 supplement, 50× (Thermo Fisher Scientific); 
brain-derived neurotrophic factor (BDNF) (10 μg/ml, STEMCELL 
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Technologies) in PBS containing 0.1% BSA (Thermo Fisher Scien-
tific); NT-3 (10 μg/ml, PreproTech) in PBS containing 0.1% BSA; glial 
cell line–derived neurotrophic factor (GDNF) (10 μg/ml, STEMCELL 
Technologies) in PBS containing 0.1% BSA; and laminin final con-
centration 1 μg/ml (Thermo Fisher Scientific), doxycycline (1 μM), 
U (1 μM), and FdU (1 μM). Cells were maintained for an addi-
tional 24 days with half-medium changes every 3 to 4 days first with 
CM1 (day 7) and then with Cortical Neuron Culture Medium 2 
(CM2) starting at day 10. CM2: BrainPhys neuronal medium with-
out phenol red (STEMCELL Technologies); B27 supplement, 50× 
(Thermo Fisher Scientific); BDNF (10 μg/ml, STEMCELL Technolo-
gies) in PBS containing 0.1% BSA (Thermo Fisher Scientific); NT-3 
(10 μg/ml, PreproTech) in PBS containing 0.1% BSA; GDNF (10 μg/
ml, STEMCELL Technologies) in PBS containing 0.1% BSA; and 
laminin final concentration 1 μg/ml (Thermo Fisher Scientific), dox-
ycycline (1 μM), U (1 μM), and FdU (1 μM). Three successive pas-
sages of each cell line were differentiated in parallel with pellets 
collected and flash-frozen for RNA-seq at D0, D4, and D28 along 
with PFA-fixed coverslips.

Cortical differentiation immunocytochemistry and 
image analysis
After 28 days in culture, cortical neuron populations were fixed with 
4% PFA (Fisher Scientific, #50980487) for 10 min at room tempera-
ture and then washed three times with PBS (Corning, #21030CV). 
Cells were permeabilized with 0.3% Triton X-100 (Sigma-Aldrich, 
#T8787) in PBS for 10 min and then blocked with 2% goat serum 
(Thermo Fisher Scientific, #16210-064), 3% BSA (Thermo Fisher 
Scientific, #15260-037), 0.1% Triton X-100, and 0.3 M glycine (Fish-
er Scientific, #BP381-1) in PBS for 1 hour at room temperature and 
then incubated in primary antibody diluted in block, overnight at 
4°C (anti-Nestin, 1:1000, Millipore, MAB5326; anti-MAP2, 1:1000, 
Synaptic Systems, 188004; anti-TBR1, 1:250, Abcam, ab31940). Pri-
mary antibody was removed, and cells were washed three times with 
PBS and then incubated for 1 hour in secondary antibody diluted 
1:1000 in block, in the dark at room temperature [Alexa Fluor Goat 
IgG (H+L) Secondary Antibody, Thermo Fisher Scientific]. Cells 
were washed with PBS for three times and then washed in PBS con-
taining Hoechst 33342 (Sigma-Aldrich, #14533) for 10 min and 
then a final wash in PBS. Coverslips were mounted with Fluoro-
mount-G (Fisher Scientific, #OB10001) and allowed to dry. The 40× 
images were acquired with an Olympus FLUOVIEW FV 3000 con-
focal microscope, and the 20× images were acquired at 20× on a 
Keyence BZ-X810 Widefield Microscope; four random images 
were taken per coverslip from each replicate differentiation. TBR1-
positive cells and total nuclei (Hoechst) were quantified using Imaris 
Spots tool (Imaris Single Full software, BITPLANE), while MAP2 
area was analyzed using Imaris Surface tool, and the colocalization 
tool was used to count the number of nuclei within the MAP2-
positive surface. Both MAP2-positive nuclei and TBR1-positive cell 
counts were normalized by total nuclei per image. TBR1 and MAP2 
expression values were analyzed using GraphPad Prism software us-
ing a Student’s two-tailed t test, assuming equal variance.

RNA-seq experiments with iPSC neurons
Total RNA was extracted from iPSC-derived neurons using the 
Direct-zol RNA Miniprep kit (Zymo Research) following the man-
ufacturer’s protocol. RNA quantity was measured using Qubit 

fluorometric quantitation, and RNA integrity was assessed using 
the RNA integrity number (RIN) on an Agilent 4100 Tapestation. 
Stranded total RNA-seq libraries were prepared using EvoPlus V2 
kits (Roche), multiplexed, and sequenced on an Illumina platform 
to an average depth of approximately 50 million reads per sample. 
Raw FASTQ files were aligned to the human reference genome 
(GRCh38) using RNA-STAR (v 2.7), and transcript abundances 
were quantified in transcripts per million (TPM) using Salmon 
(v 1.10). Genes with TPM values greater than 1 in at least 20% of 
the samples were selected for downstream analysis. Differential 
gene expression analysis was performed using a linear regression 
model that accounted for batch effects, including those from library 
preparation and sequencing.

Processing snATAC-seq data
We used Cellranger-atac count (v 2.0.0) to map raw snATAC-seq 
reads to the GRCh38 reference genome (downloaded from the 10x 
Genomics website) in each sample, quantifying chromatin accessi-
bility for each cell barcode. First, we used the ArchR function creat-
eArrowFiles to format the output of Cellranger-atac, removing 
barcodes with transcription start site (TSS) enrichment less than 4 
and fewer than 1000 fragments. This function also yields a barcode-
by-genomic-bin “tile matrix” and a “gene score matrix” that aggre-
gates chromatin accessibility information proximal to each gene. We 
next used the R package ArchRtoSignac (93) to convert our dataset 
from ArchR to Signac format to proceed with downstream analyses 
in Signac. We next performed analyses of our recently generated 
snATAC-seq samples from PiD donors and cognitively normal con-
trols with our previous snATAC-seq dataset of AD donors and con-
trols as the reference dataset. We filtered snATAC-seq data with 
thresholds of TSS enrichment >5 and fragment counts >1500, similar 
to the high-quality data standards established by Xiong et al. (27). Fol-
lowing this, we created a merged object of the PiD and AD snATAC-
seq datasets and generated an integrated, dimensionally reduced 
representation using the Seurat function FindIntegrationAnchors, with 
reciprocal latent semantic indexing (RLSI) as the dimensionality 
reduction method. Using this anchor set, we performed transfer 
learning with the Seurat function FindTransferAnchors to predict 
cell type identities for nuclei in the PiD dataset, based on anno-
tations from the AD dataset. This transfer learning analysis as-
signed a probability score to each nucleus in the PiD dataset for 
its cell type assignment. While some nuclei were confidently 
mapped to a single cell type, others showed ambiguous mappings 
across multiple cell types. To ensure high-confidence mappings, 
we filtered the PiD dataset to include only nuclei with a maximum 
prediction probability of 0.95. Subsequently, we conducted a final 
integrated analysis using LSI dimensionality reduction and Har-
mony, incorporating the biological sample as a covariate to ac-
count for batch effects. To ensure a fair and accurate comparison 
between PiD and AD, we implemented several measures, includ-
ing rigorous batch correction and evaluation of Uniform Mani-
fold Approximation and Projection (UMAP) visualizations of cell 
type distributions across datasets. These steps confirmed that the 
observed contrasts between case and control groups were not 
confounded by batch effects, enabling robust comparative analy-
ses of cell type distributions. But to avoid potential confusion in 
our experimental design and comparison, we replotted UMAPs 
(fig. S1C and Fig. 1, B to D) for PiD and AD separately against 
their respective control groups.
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Processing snRNA-seq data
We used split-pipe ParseBio pipeline (v 1.0.3) to map snRNA-seq 
reads to the GRCh38 reference transcriptome (downloaded from 
the Ensembl website) in each sample, quantifying unique molecular 
identifiers (UMIs) for each cell barcode. Next, we accounted for 
potential ambient RNA contamination by applying Cellbender 
remove-background (v 0.2.0) to model the ambient signal and re-
move it from the UMI count matrix for each sample. We then iden-
tified barcode mapping to multiple nuclei (multiplets) by applying 
Scrublet (v 0.2.3) with default settings to each sample. We applied an 
initial QC filter to remove barcodes with fewer than 250 UMI. Fur-
ther, we applied sample-specific filters to remove barcodes in the top 
5% of UMI, the percentage of mitochondrial reads, and the multi-
plet score within each sample. We finally applied a dataset-wide cut-
off to remove barcodes with greater than 20,000 UMI, greater than 
0.2 multiplet score, and greater than 5% mitochondrial reads, result-
ing in 68,999 barcodes for clustering analysis. We next performed 
clustering analysis with Scanpy with the following steps. First, we 
normalized gene expression for each cell by the total UMI counts in 
all genes and log transform using sc.pp.normalize total and sc.pp.
log1p. Second, we performed feature selection using sc.pp.highly_
variable_genes using the “Seurat v3” option for the feature selection 
method, retaining 3000 genes for downstream analyses. Third, we 
scaled the normalized expression matrix for these 3000 genes to unit 
variance and centered at zero mean using the sc.pp.scale function. 
Fourth, we performed linear dimensionality reduction with princi-
pal components analysis (PCA) using the sc.tl.pca function, which 
we then corrected on the basis of the sample of origin using Har-
mony. Fifth, we constructed a cell neighborhood graph using the 
top 30 harmonized PCs using sc.pp.neighbors function. We visu-
alized this cell neighborhood graph using UMAP with the function 
sc.tl.umap. We performed an initial round of Leiden clustering with 
a high-resolution parameter (resolution = 3) to reveal additional 
clusters of low-quality cells, which may have escaped our previous 
QC filtering, and to annotate major cell types based on a panel of 
canonical marker genes. After removing two low-quality clusters, 
we split apart the dataset by major cell lineages (excitatory neurons, 
inhibitory neurons, oligodendrocytes, and astrocytes) to perform 
subclustering analyses, yielding our final clustered and processed 
snRNA-seq dataset.

Differential accessible open chromatin analyses
We systematically performed the analyses of differential open chro-
matin accessibility across each cellular type. This involved contrast-
ing the disease states with their respective control conditions. For all 
the differential analyses used, differentially accessible peak scrutiny 
was facilitated by implementing logistic regression (test.use = “LR”) 
to draw comparisons between cellular groupings. Logistics regres-
sion was used based on the accessibility interface of a specified OCR 
within varying groups of the selected cell type. This is a protocol 
recommended by the Signac package (v 1.9.0) (96). The differential 
analyses were executed in Signac by deploying the same FindMark-
ers function found in Seurat (v 4.3.0). The accessible peaks that ex-
hibited an adjusted P value (corrected by Bonferroni method) of less 
than 0.05, accompanied by a minimum cellular fraction (min.
pct > 0.05) in either of the two groups, were categorized as dif-
ferentially accessible peak between the cellular groupings. We ran 
a comparative analysis of chromatin accessibility between the two 
diagnosis groups, specifically PiD and AD, and their age-appropriate 

cognitively normal counterparts. This was conducted within the hu-
man snATAC-seq dataset. The differential accessibility findings 
were visualized using a Complexheatmap (97), divided by diagno-
sis comparison and hierarchically aggregated based on the average 
log2FC of differentially accessible peaks. This enabled us to focus on 
changes specific to each cellular type within each genomic classifica-
tion. Finally, to single out the biological pathways and processes ex-
hibiting a notable enrichment within our promoter differentially 
accessible peak sets or promoters of cis-regulatory–associated dif-
ferentially accessible peaks present in distal and intronic regions, we 
invoked the support of the GREAT R package (v 2.0.2) (98,  99). 
Source of variation analysis was conducted using the varianceParti-
tion R package (v 1.32.5) (100) to assess the contribution of experi-
mental variables to variation in both gene expression and chromatin 
accessibility in single-cell data, and to inform covariate selection in 
both the differential gene expression and differential chromatin ac-
cessibility models (fig. S10, A and B). In addition, we systematically 
tested the effect of including different covariates on differential 
chromatin accessibility outcomes to evaluate model sensitivity and 
potential overfitting (fig. S10, C to G).

Differential gene expression analyses
We identified unbiased marker genes in each of our snRNA-seq 
clusters by a one-versus-all differential gene expression test using 
the Seurat (v 4.3.0) function FindAllMarkers with MAST as our dif-
ferential expression model. We used sequencing biological sample 
and total number of UMIs per cell as model covariates. We per-
formed differential expression analyses to compare gene expression 
signatures in cells from PiD and control samples in each of our ma-
jor cell types (excitatory neurons, inhibitory neurons, oligodendro-
cytes, OPCs, astrocytes, pericytes, endothelial cells, and microglia). 
Similar to our cluster marker gene test, we used MAST as our dif-
ferential expression module with biological sample, sex, and number of 
UMI as model covariates. We used the R package enrichR (v 3.0) to 
perform pathway enrichment analyses for the DEGs in our excit-
atory neuron population.

Statistical fine mapping of candidate causal variant residue 
within cell type–specific accessible peaks from the 
snATAC-seq data
We sourced comprehensive GWASs pertinent to AD (12) and fron-
totemporal degeneration (FTD) (13). The summary data pertaining 
to the AD GWAS were procured from the European Bioinformatics 
Institute GWAS Catalog (accession number: GCST90027158), while 
the FTD GWAS summary data were retrieved from the International 
Frontotemporal Dementia Genetics Consortium. To streamline the 
output files of the GWAS summary statistics from each dataset, we 
used a uniformly designed pipeline, MungeSumstats (101). The 
application of this tool was governed by parameters that have been 
specified comprehensively in our GitHub repository. To further elu-
cidate the role of SNPs pertaining to AD, we fine-mapped these 
SNPs within a 1-Mb window of the lead variants of AD risk loci that 
had been unearthed in the initial GWAS investigation (12). In addi-
tion to the AD SNPs, the detection of lead SNPs associated with 
FTD (13) required the identification of specific genetic markers en-
cased within a 1-Mb spectrum present on all chromosomes. The 
selection criteria for these markers were established based on the 
statistical significance of their corresponding P values. To accom-
modate all SNPs within the LD block, we estimated pairwise LD 
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between SNPs within the 1-Mb window of the GWAS lead variant. 
This estimation was performed using PLINK (v 1.9 and v 2.0) (102). 
Once the lead SNPs from the FTD and AD GWAS had been secured, 
the identified data were customized according to the corresponding 
1-MB range LD matrix, within the sparse multiple regression mod-
el. This model was then implemented in the fine-mapping instru-
ment, Sum of Single Effects (SuSiE) (103,  104). We managed to 
acquire a number of credible sets for identified FTD and AD GWAS 
risk loci with high probability (PIP > 0.95). To prioritize these cred-
ible sets, we aligned SNP locations with our snATAC-seq OCRs. The 
fine-mapped casual SNPs within the identified cell types were as-
sessed for credibility by cross-referencing the GWAS risk genes’ ex-
pression level across all cell types using control data from published 
resources (17, 20, 39). The final step included checking two scores—
the probability of being loss-of-function intolerant (pLI) and the 
loss-of-function observed/expected upper-bound fraction (LOEUF) 
for the prioritized GWAS risk loci. These scores reflect the integrity 
of a gene or transcript in tolerating protein-truncating variation (38).

Using publicly available datasets
We obtained the sequence data from three peer-reviewed snRNA-
seq studies related to AD (17, 20, 39). The datasets represented in 
the works of Mathys et al. (2019), and Zhou et al. (2020) were ac-
cessed via the Synapse platform (referenced under syn18485175 and 
syn21670836, respectively). In the context of the dataset for the 
Morabito et al. (2021) study, which was formulated by our research 
team, a download was not necessitated, but you can access it under 
syn22079621. Although the pipeline was largely consistent, there 
were minor deviations in terms of parameter adjustments as per the 
individual requirements of each dataset. A comprehensive delinea-
tion of these nuanced changes is documented in our GitHub reposi-
tory. Additionally, to enhance the reliability of our analyses, we 
incorporated PsychENCODE single-cell quantitative trait loci (sc-
QTL) datasets from Pratt et al. (34) and Emani et al. (35), DLPFC 
snRNA-seq scQTL data from Fujita et  al. (36), and neuronal and 
glial chromatin accessibility quantitative trait loci (caQTL) data from 
Zeng et al. (37). These datasets were leveraged to validate key findings 
from our snATAC-seq analyses. Specifically, we focused on significant 
eQTLs (P < 1 × 10−5) associated with fine-mapped GWAS genes within 
the TF-regulatory networks identified in this study. Furthermore, we 
cross-referenced our peak sets with Xiong et al.’s epigenomic data 
(27), further substantiating the robustness of our findings.

Finding co-accessible peaks with Cicero to establish putative 
enhancer-promoter linkage
We initiated the conversion of the SeuratObject into the CellDataSet 
framework using the as.cell_data_set function offered within the 
SeuratWrappers toolkit (v 0.3.0). This was subsequently trans-
formed into a Cicero object through the application of the make_ci-
cero_cds function taken from the Cicero package (v 1.3.4.11). The 
run_cicero function, a key component of the Cicero suite, was then 
used to calibrate the co-accessibility of open chromatin peaks across 
the genome for each cell type. The predominant objective here was 
to predict cis-regulatory interactions within a genomic window of 
300,000 bp. The construction of a linkage co-accessibility score for 
each associating pair of accessible peaks was completed using a 
graphical LASSO regression model. This package and approach 
were based on techniques detailed in the Cicero method (31). The 

understanding being that an increased co-accessibility score denot-
ed a stronger bond between an OCR pair and, hence, greater confi-
dence could be assigned to this pairing within a given dataset. 
Within the total ensemble of OCR pairs, we prioritized our exami-
nation on pairs identified as enhancer-promoter. The rationale for 
this selective focus stemmed from the potential for the enhancer-
enhancer pair’s co-accessibility score to originate from inherent 
enhancer-enhancer interactions. This in turn could lead to a per-
ceivable reduction in the co-accessibility scoring for the enhancer-
promoter pair. Last, a comparative study was undertaken to calculate 
the delta co-accessibility score within identical OCR pairs. In this 
step, diseased states were compared with their corresponding con-
trol settings. The purpose of this comparison was to highlight any 
enhanced enhancer-promoter linkages that could potentially be 
contributing to the advancement of the disease.

Characterizing biological functions of putative 
enhancer-promoter linkage
We used NMF (v 0.23.0) as implemented in the R NMF package us-
ing k = 25 matrix factors on the cis-regulatory–linked enhancer ac-
cessibility matrix averaged by each snATAC-seq cluster split by cells 
from PiD control and PiD samples, as well as AD control and AD 
samples, yielding 25 enhancer modules. The NMF basis matrix (W) 
was used to assign each enhancer to its top associated module, and 
the NMF coefficient matrix (H) was used to determine which cell 
cluster that each module was most associated with. We applied 
NMF with a factorization rank of k = 25 to decompose the enhancer-
by-cluster matrix derived from cis-regulatory–linked enhancer 
accessibility values. While the factorization yielded 25 enhancer 
modules, Fig. 2B highlights a focused subset of 9 modules that ex-
hibited clear cell type–specific accessibility patterns most relevant to 
the aims of the figure. The remaining modules were not excluded 
from downstream analysis, but were omitted from this particular 
plot to maintain visual clarity and focus. To identify biological pro-
cesses associated with these enhancer modules, we used the enrichR 
(v 3.0) package to query enriched GO terms for the set of target 
genes in each enhancer module in the GO Biological Processes 
2021, GO Cellular Component 2021, GO Molecular Function 2021 
databases, Human WikiPathway 2021, and Human KEGG 2021.

TF occupancy prediction on snATAC-seq 
chromatin accessibility
TOBIAS (56) stands as a robust, precise, and rapid footprinting 
framework, facilitating a comprehensive exploration of TF binding 
occupancy for numerous TFs concurrently on a genome-wide scale 
as well as at the gene-local region. We want to use this ATAC-seq 
analysis toolkit to investigate the kinetics of TF binding in PiD, AD, 
and their distinctions compared to respective control conditions, 
and we turn to TOBIAS for its capabilities as the ATAC-seq TF foot-
printing analyses toolkit. Our initial steps involved the extraction 
and categorization of cell barcodes based on both cell type and diag-
nosis. Subsequently, we compiled distinct .bam files for each con-
dition, serving as the requisite input format for the TOBIAS 
ATACorrect step. This particular tool within TOBIAS corrects the 
inherent insertion bias of Tn5 transposition. Following this correc-
tion process, the central task in footprinting commenced with the 
identification of protein binding regions across the entire genome. 
Using single–base pair cut site tracks generated by ATACorrect, 
TOBIAS FootprintScores was used to compute a continuous 
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footprinting score across these regions. This approach enhances the 
prediction of binding for TFs even with lower footprintability, char-
acterized by weaker footprints. Subsequently, the footprints were 
plotted using the function PlotAggregate to visualize and compare 
the aggregated signals across the specified conditions. This step 
serves to provide a tangible representation of TF binding occupancy 
and facilitates comparative analyses of these changes under different 
diagnosis conditions in each cell type.

TF-regulatory network construction
To construct a comprehensive TF-regulatory network, we integrated 
insights from Cicero (31) and TOBIAS (56). First, leveraging Cicero, 
we focused on the predicted cis-regulatory interactions within a 
300,000-bp window and grouped them based on the genomic class 
around its target gene identified by accessible promoter peaks. By 
prioritizing the examination of enhancer-promoter pairs within the 
ensemble of OCR pairs, we discerned potential interactions crucial 
for regulatory difference. Simultaneously, using TOBIAS, we ex-
plored TF binding activity in the selected gene-local region by ap-
plying ATAC-seq footprinting analyses to identify protein binding 
regions across the genome. Following that, we used knowledge of 
accessible peaks’ cis-regulatory activity and gene-local region TF 
binding activity to construct a TF-regulatory network for selected 
target genes using R package igraph (v 2.0.1.9005). This approach 
combines co-accessibility from Cicero and footprinting from TOBIAS, 
providing a nuanced perspective on the regulatory landscape. The 
resultant TF-regulatory network offers a multifaceted depiction of 
the interplay between TFs, enhancers, and promoters, enhancing 
our ability to decipher the intricacies of gene regulation in the con-
text of PiD and AD. In the network, top-selected genes were filtered 
to include only those with an adjusted P < 0.05 and expressed in at 
least 5% of cells (pct > 0.05). From this set, we further prioritized 
genes within the top 50% of co-access scores derived from cis-
regulatory link calculations, with TF binding on the CREs con-
firmed by TOBIAS package. Next, we retained the top 10 or fewer 
genes with the largest absolute log fold changes for both up-regulated 
and down-regulated genes associated with the selected TFs in the 
TF network.
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