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SUMMARY
Drugs of abuse can persistently change the reward circuit in ways that contribute to relapse behavior, partly
via mechanisms that regulate chromatin structure and function. Nuclear orphan receptor subfamily4 groupA
member2 (NR4A2, also known as NURR1) is an important effector of histone deacetylase 3 (HDAC3)-depen-
dent mechanisms in persistent memory processes and is highly expressed in the medial habenula (MHb), a
region that regulates nicotine-associated behaviors. Here, expressing the Nr4a2 dominant negative (Nurr2c)
in the MHb blocks reinstatement of cocaine seeking in mice. We use single-nucleus transcriptomics to char-
acterize the molecular cascade following Nr4a2 manipulation, revealing changes in transcriptional networks
related to addiction, neuroplasticity, and GABAergic and glutamatergic signaling. The network controlled by
NR4A2 is characterized using a transcription factor regulatory network inference algorithm. These results
identify the MHb as a pivotal regulator of relapse behavior and demonstrate the importance of NR4A2 as a
key mechanism driving the MHb component of relapse.
INTRODUCTION

Substance use disorder pathology includes an enduring risk of

relapse, encoded partly during drug taking when the activity of

drugs of abuse facilitates abnormally strong context/reward

memories. These memories underlie the triggering properties

of drug-associated cues and environments, and vulnerability to

these triggers can last decades. This persistence is partly attrib-

uted to the effects of drug-associated behaviors on epigeneti-

cally driven mechanisms which can cause long-lasting changes

in cell function and subsequent behavior. In the context of

neuronal function, epigenetics is defined as changes in gene

expression that are not attributable to alterations in the sequence

of DNA.

Histone deacetylase 3 (HDAC3; a powerful epigenetic regu-

lator) manipulations can both transform subthreshold learning

into long-term memory and generate abnormally persistent

forms of long-term memory,1 including cocaine-context-associ-

ated long-term memory.2 HDAC3 regulation of memory forma-

tion depends largely on nuclear orphan receptor subfamily4

groupA member2 (NR4A2), classifying Nr4a2 as a major epige-
C
This is an open access article under the CC BY-NC-ND
netic effector gene.1,3 Nr4a2 is an immediate-early gene and

transcription factor (TF),4 important for developing5 and main-

taining6 dopaminergic neurons, expressing genes involved in

dopamine signaling,6–9 and medial habenula (MHb) develop-

ment.10 Normally, HDAC3 binds to Nr4a2 promoters and sup-

presses expression, and in the nucleus accumbens Nr4a2

expression is increased in cocaine-exposed HDAC3flox/flox

mice.2 In wild-type mice, acquisition of cocaine-conditioned

place preference reduces HDAC3 occupancy at Nr4a2 pro-

moters, enabling a more permissive state for Nr4a2 expression

and linking Nr4a2 to cocaine-associated behaviors.2 Both

Hdac3 and Nr4a2 are highly expressed in a region important

for nicotine seeking and withdrawal, the MHb.11–13 Previous

work in our lab found that expressing the endogenously occur-

ring dominant negative form of Nr4a2, Nurr2c,14 in the cholin-

ergic neurons of the MHb reduced reinstatement of cocaine-

conditioned place preference, identifying a role for MHb

NR4A2 in cocaine-induced associative memory processes.

Here, we used the same approach to reduce NR4A2 function

in MHb cholinergic neurons (and other secondary cell types)

and studied volitional cocaine seeking and relapse using cocaine
ell Reports 43, 113956, March 26, 2024 ª 2024 The Authors. 1
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self-administration followed by a 30-day withdrawal. Animals

were then extinguished and reinstated. This approach allowed

us to assess the motivational aspect of drug seeking, which

we could not ascertain in our previous studies using conditioned

place preference.15,16 Using this gold-standard model for addic-

tion, we observed a near complete block of cued reinstatement

of cocaine seeking (but no differences in acquisition or extinc-

tion) after functionally suppressing MHb NR4A2, demonstrating

that MHb Nr4a2 regulates operant cocaine seeking in addition to

cocaine-associative memory.

To study the molecular changes associated with this promi-

nent behavioral shift and better understand the downstream ef-

fects of manipulating the TF NR4A2, we used single-nucleus

RNA sequencing (snRNA-seq) to perform an unbiased analysis

of the transcriptome, which revealed transcriptomic networks

regulated by NR4A2 that were related to addiction and neuro-

plasticity and were altered in specific subsets of MHb neurons.

Broadly, we identify MHb NR4A2 as a cocaine-sensitive relapse

regulator. Further, because nuclear orphan receptors such as

NR4A2 have druggable ligand-binding sites, NR4A2 is currently

a therapeutic target for multiple disorders including cancer, Alz-

heimer’s disease, Parkinson’s disease, and substance use dis-

orders.17,18 Here we provide the first sequencing dataset

showing how changes in NR4A2 function affect the expression

of its downstream targets, with important implications in addic-

tion, memory, and pharmacology research.

RESULTS

Expression ofNr4a2 dominant negativeNurr2c inmedial
habenula cholinergic neurons reduces reinstatement of
cocaine self-administration
To examine the MHb contribution to volitional cocaine seeking,

we used an intravenous cocaine self-administration model of

relapse to drug seeking19 (Figure 1A and STAR Methods) to

obtain the most translationally relevant measure of MHb

NR4A2 function in relapse. Considering that NR4A2 is drug-

gable,17,18 responsive to cocaine,20,21 and densely expressed

in the MHb, we chose to study the role of MHb NR4A2 in rein-

statement of cocaine seeking by using the Nr4a2 dominant

negative Nurr2c22 to reduce MHb NR4A2 function. The MHb is

anatomically small, and the ventral portion is densely cholin-

ergic. We used a transgenic mouse expressing Cre in cells

with choline acetyltransferase (ChAT) to constrain expression

of a Cre-dependent adeno-associated virus containing Nurr2c

(or GFP control) to theMHb (Figures 1B and 1C; STARMethods).

These mice were then trained to self-administer cocaine, which

was followed by a 30-day withdrawal used to drive craving and

reinstatement of cocaine seeking. During cocaine self-adminis-

tration, presses on the active lever exceeded presses on the

inactive lever in both groups (behaviorally experienced GFP:

F(1,20) = 76.11, p < 0.0001; behaviorally experienced NURR2C:

F(1,26) = 40.08, p < 0.0001; Figure 1D). During self-administration

there were no differences between groups in responses to the

active lever (F(1,22) = 0.093, p = 0.763, Figure 1D) or in the

amount of cocaine consumed (behaviorally experienced GFP

average = 23.46 rewards per session, behaviorally experienced

NURR2C average = 25.30 rewards per session, F(1,22) = 0.555,
2 Cell Reports 43, 113956, March 26, 2024
p = 0.464). After 30 days of homecage withdrawal there were

no differences between groups in extinction (F(1,18) = 0.161,

p = 0.693, Figure 1E). At the end of extinction (E5), all animals

received 10 min of cue priming to induce reinstatement, which

was followed by a 1-h cued reinstatement session. Behaviorally

experienced GFP mice showed high reinstatement compared

to behaviorally experienced NURR2C mice (t(22) = 3.814,

p = 0.0009, Figure 1F), demonstrating that NR4A2 in MHb

ChAT neurons contributes to relapse-like behavior and suggest-

ing a role for the MHb in drug-associated behaviors.

Single-nucleus RNA-seq of themouse habenula to study
the role of Nr4a2 in reinstatement of cocaine seeking
As NR4A2 has easily druggable ligand-binding sites, delineating

the downstream transcriptomic changes that occur after manip-

ulations of Nr4a2 has high value to a broad range of scientific and

medical fields of study. To examine NR4A2-dependent changes

in the transcriptome of the MHb after reinstatement, we per-

formed snRNA-seq (103Genomics v3, STARMethods) on habe-

nula tissue samples from mice that experienced cued reinstate-

ment of cocaine seeking. Tissue for snRNA-seq was taken from

mice that overexpressed Nurr2c (n = 6 behaviorally experienced

NURR2C) in the MHb and from control mice (n = 5 behaviorally

experienced GFP). We also included two additional groups to

control for the cocaine self-administration and reinstatement

experience, behaviorally naive NURR2C mice (n = 4) and behav-

iorally naive GFP mice (n = 4). Following stringent quality control

filtering based on sequencing metrics (STAR Methods), we re-

tained 109,881 nuclei for downstream analysis, making this the

largest snRNA-seq dataset of the mouse habenula to date23,24

(median unique molecular identifiers/cell: 3,110; median genes/

cell: 2,032; Figure S1). Using unsupervised dimensionality reduc-

tion and Leiden clustering25 on a transcriptomic cell neighbor-

hood graph, we identified 26 cell clusters belonging to 11 major

cell classes (STAR Methods), and we visualized these clustering

results using uniform manifold approximation and projection26

(UMAP, Figure 2A). We annotated Leiden clusters based on the

results of an unbiased cluster marker gene analysis (Figure 2B,

STAR Methods, and Table S1) and by inspecting the expression

of canonical habenula cell-type markers (a list of several genes

defined each cluster, see STAR Methods and Figure S2). In

sum, our clustering analysis revealed five MHb neuron popula-

tions (19,310 nuclei; MHb1–5), six lateral habenula (LHb) neuron

populations (19,882 nuclei; LHb1–6), and four perihabenular

(PHb) neuron populations (18,082 nuclei; PHb1–4), aswell as glial

and neurovascular cell populations including astrocytes (15,986

nuclei; ASC1–2), microglia (3,672 nuclei; MG), oligodendrocytes

(21,624 nuclei, ODC1–3), oligodendrocyte progenitors (3,882

nuclei; OPC), pericytes (1,748 nuclei; PER), endothelial cells

(2,237 nuclei; END), fibroblasts (403 nuclei; FBR), and ependymal

cells (3,055 nuclei, EPD). Integration and comparison of our data-

set with a published habenula snRNA-seq dataset supports our

cell clustering and annotation being consistent with the previous

literature23 (Figure S3).

Targeting medial habenula Nr4a2
We next validated the general approach of restricting Nurr2c

expression to MHb ChAT neurons. First, we wanted to verify



Figure 1. Expression of Nr4a2 dominant negative Nurr2c in cholinergic medial habenula neurons reduces reinstatement of cocaine seeking

(A) Experimental timeline. After receiving infusion and catheter surgeries, mice self-administered cocaine for 12 days in operant conditioning chambers (D1–12).

During self-administration, active lever presses resulted in a cocaine reward (8.5 mg/kg/infusion) plus a tone/light cue presentation. After 12 days of self-

administration, mice experienced a 30-day homecage withdrawal period. Mice were then extinguished in a single 5-h extinction session, in which lever presses

were inconsequential. Reinstatement was then induced by exposing mice to the drug-paired cues for 10min preceding a 1-h cued reinstatement session, during

which lever presses elicited cues but no cocaine rewards. Animals were sacrificed, and tissue was collected 1 h after reinstatement.

(B) Schematic of Nurr2c viral delivery to MHb and expression. Protein expression, fused V5 tag (green) compared to DAPI (blue). Scale bar, 100 mm.

(C) Transcript expression, BaseScope of MHb showing Nr4a2 (red) and Nurr2c (green) transcripts in GFP mice (left) and Nurr2c mice (right).

(D) Cocaine self-administration followed by 30-day homecage withdrawal. Data analyzed using two-way repeated-measures ANOVA. Error bars denote SEM.

GFP males n = 10, NURR2C males n = 14.

(E) Five-hour extinction session. Data analyzed using two-way repeated-measures ANOVA. Error bars denote SEM. GFP males n = 10, NURR2C males n = 14.

(F) Cued reinstatement. Gray circles indicate included in snRNA-seq analysis. Data analyzed using one-way ANOVA. Error bars denote SEM. **p < 0.01.
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expression levels of MHb Chat. Using our snRNA-seq dataset

we found that Nr4a2 expression was highest in habenula neuron

clusters (Figures 2C and 2D), and found higher expression of

Chat in MHb neurons relative to other cell types in both groups

of GFP mice and both groups of NURR2C mice (Figure 2D and

Table S1), indicating that the use of ChAT-Cre mice likely

restricted Nurr2c expression to MHb neurons. To verify endoge-

nous Nr4a2, validating Nr4a2 as a viable MHb target, we next

examined expression levels of MHb Nr4a2 and family members

Nr4a1 andNr4a3. In both groups of GFPmice (with noNr4a2ma-

nipulations),Nr4a2was higher in MHb neurons and LHb neurons

compared to other cell types, indicating an innate role for Nr4a2

in habenula neurons (Figure 2D and Table S1). In all groups,

expression of family members Nr4a1 and Nr4a3 was low across

all cell types (Figure 2D), indicating that targeting MHb Nr4a2 is

viable and that the Nurr2c manipulation does not lead to

compensatory expression of Nr4a1/3. We did find increases in
Nr4a2 +Nurr2c (labeled collectively asNr4a2 in Figure 2) expres-

sion in both groups of NURR2Cmice in MHb neurons, relative to

GFP controls, with minimal changes in non-neuronal cell types

(Figure 2D and Table S1). Clusters MHb 1, 2, 3, and 5 have

Chat expression, which correlates with increased Nr4a2 +

Nurr2c expression after Nurr2c infusions. In contrast, MHb-4

cluster has very little Chat, and correspondingly there is no

change in Nr4a2 + Nurr2c expression in Mhb-4 after the Nurr2c

infusion compared to GFP-infused mice. Because our short-

read sequencing approach that does not differentiate Nurr2c

and Nr4a2 transcripts, we conducted a BaseScope study in tis-

sue fromNurr2c-infusedmice using probes forNurr2c andNr4a2

that can distinguish between the two. We observed dense

expression of Nr4a2 in the MHb, with some sparse expression

in the LHb (Figure 1C, red); however, despite restriction to the

MHb by use of ChAT-Cre mice, Nurr2c transcripts were also

found across the greater anatomical region (Figure 1C [right],
Cell Reports 43, 113956, March 26, 2024 3
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Figure 2. Single-nucleus RNA-seq of the mouse habenula to study the role of Nr4a2 in reinstatement of cocaine seeking

(A) Uniform manifold approximation and projection (UMAP) plot where points correspond to individual nuclei for 109,881 nuclei profiled with snRNA-seq in the

mouse habenula. Points are colored by Leiden cluster assignment, and major cell types are annotated.

(B) Heatmap showing the scaled gene expression of the top five marker genes by average log2(fold change) from each of the 21 snRNA-seq clusters, based on a

one-versus-all iterative marker gene test for each cluster using a hurdle model (MAST).

(C) UMAP plot as in (A) colored by normalized expression of Nr4a2, split by nuclei from the behavior (left) and naive (right) groups and by NURR2C (top) and GFP

(bottom) treatment.

(D) Violin plots showing distributions of normalized gene expression for Nr4a1, Nr4a2, Nr4a3, and Chat, stratified by experimental groups. Two-sided Wilcoxon

test was used to compare NURR2C with GFP samples within the behaviorally experienced and naive groups. Not significant, p > 0.05; *p % 0.05, **p % 0.01,

***p % 0.001, ****p % 0.0001.

(E) UCSC Genome Browser snapshot of the Nr4a2 locus. Normalized snRNA-seq read pileup is shown for medial habenula (MHb) neurons, stratified by the four

mouse groups. Gene models from the GENCODE VM23 comprehensive transcript set are shown below the coverage tracks, highlighting the Nurr2c isoform of

Nr4a2 (ENSMUST00000183542.7). Exons 3, 7, and 8 are highlighted to showcase the distinct features of the Nurr2c isoform.
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green). We attributed this to high levels of Nurr2c transcription

after viral delivery or perhaps trafficking of transcripts within

the habenula complex. Most importantly, NURR2C protein is

restricted to the ventral MHb cells as expected. We validated

NURR2C protein expression using immunohistochemistry
4 Cell Reports 43, 113956, March 26, 2024
against the V5 tag and found that protein expression was

restricted to the ventral MHb (inset in Figure 1B, which replicates

what we observed in a previous study using this approach14),

despite broad expression of the mRNA transcript. snRNA-seq

read coverage at theNr4a2 locus on the UCSCGenomeBrowser
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Figure 3. Transcription factor regulatory networks in MHb neurons reveal group-specific NR4A2 target genes

(A) Schematic of our TF regulatory network analysis strategy. We scanned gene promoters for TFmotifs to define potential TF-gene relationships. We next used a

regression model to predict the expression of each gene based on the expression of TFs with motifs present in that gene’s promoter. The top five most predictive

TFs for each gene were retained to define the set of putative target genes for each TF (regulons), which we used to assemble TF regulatory networks.

(B) UMAPof the snRNA-seq dataset colored byUCell gene expression scores for NR4A2 target genes inMHb neurons in experienced and naive NURR2C groups.

(C) NR4A2 regulatory network in MHb neurons from the experienced NURR2C group. Nodes represent individual genes and are colored based on their rela-

tionship with NR4A2. Directed edges represent TF regulatory relationships, colored by TF-gene gene expression correlation.

(D) Network plot as in (C) for the experienced GFP group.

(legend continued on next page)
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shows that the snRNA-seq reads are unable to distinguish be-

tween Nr4a2 and Nurr2c at the three possible regions in which

these transcripts differ (highlighted in gray columns) but that

there are more reads in the NURR2C groups (which express

Nurr2c, behaviorally experienced = MHb NURR2C, behaviorally

naive = MHb NN) for Nr4a2 + Nurr2c than observed in GFP con-

trols (Figures 2E and S4). In summary, we found that both Chat

and Nr4a2 are highly expressed in the MHb (as expected) and

that NURR2C in theMHb does not lead to a compensatory effect

in the expression of Nr4a1 or Nr4a3.

Transcription factor regulatory network analysis reveals
NR4A2 as a key regulator of medial habenula neurons
NR4A2 is a TF and is thus able to modulate the expression of

many genes both directly via interactions with promoters or en-

hancers and indirectly by regulating other TFs that modulate

additional genes. Since our experiment included mice express-

ing a dominant negative isoform of NR4A2 and GFP controls,

we had a unique opportunity to probe our snRNA-seq dataset

to characterize the regulatory role of NR4A2 within the MHb.

We identified putative NR4A2 target genes and mapped

NR4A2 regulatory networks by employing a data-driven strategy

to infer MHb neuron TF regulatory networks for each of the four

mouse groups (behaviorally experienced NURR2C/GFP that

have gone through cocaine self-administration and reinstate-

ment, and behaviorally naive NURR2C/GFP; see STAR

Methods). TFs may have distinct and conserved regulatory sig-

natures across different cell types and experimental condi-

tions,27 motivating us to analyze networks separately in our

four groups, followed by a comparative analysis. Using the set

of genes in our snRNA-seq dataset, we first scanned gene-pro-

moter regions for the presence of TF-binding motifs for 660 TFs

from the JASPAR TF motif database to identify a list of potential

regulatory targets for each TF, including NR4A2 (Figure 3A). We

next used an ensemble learning algorithm (extreme gradient

boosting trees, XGBoost) to model the expression of each

gene based on the expression of its potential TF regulators.

This method allows us to compute TF regulatory scores, quanti-

fying how important a particular TF was for modeling the expres-

sion of a gene, therefore allowing us to identify the most likely

regulators of each gene. We assign a direction to the TF regula-

tory scores based on the sign of the gene co-expression of the

TF and the potential target gene. After repeating this process

for all potential TF-gene links from themotif scan, themost confi-

dent TF-gene regulatory links are retained to define ‘‘TF regu-

lons,’’ the set of putative target genes for each TF (STAR

Methods). Importantly, this approach can distinguish between

activating and repressing target genes of each TF based on

the sign of the TF regulatory score. Finally, these TF-gene regu-

latory links and regulons are assembled into a final TF regulatory

network (Figure 3A and Table S3). Importantly, we can use this

TF regulatory network to identify indirect targets of NR4A2 that
(E) Bar plots showing the number of primary and secondary NR4A2 target genes

(F and G) Network plot like that shown in (C) for the naive NURR2C (F) and naive

(H) Bar plots as in (E) for the networks from the naive mice.

(I and J) Selected pathway enrichment results for NR4A2 target genes identified in

genes with negative (left) and positive (right) gene expression correlations with N

6 Cell Reports 43, 113956, March 26, 2024
are mediated through other TFs, and in our analyses we distin-

guish these as primary (direct) and secondary (indirect) target

genes (STAR Methods). We used these MHb neuron TF regula-

tory networks to specifically probe the downstream regulatory

targets of NR4A2 in our four mouse groups. We first computed

composite gene expression scores (UCell) for NR4A2 target

genes in the behaviorally experienced and naive NURR2C

groups, revealing a broad regulatory impact of NR4A2 in MHb

neurons (Figure 3B and STAR Methods). We next visualized

the network comprising NR4A2 and its primary and secondary

target genes in the behavior NURR2C and GFP groups

(Figures 3C and 3D). In the NURR2C network, we found 714 pri-

mary target genes and 2,110 secondary target genes, and in the

GFP network we identified 451 primary and 2,249 secondary

target genes (Figure 3E). Of these genes, 26 primary and 125

secondary targets were TFs in the NURR2C network, while 14

primary and 108 secondary targets were TF genes in the GFP

network.

One of the primary targets of NR4A2 is Ctcf, which codes for

CCCTC-binding factor (CTCF), a highly conserved master regu-

lator of 3D chromatin topology and architecture that can alter in-

teractions between enhancer and promoter regions.28,29 NR4A2

was only predicted as a transcriptional regulator of Ctcf based

on our network analysis of the behavior NURR2C group (Table

S3). This regulatory relationship between NR4A2 and Ctcf in

MHb neurons could mediate downstream effects on the 3D

genome structures of MHb neurons, and CTCF-mediated epige-

netic regulation remains understudied in the habenula in the

context of addiction. Two of the other primary TF targets of

NR4A2 in NURR2C mice, Tcf4 and Ppard (coding for TF 4 and

peroxisome proliferator-activated receptor d, respectively),

target Nr4a2 based on our network analysis, effectively forming

a regulatory feedback loop. Tcf4 is a known genetic risk factor

for neuropsychiatric disorders including schizophrenia and

autism spectrum disorder,30,31 and neuronal expression of

Tcf4 has been linked to neuronal differentiation in embryogen-

esis32 as well as structural and functional integrity of adult neu-

rons.33 On the other hand, Ppard is a ligand-activated TF

involved in lipid metabolism and, while its role is not well under-

stood in habenula neurons, it has been implicated in adult neuro-

genesis and neuronal stem cell fate determination.34 When we

investigated TF regulatory networks in the behaviorally naive

NURR2C and GFP mice, we observed conserved and distinct

TF-gene regulatory patterns compared to the behavior groups,

including the link between Tcf4 and Nr4a2 (Figures 3F–3H). We

compared the NR4A2 TF regulatory scores and the sets of

NR4A2 target genes between the four experimental groups,

and while many regulatory targets were conserved across

groups even more targets were group specific (Figure S5). To

further understand which biological processes are potentially

regulated by NR4A2 in the MHb, we performed pathway enrich-

ment analysis in the sets of NR4A2 primary target genes,
identified in the NURR2C and GFP groups in the experienced mice.

GFP (G) groups.

NURR2C for the experienced (I) and naive (J) groups. Results shown for target

r4a2.
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Figure 4. Transcriptomic changes in habenula neurons following NURR2C perturbation in behaviorally naive mice

(A and B) Volcano plots showing NURR2C vs. GFP differential gene expression results in MHb (A) and LHb (B) neurons. Top five up- and downregulated DEGs by

log2(fold change) are annotated. Genes are stratified by NR4A2 target gene status.

(C) Rank-rank hypergeometric overlap (RRHO) heatmaps comparing effect sizes from NURR2C vs. GFP differential expression tests between the MHb and LHb

groups. Pearson correlation coefficients are shown.

(D) Euler diagrams showing overlap of DEGs up- and downregulated in NURR2C from the MHb and LHb neuron analyses. Fisher’s exact test statistics for the

overlaps are shown.

(E) Bar plot showing the number of DEGs (absolute log2(fold change) > 0.25 and adjusted p < 0.05) stratified by NR4A2 target gene status.

(F–H) Selected pathway enrichment results for genes upregulated in LHb neurons (F), downregulated in MHb neurons (G), and upregulated in MHb neurons (H).
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stratifying by activating and repressing target genes (Figures 3I

and 3J; Table S4; STARMethods). In both the behavior and naive

NURR2C networks, NR4A2 primary target genes were enriched

for pathways associated with critical neuronal functions such as

neurotransmission, synaptic assembly, and neuroplasticity.

Nr4a2 is a known target of the epigenetic regulator HDAC3,

and this analysis identified that pathways associated with epige-

netic regulation, specifically histone modifications and acetyla-

tion, were enriched in these NR4A2 primary target genes. In

sum, this analysis illuminates key genes, TFs, and pathways

that are regulated by NR4A2 in MHb neurons. Critically, we

note that these putative TF-gene relationships are based on a

computational model and therefore require further study and

validation to comprehensively understand the regulatory land-

scape of habenula neurons.

Nr4a2-dependent changes in the habenula
transcriptome in behaviorally naive mice
To obtain a baseline response in changes to the transcriptome

resulting from NURR2C, we first identified differentially ex-

pressed genes (DEGs) in our behaviorally naive groups

(NURR2C and GFP). We performed differential gene expression

tests comparing nuclei from behaviorally naive NURR2C and

behaviorally naive GFP in each major cell type, and we high-
lighted the results for the MHb and LHb neuron populations

(Figures 4A, 4B, and S6; Table S5). We stratified our DEG results

within these cell populations by putative primary and secondary

NR4A2 target genes and other non-target genes, and we identi-

fied significant DEGs in each of these gene groups (Figures 4A

and 4B). Pairwise rank-rank hypergeometric overlap (RRHO)

analysis comparing genes ranked by log2(fold change) showed

broad similarities between NURR2C and GFP differential

expression effect sizes for the MHb and LHb neuron DEG tests

(Figure 3C). In a gene set overlap of DEGs significantly up- or

downregulated (adjusted p < 0.05; log2(fold change) > 0.25 for

upregulated; log2(fold change) < �0.25 for downregulated), we

found that only 38 genes were significantly upregulated in both

MHb and LHb neurons and just six genes were significantly

downregulated in both MHb and LHb neurons. Both overlaps

were statistically significant based on Fisher’s exact test

compared to the background set of genes in our dataset (Fig-

ure 4D, upregulated overlap p = 7.2e�62, downregulated over-

lap p = 3.2e�13). Together, this overlap analysis shows that

MHb and LHb neurons share some genes with changing expres-

sion levels, but also that most of the genes in habenula neurons

change in ways that are specific to the type of neuron in which

they are found. Many of these significant DEGs were primary

or secondary target genes of NR4A2 based on our TF regulatory
Cell Reports 43, 113956, March 26, 2024 7
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network analysis (Figure 4E). One of the top genes downregu-

lated in NURR2C that was a primary target of NR4A2 in the

MHb was Kcnip4, which codes for a potassium voltage-gated

channel interacting protein involved in neuronal excitation, which

has links to substance use disorder.35 Furthermore, one of the

top genes upregulated NR4A2 targets in the MHb was H3f3b,

which codes for a member of the histone H3 family. Pathway

enrichment analysis of these DEGs highlighted biological

processes that were altered in the NURR2C manipulation

(Figures 4F–4H). Terms associated with RNA splicing and chro-

matin remodeling were enriched in genes upregulated in

NURR2C mice in both the MHb and LHb neurons, and we found

terms associated with synaptic functions enriched in genes

downregulated in NURR2C mice in MHb neurons (Figures 4F–

4H). Overall, this differential gene expression analysis provides

a baseline understanding of transcriptional changes in our

NURR2C manipulation in behaviorally naive mice and provides

a basis of comparison for behaviorally experienced mice with

the same MHb manipulations that have been through cocaine

self-administration and reinstatement.

Nr4a2-dependent changes in the habenula
transcriptome after reinstatement of cocaine seeking
Consideration of the MHb as a regulator of relapse behavior for

non-nicotine drugs is novel enough that the governing mecha-

nisms within the MHb are nearly completely unknown. Based

on our previous work,14 we strongly suspected that Nr4a2 levels

and function were directly linked to reinstatement of cocaine

seeking. Because reinstatement behavior was reduced in

NURR2C mice, we next examined the mechanisms by which

NR4A2 may be regulating reinstatement. To quantify the effect

of the transcriptome-wide perturbation in behaviorally experi-

enced reinstated NURR2C mice, we used a graph signal-pro-

cessing algorithm (MELD)36 to estimate the relative likelihood

that a cell was observed in NURR2C or GFP in a low-dimensional

manifold derived from cells in both conditions, thereby yielding a

Nurr2c perturbation score for each cell (Figure 5A and STAR

Methods). While we know the ground-truth origin of each cell

(NURR2C or GFP), some cells have highly similar transcriptomes

across the different conditions while other cells undergo vast

transcriptional changes, and this approach attempts to bridge

this gap in our understanding bymodeling a continuousmeasure

of perturbation effects in transcriptomic space with a relative

likelihood estimate. The distribution of these relative likelihood

scores in each snRNA-seq cluster revealed the clusters with

the strongest predicted Nurr2c-induced transcriptomic pertur-

bation, highlighting clusters LHb-2, PHb-1, MHb-1, MHb-5,

and MHb-2. These data show that reducing NR4A2 function in

MHb ChAT neurons strongly affected gene expression in not

only MHb neuron clusters but also LHb neuron clusters, sug-

gesting functional interplay between these adjacent and con-

nected regions37 relevant to reinstatement of cocaine seeking.

Next, we systematically identified DEGs between NURR2C and

GFP in each cell type (NURR2C DEGs) for mice in the behavior-

ally experienced group, and we highlight the results for the

neuronal populations, which we stratified by putative primary

NR4A2 targets, NR4A2 secondary targets, and probable non-

targets (Figures 5B, 5C, and S6; Table S5).
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Group-dependent changes in gene expression were found in

MHb and LHb neurons as well as non-neuronal cell types

(Figures 5B, 5C, and S6), indicating an integrated function for

Nr4a2 within the MHb. By applying RRHO analysis to the behav-

iorally experienced NURR2C vs. GFP differential expression

analysis, we were able to rank genes by log2(fold change) and

compare genes in MHb neurons to genes in LHb neurons and

found little concordance of DEG effect sizes between these

groups (Figure 5D). In particular, the DEGs that were primary or

secondary NR4A2 target genes showed worse concordance be-

tween MHb and LHb neurons than the other genes, and in gen-

eral the correlations in these effect sizes were low, indicating that

MHb and LHb neurons broadly had distinct sets of DEGs (Fig-

ure 5D). We further inspected this trend through gene set overlap

analysis of genes significantly upregulated (adjusted p < 0.05;

log2(fold change) > 0.25) or significantly downregulated

(adjusted p < 0.05; log2(fold change) < �0.25) in NURR2C in

the MHb and LHb neurons, finding small yet statistically signifi-

cant overlaps (Figure 5E). Out of 453 genes that were downregu-

lated in NURR2C in MHb neurons, only three overlapped with

genes downregulated in LHb neurons, and only four of the

DEGs upregulated in NURR2C were shared across MHb and

LHb neurons. Together, this overlap analysis comparing MHb

and LHb neurons shows distinct gene expression changes in

response to NURR2C, indicating a synergistic interplay of

altered genes and pathways across MHb and LHb neurons, ulti-

mately leading to an altered behavioral phenotype.

For the MHb neuron population in behaviorally experienced

mice, we found that H3f3b, a primary NR4A2 target gene,

was one of the top downregulated DEGs in NURR2C (Fig-

ure 5B), while it was one of the top upregulated DEGs in

NURR2C in behaviorally naive mice (Figure 4A). This demon-

strates a specific example of an altered TF regulatory regime

in behaviorally experienced mice and further implicates the his-

tone H3 as a critical structural and regulatory component in the

context of addiction in the habenula. Gabbr1 (encodes GABAB

subunit) was downregulated in MHb and LHb neurons, indi-

cating a change in habenular GABAergic transmission in

behaviorally experienced NURR2C mice compared to behav-

iorally experienced GFP mice. Within the MHb, GABAB

receptor activation increases excitatory output from the MHb

to its main projection region, the interpeduncular nucleus.38 Us-

ing pathway enrichment analysis in the genes downregulated in

NURR2C MHb neurons, we found enrichment for terms associ-

ated with neuronal function such as synaptic organization,

signal transduction, and actin cytoskeleton, as well as histone

deacetylase binding (Figure 5F). The set of DEGs upregulated

in NURR2C in the LHb neurons were enriched for terms related

to neuronal activity and neurodevelopment (Figure 5H). Overall,

we found that most DEGs were downregulated in NURR2C in

the MHb neurons, implying that the dominant negative form

of NR4A2 initiates a regulatory cascade leading to the downre-

gulation of many genes in MHb neurons (Figure 5G). Since

many of these DEGs were not primary NR4A2 regulatory tar-

gets, this analysis highlights the importance of the broader

NR4A2 TF regulatory network and other epigenetic mecha-

nisms that are contributing to the molecular and behavioral

phenotypes observed in our experiment.
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Figure 5. NURR2C induces transcriptomic changes in habenula neurons

(A) MELD relative likelihood analysis to quantify the effect of the Nurr2c transcriptomic perturbation in single nuclei. Box-and-whisker plots are shown for relative

likelihood scores in each cluster. Clusters are ordered by median MELD scores for neuronal and non-neuronal groups.

(B and C) Volcano plots showing NURR2C vs. GFP differential gene expression results in MHb (B) and LHb (C) neurons. Top five up- and downregulated DEGs by

log2(fold change) are annotated. Genes are stratified by NR4A2 target status.

(D) Rank-rank hypergeometric overlap (RRHO) heatmaps comparing the effect sizes from NURR2C vs. GFP differential expression tests between the MHb and

LHb groups. Pearson correlation coefficients are shown.

(E) Euler diagrams showing the overlap between DEGs up- and downregulated in NURR2C from the MHb and LHb neuron analyses. Fisher’s exact test statistics

for the gene set overlaps are shown.

(F andG) Selected pathway enrichment results for genes downregulated (log2(fold change) <�0.25) inMHb neurons and selected for genes upregulated (log2(fold

change) > 0.25) in LHb neurons.

(H) Bar plot showing the number of DEGs (absolute log2(fold change) > 0.25 and adjusted p < 0.05) stratified by NR4A2 target gene status.

(I and J) Comparison of differential expression effect sizes from NURR2C vs. GFP between the experienced and naive groups. Genes that are consistently or

inconsistently up- or downregulated are colored blue or green, respectively, and the number of genes in these groups are shown in the corners of each plot.

(K and L) Euler diagrams showing the overlap betweenDEGs up- and downregulated in NURR2C from the experienced and naive groups forMHb neurons (K) and

LHb neurons (L). Fisher’s exact test statistics for overlaps are shown.
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To determine which of the changes to the transcriptome were

caused by the NURR2C manipulation and which were a result of

the effect of NURR2C on reinstatement of cocaine seeking, we

compared the DEGs found between behaviorally naive baseline

groups (NURR2C and GFP, Figure 4) to the DEGs found between

behaviorally experienced reinstated groups (NURR2C and GFP,

Figure 5) and found very little concordance (Figures 5I and 5J).

Wedirectly visualized theNURR2Cvs.GFPdifferential expression

effect sizes between the behaviorally naive groups and the behav-

iorally experienced groups and highlighted genes that were
concordant in the upper right (upregulated in both) and lower left

(downregulated in both) corners of the plot, andwe showedgenes

that were discordant between the analyses in the upper left and

lower right corners. This analysis was further stratified by NR4A2

target gene status. Out of the primary NR4A2 target genes, only

one gene, Ebf1, was consistently upregulated in NURR2C for

bothour behaviorallyexperiencedandourbehaviorally naive com-

parisons,andnogeneswereconsistentlydownregulated (Figure5I

andTablesS5andS6). TheEbf1genecodes for the protein earlyB

cell factor 1 (also known as TFCOE1), a TF that is typically studied
Cell Reports 43, 113956, March 26, 2024 9
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Figure 6. Co-expression network analysis of MHb neurons reveals addiction-associated gene modules

(A) UMAP of the gene co-expression network in MHb neurons from the behaviorally experienced animals. Nodes represent genes, colored by module

assignment, and the top three hub genes are annotated for each module as well as other selected genes. Edges represent co-expression relationships

(downsampled for visual clarity).

(B) snRNA-seq UMAP plot of the MHb neuron population colored by module eigengene (ME) for each co-expression module. Bottom right UMAP plot shows the

same UMAP colored by the five MHb neuron clusters.

(C) Selected GO-term enrichment results for each co-expression module.

(D) Violin plots showing MEs in each MHb neuron cluster, with median values marked with a horizontal line.

(E) Heatmap showing differential module eigengene (DME) results comparing NURR2C vs. GFP for eachmodule in eachMHb neuron cluster. Wilcoxon rank-sum

test was used for the comparison with Bonferroni p value adjustment: not significant, p > 0.05; *p % 0.05, **p % 0.01, ***p % 0.001, ****p % 0.0001.

(F) Left: bar chart showing the number and proportion of NR4A2 target genes in each module. Right: gene overlap statistics from Fisher’s exact test for modules

and NR4A2 targets. 3 denotes p > 0.05.

(legend continued on next page)
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in the context of B cell differentiation,39 and has also been impli-

cated in dopaminergic neuronal development.40 Furthermore,

geneset overlap analysis comparing the upregulated anddownre-

gulated genes in the MHb and LHb neuron population revealed

some small yet statistically significant overlaps, with six of the up-

regulated genes overlapping (p = 1.1e�11) and four of the down-

regulated genes overlapping (p = 0.026) in the MHb neurons

(Figures 5K and 5L). Additionally, Nr4a2 was the only gene that

overlapped in the LHb neuron comparison (Figure 5L), most likely

a reflectionofNurr2cexpression.Overall thiscomparativeanalysis

revealed distinctive transcriptional responses in the habenula

following NR4A2 manipulation between the behaviorally naive

and behaviorally experienced groups, suggesting it is the com-

bined effect of the NURR2C on NR4A2-dependent transcription

and animals undergoing reinstatement. This is perhaps not sur-

prising considering reinstatement induces a wave of gene expres-

sion thatmaybenecessary for reconsolidationor extinctionmech-

anisms following reinstatement.

Co-expression network analysis ofMHbneurons reveals
addiction-associated gene modules
Following our analysis of NR4A2-dependent gene expression,

we sought to investigate the systems-level transcriptomic

changes in MHb neurons induced by expressing Nurr2c. There-

fore, we performed gene co-expression network analysis in the

MHb neuron population of behaviorally experienced mice to

study the cascade of transcriptional changes extending beyond

the direct targets of NR4A2 using hdWGCNA (STAR Methods).

We represented the network structure of genes with similar

expression profiles as a signed topological overlap matrix

(TOM) and hierarchically clustered genes in this network to

reveal key biological systems and processes involved in MHb

neurons. Using this approach, we identified nine co-expression

modules (M1–M9; Table S9), and we visualized the network by

projecting the TOM into a non-linear manifold using UMAP (Fig-

ure 6A). In general, co-expression modules are groups of genes

that have similar gene expression profiles across different bio-

logical samples or cell populations and are typically functionally

related via shared biological pathways or are co-regulated.

Highly connected members of co-expression networks, termed

‘‘hub genes,’’ are the core players of critical biological pro-

cesses, and we visualized the top three module hub genes on

the TOM UMAP (Figures 6A and S7). We inspected module ei-

gengenes, a metric summarizing gene expression for an entire

co-expression module, in single cells to reveal cell-type patterns

of network activity, allowing us to relate these networks and pro-

cesses to subpopulations of MHb neurons (Figure 6B). Pathway

enrichment analysis associated MHb co-expression modules

with gene ontology (GO) terms related to addiction, neuroplastic-

ity, GABAergic signaling, and other cellular processes such as
(G) TF-TF regulatory network showing Nr4a2 and its putative primary and second

(A). Nodes (genes) are colored by module assignment. Edges are directed and

outgoing edges from secondary NR4A2 targets are not shown. Non-TF genes ar

(H) Bar plot showing the ranking of 29 TF-coding genes that were primary NR4A

(I) Heatmaps showing TF-TF interaction strength between co-expression module

the TF-TF correlations. Bottom heatmap shows the difference between activatin

(J) Dot plot of scaled gene expression of the 29 primary NR4A2 target TF-coding
ion transport, cell signaling, and lipid processing (Figure 6C

and Table S10). Nr4a2 itself is a member of module M1, which

contains genes associated with RNA splicing, histone modifica-

tion, neurodevelopment, and neuronal plasticity (Figures 6A and

6C). Hdac3, which we have previously described as having an

important regulatory role withNr4a2, was identified as amember

of module M1, further supporting this relationship. We further

characterized these modules by performing differential module

eigengene analysis to compare NURR2C and GFP in behavior-

ally experienced animals (Figures 6D and 6E; STAR Methods).

As in our differential expression results of these groups, most

of the significant results (adjusted p < 0.05) were for modules

downregulated in NURR2C, while modules M7, M8, and M9

were upregulated in specific MHb neuron subpopulations (Fig-

ure 6E). Module M6 (nicotine addiction, synaptic function) was

the only module that was not differentially expressed between

NURR2C and GFP in any of the MHb neuron subpopulations.

On the other hand, module M4 (addiction, neurodevelopment,

synaptic function and plasticity), which contains hub genes

Grin2a and Gabra2, was downregulated in NURR2C for three

MHb neuron subpopulations. We next inspected the composi-

tion of each gene module for primary and secondary NR4A2

target genes, and we found a significant overlap between pri-

mary NR4A2 target genes and all co-expression modules except

module M5 (Figure 6F). Together, these analyses implicate the

addiction-related module M4 as a downstream regulatory target

of NR4A2 that is significantly downregulated in behaviorally

experienced NURR2C animals in threeMHb neuron populations.

Module M8 contains hub genes related to synaptic transmission,

including Gabra2, Grin3a, and Grin2a, as well as neuronal sup-

port genes including Cntn5, Amph, and Kcnh5.

We next investigated NR4A2 regulatory targets from the

NURR2CMHb neurons in the context of our co-expression mod-

ules, paying specific attention to TF-TF regulatory links (STAR

Methods). We visualized the genes in the co-expression module

UMAP and highlighted NR4A2 and the set of TFs that are primary

NR4A2 targets (Figure 6G). This network broadly shows inter- and

intramodular regulatory dynamics between TFs, and it shows that

some modules (M4, M6, and M9) do not contain any primary

NR4A2 targets that areTFs.We rankedeachof theTF targetgenes

ofNR4A2 by their regulatory importance score and highlighted the

top tenTFswhoseexpressionwaspositively correlatedwithNr4a2

and all seven of the TFs whose expression was negatively corre-

lated with Nr4a2 (Figure 6H). We next looked beyond the NR4A2

regulatory network toward all 143 TFs in our co-expression

network to study the TF-TF regulatory relationships between

different co-expression modules. We counted the number of TF-

TF links where the source TF and target TF were assigned to

different modules, and we stratified these links by ‘‘activating’’

and ‘‘repressing’’ based on the sign of the TF-TF co-expression.
ary targets in NURR2CMHb neurons, shown on the co-expression UMAP as in

represent directed TF-TF regulation. Primary NR4A2 targets are labeled, and

e shown in the background.

2 ranked by regulatory scores.

s. Interactions are split between activating and repressing based on the sign of

g and repressing.

genes.
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We also normalized these counts to the total number of TFs pre-

sent in thesourcemodule, therebyobtainingactivatingand repres-

sing link scores that quantify TF-mediated regulatory relationships

between co-expression modules (Figure 6I and STAR Methods).

Furthermore, we subtracted the activating and repressing regula-

tory scores to highlight instances where there were greater

numbers of activating or repressing TF-TF interactions across

modules. This analysis revealed important regulatory signatures,

such as a negative feedback loop between modules M1 and M3.

In general, this analysis showed that module M1 (containing

Nr4a2) had an overall repressing regulatory relationship with six

of the othermodules (M3,M4,M5,M6,M7, andM9). Furthermore,

investigating the gene expression patterns of the primary NR4A2

target TFs revealedsignatures specific toMHbneuron subpopula-

tions (Figure 6J).

We next assessed the reproducibility of these co-expression

modules by projecting these modules into the Hashikawa et al.

habenula snRNA-seq dataset23 and performing module preser-

vation analysis (Figure S7), and these results generally supported

the robustness and reproducibility of our analysis in an indepen-

dent dataset. We also performed a similar module preservation

test in MHb neurons from our behaviorally naive mice, and we

found that all modules were either moderately or highly pre-

served (Z-summary preservation >2 and >10, respectively)

except module M2. Considering that our other modules were

preserved in the Hashikawa dataset and in the behaviorally naive

mice, this comparative analysis implicates module M2 as spe-

cific to our behaviorally experienced mice. Module M2 was en-

riched for genes involved in RNA splicing and RNA processing

(Figure 6C) and was significantly downregulated in NURR2C in

clusters MHb-1, MHb-2, and MHb-4 (Figures 6D and 6E). A pre-

vious study of mouse cocaine self-administration identified tran-

scriptome-wide changes in alternative splicing and found a link

to enrichment of H3K36Me3 marks at differentially spliced junc-

tions.41 This study established a causal relationship between

H3K36Me3 and Srsf11, a gene coding for serine- and arginine-

rich splicing factor 11 and a member gene of module M2 in our

analysis, to reward behavior by demonstrating increased self-

administration after Srsf11 manipulation. In our study here,

Srsf11was significantly upregulated in behaviorally experienced

NURR2C animals in MHb neurons with a small effect size

(adjusted p = 2.268e�02, log2(fold change) = 0.1326). We also

found that nine TFs that were targets of NR4A2 were also mem-

bers of module M2, including Ctcf. Our TF-TF regulation analysis

showed that module M2 had numerous activating TF interac-

tions with addiction-associated modules M3 and M4 as well as

the other splicing-associated module M1 (Figures 6G–6I). It is

known that alternative splicing in of itself is a regulatory mecha-

nism for mRNA levels with particularly important consequences

in neuronal contexts,42 and therefore we reason that module M2

and its constituent genes play a pivotal role in the gene-regulato-

ry landscape of MHb neurons underlying the behavioral

changes observed in our experiment. Altogether, this unbiased

data-driven analysis identified networks of genes that are

critical for MHb neuron identity, associated these networks

with their underlying biological functions, and contextualized

them in the MHb neurons of our behaviorally experienced

NURR2C animals.
12 Cell Reports 43, 113956, March 26, 2024
DISCUSSION

There is currently no Food and Drug Administration (FDA)-

approved drug or treatment for substance use disorder that

completely reduces the risk of relapse, encouraging basic sci-

ence research investigations of the mechanisms that regulate

relapse behavior. Therefore, understanding the brain regions

and molecular mechanisms underlying relapse in substance

use disorder is a perennial question for addiction research.

Here, we add further evidence for considering the relatively

understudied MHb as a key regulator of drug-seeking behavior

with our finding that the MHb regulates relapse to cocaine-

seeking behavior and that this regulation seems to be driven

by functional NR4A2 within the MHb. Given its dense expression

of nicotinic acetylcholine receptors, numerous studies have

implicated the MHb in nicotine-associated behaviors.11–13 The

MHb is functionally well positioned as a regulator of reward-

associated behaviors,13 yet studies investigating MHb response

to drugs of abuse at large are lacking. Our findings necessitate

consideration of the MHb and NR4A2 as pivotal contributors to

drug-seeking behavior.

To understand the molecular mechanisms driving relapse-like

behavior in the MHb, we focused on NR4A2, an epigenetically

regulated TF and immediate-early gene that is highly expressed

in the MHb. Reducing NR4A2 function using an endogenously

occurring dominant negative (NURR2C) resulted in a near com-

plete block of cue-induced reinstatement in the gold-standard

model of relapse, intravenous cocaine self-administration,

used here. These results are supported by our initial finding

that MHb Nr4a2 regulates the expression of cocaine-condi-

tioned place preference.14 Our current study extends these find-

ings to a model of volitional drug seeking, lending face validity to

the hypothesis that MHb Nr4a2 has a role in relapse behavior.

Advances in sequencing technology enabled consideration of

the Nr4a2-dependent transcriptomic changes in this very small

region using snRNA-seq. Our snRNA-seq dataset, the largest

of its kind to date, demonstrated that Nurr2c altered the expres-

sion ofmany genes in almost all cell types, including severalMHb

neuron co-expression modules enriched with putative NR4A2-

target genes, suggesting that NR4A2 is a key transcriptional

regulator of downstream pathways involved in reinstatement.

Importantly, we found that DEG signatures had little overlap be-

tween our behaviorally naive and experienced mice, indicating a

specific response of Nurr2c following their treatment. Despite

manipulating Nr4a2 only in MHb ChAT neurons, there are broad

changes in gene networks related to addiction, neuroplasticity,

and GABAergic signaling that extend across multiple cell types

in both the MHb and LHb. The highly relevant nature of the co-

expression modules affected, their putative regulatory relation-

ships with Nr4a2 in the broader MHb neuron TF regulatory land-

scape, and the spread of these transcriptional changes across

cell types suggest that MHb Nr4a2 is positioned as an upstream

master controller of relapse to cocaine seeking.

Limitations of the study
The experiments described in this paper were conducted inmale

mice only. This limitation was imposed by the technical difficulty

and cost of the experiments. There are documented sex-specific
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effects in both MHb function and regulation of Nr4a2 by HDAC3

and, thus, investigating the role of MHb Nr4a2 in female relapse

behavior is a high priority for our lab. When using short-read Illu-

mina sequencing, different splicing isoforms of the same gene

(in this case Nr4a2) are generally not distinguishable, and there-

fore all transcripts attributed to the Nr4a2 gene including Nurr2c

are counted toward the expression of Nr4a2 as a whole. Thus,

the increases in Nr4a2 expression (which is Nr4a2 + Nurr2c)

found in NURR2C groups were interpreted as the expected

Nurr2c expression rather than a paradoxical compensatory in-

crease in Nr4a2 in response to the expression of its dominant

negative. Supporting this interpretation, our analysis showed

that Nr4a2 is not a putative target of NR4A2 (Table S3), and

therefore we did not expect to see homeostatic responses in

Nr4a2 expression. Further, we would expect that any changes

in Nr4a2 expression resulting from such a homeostatic response

would be relatively similar in scale to changes in other DEGs,

whereas the changes in Nr4a2 expression in our snRNA-seq

analysis are much larger when compared to changes in other

genes (Figures 4D and 5E), which is readily explained by viral

overexpression of Nurr2c. Additional sequencing experiments

could provide further context and clarity for the regulatory role

of NR4A2 in the habenula. Single-cell long-read RNA-seq is a

promising technology that enables the transcriptome-wide

detection of different RNA isoforms with single-cell resolu-

tion.43,44 Furthermore, since we found that co-expression mod-

ules related to RNA splicing were altered in our behaviorally

experienced modules, long-read RNA-seq in MHb neurons

could potentially identify alternative splicing events that are crit-

ical in reinstatement. Epigenomic assays such as single-cell

ATAC-seq could identify additional cell-type-specific NR4A2

regulatory relationships that are mediated by non-coding cis-

regulatory elements such as enhancer-promoter interactions.45

As a nuclear orphan receptor and TF, NR4A2 is a promising

target for pharmacological manipulation, as there are several

compounds already approved by the FDA that putatively affect

NR4A family function.17 As we consider applying these com-

pounds toward relapse mitigation, it will be important to develop

specific inhibitors that cross the blood-brain barrier and have

appropriate kinetics and other determinants. In summary, these

results place the MHb as a pivotal regulator of relapse behavior

and demonstrate the importance of MHb Nr4a2 as a key mech-

anism in driving relapse behavior.
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Silicone tubing (0.64 mm ID, 1.19 mm OD) Silastic 508–003

Dental cement Teets Denture Material 223-3815, 223-4052

Cryostat Leica 1850 CM

Operant conditioning chambers MedAssociates ENV-307A-CT, ENV-022MD, PHM-100
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Olympus slide scanner Olympus VSBX61

Article
ll

OPEN ACCESS
RESOURCE AVAILABILITY

Lead contact
Requests for resources, reagents, and further information should be directed to the lead contact, Dr. Marcelo Wood, mwood@
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Seurat object for the habenula snRNA-seq dataset have been deposited into the National Center for Biotechnology Information

Gene Expression Omnibus under the accession number GSE208081, which is publically accessible.
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d All code used for data processing and analysis throughout the manuscript is available on GitHub (https://github.com/

swaruplabUCI/NURR2C_habenula_2022, https://doi.org/10.5281/zenodo.10638040).

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Male heterozygous ChAT-Cremice (2–5months old, Jackson Laboratories 006410) were then used tomodel relapse in amouse self-

administration paradigm. Animals were singly housed with free food and water access unless otherwise specified. Experiments were

performed during the light cycle of a 12-h light/dark cycle. All experiments were conducted according to the National Institutes of

Health guideline for animal care and use. Experiments were approved by the Institutional Animal Care and Use Committee of the

University of California, Irvine. Behavior was performed in two cohorts that each included both groups. Littermates were split into

both groups. Tissue for sequencing came from both cohorts. To avoid batch effects, all tissue was processed and sequencing at

the same time.

METHOD DETAILS

Surgery
Medial habenula AAV infusion

Threeweeks before behavior, 0.5 ml bilateral MHb infusions (M/L, ±0.35mm; A/P,�1.5mm;D/V;�3.0) of either AAV1-hSyn-DIO-GFP

(GFP) or AAV1-hSyn-DIO-V5-NURR2C (NURR2C) were delivered stereotaxically using a 30 gauge Hamilton syringe (65459-01) and

syringe pump (Harvard Apparatus Nanomite MA1 70–2217, 6ul/hr).

Jugular vein catheterization

One week before behavior, animals were implanted with an indwelling back-mounted jugular vein catheter for intravenous cocaine

self-administration. Catheters were made by attaching silicone tubing (Silastic 508-001 0.30 mm ID, 0.64 mm OD) to a modified 22

gauge cannula (P1 Technologies C313G-5UP). A ‘sleeve’ of larger tubing (Silastic 508-003 0.64 mm ID, 1.19 mm OD) protected the

tubing/cannula joint. The catheter base was molded around the cannula with dental cement (Teets Denture Material 223–3815, 223–

4052) and mesh was added to the base while silicone glue was used to create a 1 mm ball�1 cm from the beveled end of the tubing.

Made with scissors above the right collarbone over visible pulsing, a �0.5 cm incision gave access to the jugular vein, which was

isolated using blunt dissection and ‘bookmarked’ with suture. The catheter base was implanted in a scalpel-made back incision

and the tubing was guided through a subcutaneous tunnel into the neck incision site. After placing a spatula under the vein, a

25 G needle punctured the vein, which was held open with fine tipped forceps. Serrated forceps were used to insert the tubing to

the point of the silicone ball, which combined with a series of sutures around the tubing and vein (below the puncture, at the puncture,

above the ball) anchored the implant in the neck. Superglue was used on all internal sutures and at the puncture site. During surgery,

the cannula was connected to a syringe of flushing solution (heparinized saline, 100 USP/ml in 0.9% saline and enrofloxacin) which

prevented air embolism, irrigated the vein, and enabled blood draws to verify placement (dark red, draws easily and continuously). On

completion, the cannula was capped, and surgical staples and sutures were used to close the back and front incision sites, respec-

tively. During 5–7 days of recovery catheters were flushed daily to maintain catheter patency, which verified before and after the self-

administration period by observing a 5–10 s sedation after infusing the fast-acting anesthetic propofol (propofol sodium, Patterson

Vet). After recovery, animals were food restricted to 90%of presurgical weight over 3–4 days before the start of behavior. After aweek

of daily flushing, animals were extremely well handled.

Cocaine self-administration

Mice animals were allowed to self-administer cocaine in operant conditioning chambers (MedAssociates) in 12 daily 1-h sessions.

Most animals acquired self-administration within the first session; otherwise, on the second day (and third if needed) levers were

baited with a drop of condensed milk. Failing to acquire self-administration or having a malfunctioning catheter were exclusion

criteria. Animals advanced to an FR2 schedule after four days of successful FR1 response, which was defined as at least 10 active

lever presses on days three and four. During self-administration, active lever presses elicited a cocaine reward (8.5mg/kg/infusion)

and a cue presentation (light/tone). There were no programmed consequences for inactive lever presses. Following self-administra-

tion, mice received a 30-day homecage withdrawal followed by a 5-h extinction session in which presses on the previously active

lever were not rewarded or cued. Immediately after extinction, a 70 min cued reinstatement was induced with priming during first

10 min, (Figure 1F). During reinstatement presses on the previously active lever resulted in cue presentation but no reward. Self-

administration and extinction were analyzed using a two-way repeated measures ANOVA (Prism 10, GraphPad Software Inc.). Rein-

statement data were analyzed using a one-way ANOVA. p values < 0.05 were considered significant.

Protein and mRNA expression in MHb

To collect and preserve tissue, animals were euthanized via cervical dislocation (1 h after reinstatement for self-administration mice).

Brains were rapidly extracted, flash frozen in dry-ice chilled isopentane, and stored at �80�C for future use.
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Immunohistochemistry

To characterize the expression of NURR2C, the V5 tag was visualized using immunohistochemistry. 20 mM coronal sections were

made and slide-mounted with a Leica CM 1850 cryostat. Slides were incubated in ice-cold 4% paraformaldehyde for 10 min, fol-

lowed by 3 PBS rinses and 1 h in block (5% normal goat serum, 0.2% Triton X-100 in 1X PBS). Slides were incubated overnight

in primary antibody solution (anti-V5 1:500 in block, Abcam), and then washed and transferred to secondary anti-rabbit (1:250 in

block, Alexa Fluor goat anti-rabbit 488) for 1 h at room temperature. A 15-min DAPI (1:10,000 in PB, Invitrogen) incubation was

used to provide a nuclear counterstain for slide scanner imaging. Slides were partially dried before being coverslipped (Vectashield)

and sealed. Fluorescence images were taken on an Olympus slide scanner at 203 magnification.

In situ hybridization - BaseScope
We performed BaseScope to differentiate and visualize Nr4a2 and Nurr2c mRNA. 10 mM coronal sections were made and slide

mounted with a Leica CM 1850 cryostat. Tissue was fixed in 4%PFA for 24 h and then cryoprotected in 10%, 20%, and 30% sucrose

solution. We used the BaseScope Duplex Reagent Kit (Advanced Cell Diagnostics) and performed In Situ Hybridization using ZZ

probes for Nr4a2 (ACD 1104881-C2) and Nurr2c (proprietary custom probe containing several exons specific to Nurr2c) following

the manufacturer’s instructions for fresh frozen tissue. Slides were counterstained with hematoxylin and then coverslipped with

VectaMount. Probes were visualized using an Olympus slide scanner.

Single-nucleus RNA-seq in the mouse habenula

Using a 0.5mmbiopsy punch and a dissectingmicroscope, the bilateral MHbwere collected from two 400 mmslabsmade on a Leica

1850 CM cryostat. From MHb biopsy punches, single nuclei were isolated on ice using nuclei EZ lysis (Millipore Sigma, Cat#

NUC101-1KT) and NWR buffer (supplemented with 0.2U/ml RNase inhibitor) and counted with an automated cell counter (Countess

3 FL Automated Cell Counter). The nuclei were then loaded into the Chromium Next GEM chip G (10X Genomics Chromium Next

GEM single cell 30 Reagent kits v3.1) for GEM generation and barcoding. Following post GEM-RT cleanup and cDNA amplification,

30 gene expression libraries were constructed, quantified, and sequenced (on the Illumina NovaSeq 6000 system) according to the

manufacturer’s instruction.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data are presented as mean ± SEM. p values < 0.05 were considered significant. Multi-day self-administration and multi-

hour extinction data were analyzed using two-way repeated measures ANOVA. Single trial reinstatement data were analyzed using a

one-way ANOVA. The details of these analyses can be found in the Figure 1 caption and corresponding results section. These an-

alyses were completed using Prism 10, GraphPad Software Inc. n = number of mice used per group. For snRNAseq analysis, detailed

descriptions of the quantification and statistical analysis (including the software, specific statistical tests, thresholds, significant

p values etc.) are provided below in this subsection. Where appropriate, N values and p values are defined in the figure legends.

For snRNAseq analysis, n = number of samples per group. Samples were not pooled, and therefore each sample = 1 mouse and

there were no technical replicates. Error bars = SEM. Any secondary methods used to confirm that data met the assumptions of sta-

tistical approach are specified below where used.

Processing single-nucleus RNA-seq data and initial quality control
Cellranger count (v 6.0.0) was used to map snRNA-seq reads to the reference transcriptome (mm10 2020-A, downloaded from the

10X Genomics website) to quantify gene expression in single nuclei from each sample. The ‘‘include-introns’’ option was used to ac-

count for unprocessed RNAmolecules present in the snRNA-seq data. Ambient RNA signal, which adds can add considerable noise

to single-cell transcriptomics data, was identified and corrected using Cellbender46 remove-background (v 0.2.0), a deep generative

model designed to identify empty droplets and correct for artifactual counts in single-cell data. The likelihood of a droplet containing

more than one cell for all cells in each sample were then computed using Scrublet v 0.2.347 with default settings, giving us a doublet

probability and a binary prediction for whether the barcodewas a doublet. Each samplewas individually loaded into Scanpy v 1.8.1,48

and the samples were concatenated into a single AnnData48 (v 0.7.6) object, totaling 203,729 barcodes and 32,285 genes before

quality control filtering. We initially removed barcodes that were in the top 2.5% of the number of UMIs, percentage of mitochondrial

counts, and doublet probability for each sample, removing 15,937 barcodes. We then applied dataset-wide filters to remove barc-

odes with fewer than 250 genes, greater than 5%mitochondrial counts, and greater than 25,000 UMIs, removing 15,530 more barc-

odes. Predicted doublets from Scrublet were filtered, thereby removing an additional 7,807 barcodes, and leaving 164,455 barcodes

for our initial clustering analysis.

Dimensionality reduction, clustering, and additional filtering
The UMI counts matrix was normalized for each cell by the total UMI counts in all genes, and log transformed using the Scanpy func-

tions sc.pp.normalize_total and sc.pp.log1p respectively. Highly variable genes (HVGs) were identified using the Scanpy function

sc.pp.highly_variable_genes, and the data matrix comprising these HVGs were scaled to unit variance and centered at zero mean

using the sc.pp.scale function. We performed principal component analysis (PCA) in this scaled data matrix using the sc.tl.pca func-

tion, yielding a linear dimensionality reduction of the snRNA-seq dataset. PCs were corrected for technical variation from sequencing
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batches using the Harmony algorithm49 in the harmonypy package (v 0.0.5). The top 30 harmonized PCs were used to construct a

neighborhood graph of the nuclei using the sc.pp.neighbors function with a cosine distance metric and n_neighbors = 15. A two-

dimensional representation of the data was then computed on this neighborhood graph using the uniform manifold approximation

and projection26 (UMAP) algorithm with the Scanpy function sc.tl.umap. We performed an initial clustering analysis grouping nuclei

into clusters in the same neighborhood graph representation using the Leiden algorithm25 with the function sc.tl.leiden and a reso-

lution parameter of 2.0. Leiden clusters were organized hierarchically by similar expression profiles using the function sc.tl.dendro-

gram. We inspected the expression of canonical cell-type markers in each Leiden cluster to annotate broad cell types, and we noted

that several Leiden clusters displayed conflictingmarker gene expression, for example the expression of Plp1, Aqp4, and Csf1r in the

same group. Further, we inspected the distributions of QC metrics in each Leiden cluster and determined that several clusters were

outliers in these metrics and we removed these low-quality clusters. We re-computed the UMAP and Leiden clustering (resolution

1.25) for this filtered dataset, and annotated broad cell types using a panel of known cell-type marker genes in the habenula.23,24

We next performed a sub-clustering analysis containing only neuronal cell types (Leiden resolution 0.75) and merged these results

with the non-neuronal clusters to result in the final cell type annotations. The final processed dataset consisted of 109,881 single nu-

cleus transcriptomes grouped into 26 clusters.

Ex-vivo activation signature
Weexamined our dataset for gene expression hallmarks of ex vivo activation, whichmay indicate issueswith sample preparation. For

this analysis, we used the CNS ex vivo activation gene set from Marsh et al. 2022.66. (Fos, Junb, Zfp36, Jun, Hspa1a, Socs3, Rgs1,

Egr1, Btg2, Fosb, Hist1h1d, Ier5, Atf3, Hist1h2ac, Dusp1, Hist1h1e, Forlr1, and Serpine1), and computed an ex vivo activation score

for each cell using UCell50. Broadly, we found minimal evidence of ex vivo activation in our dataset.

Integration with the Hashikawa et al. habenula dataset
We collected the mouse habenula gene expression matrix from Hashikawa et al. 202023 using GEO (GSE137478), and we processed

this dataset using the Hao et al. 2021workflow51 (version 4.1.1).We performed PCA (RunPCA function) using the top 3500HVGs from

the Seurat function FindVariableFeatures, and the top 30 PCs were used to run UMAP (RunUMAP function). Cell-type and cluster

annotations for this dataset were taken from the original study. The Hashikawa dataset was integrated with our habenula dataset

using integrative non-negative matrix factorization (iNMF) implemented in the R package rliger.52 Prior to running iNMF, the gene

expression matrices were scaled to unit variance, but not centered at zero since the integration algorithm relies on a non-negative

matrix. We jointly reduced the dimensionality of the scaled expression matrices using 30matrix factors with the default regularization

parameter using the optimizeALS function, yielding an integrated low-dimensional representation of the cells from both datasets. We

calculated the alignment of the two datasets in the integrated space using a nearest-neighbor approach to determine how frequently

a given cell’s neighbors came from the same dataset with the calcAlignment function, andwe report an alignment of 0.7777 on a scale

from 0 to 1. Finally, we computed an integrated UMAP using the iNMF representation as input using the Seurat function RunUMAP.

Cluster marker gene analysis
We performed a one-versus-all differential gene expression test for each snRNA-seq cluster to identify cluster marker genes using

the Seurat function FindAllMarkers. We used a hurdle model (MAST53) as our differential expression model, which explicitly models

zero and non-zero entries separately, making it well suited to sparse single-cell data. We used sequencing batch assignment and

total number of UMIs per cell as model covariates. Expression of habenula cell-type and cluster marker genes from previous pub-

lications23,24 were also inspected in our dataset.

Alternative splicing analysis at the Nr4a2 locus
While alternative splicing is a feature of many genes, conventional single-cell and single-nucleus RNA-seq on the Illumina platform

are generally unable to accurately quantify the expression of individual isoforms of a given gene due to the short length of individual

sequencing reads. The Nurr2c isoform of Nr4a2 is marked by alternative splicing events at exons 3 and 7, but is similar in structure to

other Nr4a2 isoforms, therefore it is difficult to attribute individual UMI counts to the Nurr2c isoform using current bioinformatic ap-

proaches. Nevertheless, we sought to inspect the snRNA-seq read coverage at the Nr4a2 locus in our dataset to potentially identify

patterns that were specific to the NURR2C mice. For each of our snRNA-seq clusters, we constructed pseudobulk.bam files con-

taining all the reads from each cell from a given cluster using Sinto (version 0.9.0). SAMtools55 (version 1.1.0) was used to combine

pseudobulk.bam files from each individual sample into NURR2C and GFP groups. Pseudobulk.bam files were converted to.bigWig

format using the bamCoverage function from deeptools54 (version 3.1.3). Using these.bigwig files, we visualized the Nr4a2 locus in

the mm10 genome using the UCSC Genome Browser for the major neuronal cell types and individual clusters. We used Swan56 to

summarize the splicing complexity of Nr4a2 and to demonstrate the differences at exon 3 and exon 7 betweenNurr2c and the isoform

that was most similar (ENSMUST00000112629.7). We used Swan’s plot_graph function to generate the gene summary graph for

Nr4a2, and Swan’s plot_transcript_path function to generate the graphs for individual isoforms.
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NURR2C transcriptomic perturbation analysis
We performed an unbiased transcriptomic perturbation analysis in the habenula snRNA-seq dataset using the graph signal process-

ing algorithm MELD36 to estimate the transcriptome-wide effect of Nurr2c on each cell. This analysis was performed only in the

snRNA-seq data from animals in the behavior group. The MELD python package (version 1.0) was used for this analysis. A 3D

PHATE57 representation of the dataset was computed based on the harmonized PCAmatrix. We performed a grid search to optimize

theMELD parameters k and b using a benchmarking test where transcriptomic perturbations were simulated in the dataset, perform-

ing 25 of these tests for each parameter settings. A random conditional density function (PDF) serves as the ground truth for the simu-

lated perturbation, and the mean square error (MSE) computed between the estimated relative likelihood from MELD compared to

the ground truth PDF.MSEswere averaged over 25 tests for each set of parameters. Based on this parameter search, we used k = 24

and b = 49 as the set of parameters which achieved the lowest MSE in the simulations. The MELD function was then used with these

parameters to quantify the transcriptomic perturbation in our dataset.

Context-specific transcription factor regulatory network inference and analysis
We developed a bioinformatic method for inferring transcription factor (TF) regulatory networks in single-cell or single-nucleus RNA-

seq data, and applied this method to our habenula snRNA-seq dataset. The goal of this analysis is to identify potential regulatory links

between TFs and their target genes based on patterns observed in a single-cell dataset. In general, the strategy we employed here is

similar to other algorithms accomplishing related tasks like the single-cell regulatory network inference and clustering (SCENIC58)

algorithm, however our approach is distinguished by several important considerations. Our approach can be broken down into

five key steps; 1: compute de-noised metacell expression profiles from the single-cell dataset; 2: scan gene promoters for presence

of TF motifs; 3: model gene expression as a function of TF expression; 4: assemble TF regulons and regulatory networks; 5: down-

stream analysis of TF regulatory networks. TF regulatory regimes may differ between different cell types, cell states, experimental

conditions, and other biological variables of interest. Therefore, in our analysis we repeat this network inference process separately

for different contexts to facilitate downstream comparisons, as opposed to other network analysis methods that operate on all cell

types and conditions grouped together. Here we provide an open source implementation of this TF regulatory network inference al-

gorithm as an addition to the hdWGCNA R package.59

Single-cell gene expression data is inherently sparse, meaning that majority of genes have zero expression in a given cell. Since

distinct cell types have unique gene expression programs, we expect that these zero expression genes have a biological origin, but

there are also well known ‘‘dropout’’ events where transcripts are missed in the sequencing process ultimately leading to an addi-

tional technical origin of zero expressed genes. These problems can be further compounded in snRNA-seq where only the RNA in the

nucleus is sequenced, representing only a fraction of the RNA in the whole cell. The sparsity and noise typically found in single-cell

data poses significant challenges for robust network inference. Metacell aggregation approaches aim to alleviate this problem by

constructing merged transcriptomic profiles of highly similar cells in a k-nearest neighbors (KNN) graph, thereby retaining the tran-

scriptomic heterogeneity of the dataset while reducing sparsity and technical noise. For this analysis, we computed metacells using

an algorithm that we previously developed as part of the hdWGCNA59 R package in the MetacellsByGroups function, but in principle

other metacell algorithms could be used in its place. This metacell aggregation step is critical for our analysis and is also a strength of

our pipeline compared to others.

Second, our algorithm requires a database of TF motifs and their position weight matrices (PWMs). In our analysis, we used the

JASPAR motif database.60,61 2020 R package (version 0.99.10), but in principle any other database of TF motifs and PWMs could

be used. For each TF in the database, we used the R packagemotifmatchr (version 1.12.0) to search for significantly matchingmotifs

based on the PWM information within gene promoter regions for all genes in the single-cell dataset, yielding amapping of TFs to their

potential target genes. In principle, enhancer regions linked to target genes via multi-omic analysis could also be used for motif scan-

ning if this additional information is available,67 enabling enhancer-mediated TF regulatory network analysis. We implemented this

step in the hdWGCNA function MotifScan.

Third, we use the initial TF-gene mappings to identify highly confident TF-gene regulatory links by modeling each gene’s expres-

sion based on the expression of its potential TF regulators. For example, if a given gene called ‘‘Gene X’’ has 10matching TFmotifs in

its promoter, we build a regression model of the expression of ‘‘Gene X00 based on the expression of the 10 matching TFs as input

features. To facilitate this modeling, we used a powerful ensemble machine learning approach called extreme gradient boosting

(XGBoost62), and for this analysis we performed 5-fold cross validation and averaged the performance statistics across these folds.

This analysis assigns a weight to each TF based on how important it was for the model for a particular gene. In this step, we build

separate XGBoost models for each gene, resulting in a set of TF regulatory importance weights for each gene. Critically, this

approach was done on the de-noised metacell expression representation rather than on the single-cell dataset itself, leading to

more robust inference of TF-gene regulatory links. We implemented this step in the hdWGCNA function ConstructTFNetwork.

Fourth, we use the weighted TF importance scores to define ‘‘TF regulons’’, which are the set of confident putative target genes for

each TF. Based on the approach from Aibar et al., for each gene we retained the top five TFs by their weights, with a minimum

threshold of 0.001, to define regulons for each TF. For certain downstream analyses like pathway enrichment analysis, we used a

wider set of TF regulons by retaining the top ten TFs by weight for each gene. The sets of regulons were then split based on the

sign of the Pearson correlations between the metacell expression of the TF and the target gene, giving us putative activated targets

(positive TF-gene correlation) and putative repressed targets (negative TF-gene correlation). This process yields weighted links
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between TFs and confident target genes, ultimately representing a full TF regulatory network. Since we perform this analysis sepa-

rately for different contexts (cell types, experimental groups), and since these contexts can be flexibly defined by the user, this

approach is able to identify TF regulatory relationships that are unique to a condition of interest or conserved across multiple

groups/conditions. In our analysis, we used this approach to construct TF regulatory networks for the MHb and LHb neuron groups

for the four experimental groups (NURR2C, GFP, Naive NURR2C, Naive GFP).

After performing TF regulatory network inference, we performed several downstream analyses focusing on subgraphs within these

networks that were important for understanding the regulatory capacity of NR4A2. We computed NR4A2 regulon scores, summa-

rizing the gene expression of the entire set of genes within the NR4A2 regulon, using the UCell algorithm.50 We performed pathway

enrichment analysis using the R package enrichR63 (version 3.0) in the putative activating and repressing target genes in the networks

fromMHb neurons in the NURR2C and Naive NURR2C experimental groups, using the following gene annotation lists: GO Biological

Process 2021, GO Cellular Component 2021, GO Molecular Function 2021, WikiPathways 2019 Mouse, and KEGG 2019 Mouse.

Finally, as part of our TF regulatory network analysis pipeline we developed a recursive approach to identify indirect TF targets that

are part of the overall network. TFs can regulate the expression of other TFs, which can thereby impart meaningful yet indirect

changes on the expression of genes outside of the TF’s primary regulon of direct targets where the TF acts through gene promoters.

For a given TF of interest, in our case NR4A2, we identified the primary target genes in that TF’s regulon which are also TFs. The set of

target genes of those TFs are then considered secondary targets of NR4A2. This process can be arbitrarily repeated to identify ter-

tiary targets and so on, but in our study of NR4A2 we only used this approach to define secondary targets.

Differential gene expression comparing NURR2C and GFP. We performed differential gene expression analysis comparing cells

from NURR2C and GFP animals within each cell cluster and each major cell type. We used MAST53 as our differential expression

model, with sequencing batch assignment and total number of UMIs per cell as model covariates. The Seurat function

FindMarkers was used to facilitate this analysis. This differential expression analysis comparing NURR2C and GFP was performed

separately for the behavior and naive experimental groups. We compared the results of these DEG tests between the MHb and LHb

neuronal cell types by performing rank-rank hypergeometric overlap (RRHO64) tests for each pair of neuron types, repeating the anal-

ysis for NR4A2 target genes and other DEGs. For RRHOanalysis, geneswere ranked by average log2(fold change), andwe visualized

the FDR-corrected RRHO p values as a heatmap to visualize the agreement of gene sets ranked by the DEG effect size. In the RRHO

heatmaps, genes are ranked from high to low log2(fold change) from left to right on the x axis and from bottom to top on the y axis,

such that the lower left quadrant shows the agreement of up-regulated genes while the upper-right quadrant shows the agreement of

down-regulated genes. Similarly, we generated scatterplots comparing the DEG effect sizes for the NURR2C vs. GFP comparisons

between the behavior and naive groups, and we also performed gene set overlap analysis to compare significantly up- and down-

regulated DEGs within these groups (adjusted p value <0.05 and absolute log2(fold change) > 0.25). We used the R package

enrichR63 (version 3.0) to perform enrichment analysis for the DEGs in each cluster, using the following gene annotation lists: GO

Biological Process 2021, GO Cellular Component 2021, GO Molecular Function 2021, WikiPathways 2019 Mouse, and KEGG

2019 Mouse.

Co-expression network analysis in medial habenula neurons
We performed gene co-expression network analysis in medial habenula neurons from the NURR2C and GFP experimental groups

using the R package hdWGCNA68,65 (version 0.1.1, WGCNA version 1.70.3). Genes expressed in fewer than 5% of cells were

excluded from this analysis, giving us a set of 10,084 genes for hdWGCNA. For each cell type and biological replicate, we performed

a bootstrapped cell aggregation procedure to construct metacell gene expression profiles, pooling 50 cells together per metacell

based on K-nearest-neighbors using the hdWGCNA function MetacellsByGroups. We sought to select a soft power threshold b

such that the resulting network has a scale-free topology, therefore we performed a parameter sweep for b using the hdWGCNA

function TestSoftPowers. We computed a topological overlap matrix (TOM) to represent the gene co-expression network and

grouped genes into co-expression modules with the Dynamic Tree Cut. algorithm69 using the hdWGCNA function

ConstructNetwork. The following parameters were used during network construction: networkType = "signed", TOMType =

"signed", soft_power = 6, deepSplit = 4, detectCutHeight = 0.995, minModuleSize = 50, mergeCutHeight = 0.2. To summarize

the gene expression of each co-expression network module, we computed module eigengenes (MEs) with the hdWGCNA function

ModuleEigengenes, applying Harmony49 to the resulting MEs based on sequencing batch assignment. Eigengene-based connec-

tivity (kME) was then computed for each gene and each module using the hdWGCNA function ModuleConnectivity, allowing us to

identify hub genes for eachmodule. A UMAP representation of the co-expression network was constructed with the hdWGCNA func-

tion RunModuleUMAP, with ten hub genes per module as the input features. We performed differential module eigengene (DME)

testing to compare the expression signatures of each module between the NURR2C and GFP groups within each of the five MHb

neuron clusters. DME testing was performed using the hdWGCNA function FindDMEs, using a Wilcoxon rank-sum test for the com-

parison. To assess the reproducibility of the medial habenula neuron co-expression network, we performed a comparative analysis

using the Hashikawa et al.23 dataset. Co-expression modules were projected into the Hashikawa dataset using the hdWGCNA func-

tion ProjectModules, and we performed a statistical test to assess network preservation69 using the hdWGCNA function

ModulePreservation. We used the R package enrichR63 (version 3.0) to perform enrichment analysis comparing our MHb neuron

co-expression modules to curated gene sets, using the following gene annotation lists: GO Biological Process 2021, GO Cellular

Component 2021, GO Molecular Function 2021, WikiPathways 2019 Mouse, and KEGG 2019 Mouse. We also integrated the TF
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regulatory network information with the co-expression network information. We counted the number of activating and repressing

TF-gene links that span across different co-expressionmodules to quantify the regulatory relationships between co-expressionmod-

ules. We also computed normalized module regulatory strength by dividing the number of TF-gene links between a source module

and a target module by the total number of TFs within the source module.

Gene overlap analysis
Throughout this manuscript, we performed overlap analyses to compare different sets of genes. We used the R package

GeneOverlap (version 1.26.0) for these analyses, which calculates the overlap between sets of genes, using Fisher’s exact test to

determine a p value and odds ratio comparing to the genomic background set (all genes in the Seurat object).
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