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The pathogenesis of Alzheimer’s disease (AD) depends on envi-
ronmental and heritable factors, with remarkable differences
evident between individuals at the molecular level. Here we
present a transcriptomic survey of AD using spatial transcrip-
tomics (ST) and single-nucleus RNA-seq in cortical samples
from early-stage AD, late-stage AD, and AD in Down Syndrome
(AD in DS) donors. Studying AD in DS provides an opportunity
to enhance our understanding of the AD transcriptome, poten-
tially bridging the gap between genetic mouse models and spo-
radic AD. Our analysis revealed spatial and cell-type specific
changes in disease, with broad similarities in these changes be-
tween sAD and AD in DS. We performed additional ST experi-
ments in a disease timecourse of 5xFAD and wildtype mice to fa-
cilitate cross-species comparisons. Finally, amyloid plaque and
fibril imaging in the same tissue samples used for ST enabled us
to directly link changes in gene expression with accumulation
and spread of pathology.

Introduction
Dating back to Santiago Ramón y Cajal, Paul Broca, and Ko-
rbinian Brodmann, it was revealed that the human brain is
highly spatially organized at both macro- and microscopic
levels, where both brain circuitry and function underlie this
structural organization. Cajal’s famous drawings depicted the
laminar organization of the brain and great morphological
diversity across neurons. Advances in morphological, im-
munohistochemical, and electrophysiological methodology
coupled with transcriptome sequencing have provided a mod-
ern framework for cataloging cortical cell types and unravel-
ing their function at the circuit level1. Single-cell (scRNA-
seq) and single-nucleus RNA-sequencing (snRNA-seq) stud-
ies over the past few years have revealed that brain cell pop-
ulations are highly heterogeneous at the molecular level2–11.
In Alzheimer’s disease (AD) brains, specific cell populations
have been identified as under- or overrepresented relative to
the cognitively healthy brain12–16, and recent genomic stud-
ies have proposed an axis of selective vulnerability to re-
silience with regards to neuronal degeneration16,17. Holis-
tically determining the functional consequences of disease-
related changes of these molecularly distinct cell populations

remains a challenge, and spatial information of these popula-
tions remains a critical piece to solving this puzzle.

Recently, several spatial profiling methods were devel-
oped with varying levels of resolution, throughput, and num-
ber of genes18–23. Spatial transcriptomics (ST) relies on a
grid of spatial spots with primers to uniquely barcode tran-
scripts based on their spatial location and does not require
pre-determined gene targets, thus allowing an unbiased as-
sessment of gene expression changes. Further, this technique
allows us to profile a whole coronally sectioned mouse hemi-
sphere. However, the size of each spot is 55µm, resulting in
transcriptomic profiles that may be from 1-10 cells. There-
fore, in this study we generated both ST and snRNA-seq data
to perform an integrated analysis of AD with cellular and spa-
tial resolution. We paired our ST experiments with fluores-
cent amyloid imaging in the same tissue samples, allowing
us to identify gene expression changes proximal to amyloid
pathology. In principle, these datasets allow us to thoroughly
characterize the cellular diversity and transcriptomic remod-
eling of the AD brain with underlying spatial context.

Here we examined the spatial and single-nucleus tran-
scriptomes of clinical AD samples in both early- and late-
stage pathology, as well as AD in Down syndrome (AD
in DS). Although individuals with DS aged >65 years old
have an 80% risk of dementia24, only one previous study
has profiled cell type-specific gene expression changes in DS
brains25. Further, despite shared features between AD in the
general population and AD in DS26,27, there are currently no
published single-cell or spatial transcriptomic studies exam-
ining both populations, and DS is a potentially advantageous
group for clinical studies of AD. Focusing on AD in DS as
a genetic form of AD, due to the vastly increased disease
risk conferred by the triplication of APP on the 21st chromo-
some, provides opportunities for rigorous comparative anal-
yses with the sporadic AD population and to further our un-
derstanding of the genetic underpinnings of sporadic AD. We
uncovered spatial and cellular AD transcriptomic changes in
both DS and the general population and additionally extended
our analyses to a commonly used amyloid mouse model of
AD, 5xFAD, by generating an additional spatial transcrip-
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tomic dataset. While mouse models are the most common
non-human model systems used to probe AD biology, re-
cent clinical trial failures of disease-modifying drugs in AD,
which were successful in mouse models, have raised impor-
tant questions about translatability of mouse findings to hu-
mans. While these failures can be attributed to many factors,
including use of single-model systems for disease relevance
and evolutionary distance between mouse and human, robust
disease-specific translational targets can potentially be found
using integrative approaches across human and mouse mod-
els. Our previous work in this area has led to the identifica-
tion of regulators of neurodegenerative dementia and poten-
tial disease modifying drugs targeting those regulators28,29.
Overall, our analysis identified spatially restricted and cell-
type-specific transcriptomic changes in different subtypes of
AD, highlighting the value of employing a multi-faceted ex-
perimental and analytical approach using several models of
investigation and multiple data modalities.

Results
Investigating the Alzheimer’s disease transcriptome
with spatial and cellular resolution.

We performed a cross-species study of spatially resolved
gene expression changes in AD by generating ST data (10x
Genomics Visium) from both postmortem human prefrontal
cortical tissue (n=10 cognitively healthy controls, 9 early-
stage AD, 10 late-stage AD, and 10 AD in DS; median 1,316
genes per spatial spot; n=115,251 ST spots; Table S1) and
5xFAD and wild type (WT) mouse brains (n=8-12 per group,
4 separate timepoints; median 2,438 genes per spatial spot;
n=212,249 ST spots; Table S2) (Figures 1a, S1). We used
BayesSpace31, an unbiased clustering algorithm leveraging
both transcriptomic and spatial information, to identify nine
transcriptionally distinct clusters in our human dataset — 3
white matter (WM) clusters and 6 grey matter clusters en-
compassing the cortical layers — and 15 brain-region spe-
cific clusters in our mouse dataset (Figures 1b-c, S2,S3). We
annotated these clusters based on the expression of known
marker genes and their localization within the tissue sections
and using unbiased cluster marker gene detection (Figure
S4; Tables S3, S4). Due the heterogeneity inherent to post-
mortem human brain samples, we examined the distribution
of the spatial spots by diagnosis for each cluster and found
that most clusters are well represented across the diagnoses,
except for WM3 in early-stage AD cases (Figure S1). Two
mouse clusters lacked clear spatial localization, one being a
mixture of erythrocytes and neurons based on marker gene
expression, and the other a group of low quality spots based
on UMIs, which we removed from our subsequent analyses
(Figure S1).

We also generated snRNA-seq data (Parse Biosciences,
SPLiT-seq8) from cognitively healthy controls (n=27 pre-
frontal cortex/FCX, 27 posterior cingulate cortex/PCC) and
AD in DS (n=21 FCX, 21 PCC; 55 individuals total; Ta-
ble S5). These brain regions were chosen for these ex-
periments to cover a broad spectrum of the disease tra-
jectory, as the PCC is affected in the early stages of dis-

Figure 1. Spatial and single-nucleus transcriptomic analysis of genetic and
sporadic forms of AD. a, We performed spatial transcriptomic experiments in the
human frontal cortex and the mouse brain using 10X Genomics Visium. Human
samples: n=10 cognitively normal controls; n=9 early-stage AD; n=10 late-stage
AD; n=10 AD in DS. Mouse samples: n=10 WT and n=10 5xFAD aged 4 months;
n=10 WT and n=10 5xFAD aged 6 months; n=10 WT and n=10 5xFAD aged 8
months; n=8 WT and n=12 5xFAD aged 12 months. b, Two representative human
ST samples from each of the disease conditions, where each spot is colored by
cortical annotations derived from unbiased spatial transcriptome clustering
analysis. c, One representative mouse ST sample from WT and 5xFAD at each of
the four time points, where each spot is colored by brain region annotations
derived from unbiased spatial transcriptome clustering analysis. d, We performed
single-nucleus RNA-seq (snRNA-seq) in the frontal cortex and posterior cingulate
cortex from cognitively normal control donors (n=27 FCX, n=27 PCC) and AD in
DS donors (n=21 FCX, n=21 PCC). We also included snRNA-seq data from three
previous studies of the cortex in AD 12–14 (n=27 controls, n=23 early-stage AD,
n=48 late-stage AD). e, Uniform manifold approximation and projection (UMAP)
plot depicting a two-dimensional view of the cellular neighborhood graph of
585,042 single-nuclei transcriptome profiles. Each point in this plot represents one
cell, colored by their cell-type annotations derived from Leiden clustering 30

analysis. Illustrations created with Biorender.com.
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ease while the FCX is affected in later stages32. We used
scANVI33, a semi-supervised deep generative model with
high performance in a recent comprehensive benchmark-
ing study34, to perform a reference-based integration of this
dataset with snRNA-seq data from three previous studies of
the AD cortex12–14 (FCX; total n=27 cognitively healthy con-
trols, 23 early-stage AD, and 48 late-stage AD) for a total of
585,042 nuclei after quality control (Figures 1d, S4; Meth-
ods). In this integrated dataset, our clustering analysis iden-
tified layer-specific excitatory neuron subpopulations (EX,
n=229,041 cells); classical cortical inhibitory neuron subpop-
ulations (INH, n=90,718); microglia (MG, n=20,197) and as-
trocyte (ASC, n=57,443) populations comprising a spectrum
of homeostatic and activated cell states; multiple subtypes
of oligodendrocyte precursor cells (OPC; n=23,053) and ma-
ture oligodendrocytes (ODC, n=153,182); and several rare
vascular subpopulations as described in a previous transcrip-
tomic study of AD35 such as pericytes (PER, n=4,659), en-
dothelial cells (END, n=3,637), fibroblasts (FBR, n=2,403),
and smooth muscle cells (SMC, n=709, Figure 1e). Unbi-
ased marker gene analysis of these cell clusters provided fur-
ther context and support for their transcriptomic identity and
underlying cell states (Figure S4, Table S6, Methods). Fur-
thermore, we examined the expression of a post-mortem “ex
vivo activation” signature, previously identified as an artifact
of cellular stress during sample processing36, and while we
did find expression of select ex vivo activation genes like
HSPA1A, HSPA1B, FOS, and JUN, the overall expression
program score37 was low (Figures S1, S4).

Regional and cell type-specific gene expression
changes in clinical Alzheimer’s disease.

To identify disease-associated gene expression changes
with cellular and spatial resolution, we performed differential
expression analysis in each disease group (early-stage AD,
late-stage AD, and AD in DS) with respect to controls for
our human spatial and single-cell datasets (Figures S5, S6,
S7; Tables S7-S12). We focused our analyses on the FCX,
since we had both spatial and single-nucleus data for this re-
gion, and we found significant positive correlations between
effect sizes for gene expression changes in the PCC and FCX
across most cell clusters (Figures S8—S11). The extra copy
of chr21 suggests overexpression of chr21 genes in our AD
in DS samples, so we first examined differentially expressed
genes (DEGs) by chromosome. We found that not all chr21
genes are upregulated in both our spatial and single-nucleus
datasets, and upregulation was dependent on region or cell-
type (adjusted p-value < 0.05, Figure 2a-b). For example,
APP expectedly is upregulated in AD in DS samples but in-
terestingly is not significantly different from control samples
in spatial cluster L3/4. Our findings are in line with Palmer &
Liu et al.’s snRNA-seq study of DS25. Moreover, we found
many genes from other chromosomes that are also signifi-
cantly changed in AD in DS (Figures 2a,b, S12, S13), indi-
cating that triplication of chr21 initiates a cascade of trans-
regulatory events that ripple throughout the entire genome.
Our analysis identified substantial downregulation of genes
in spatial cluster L3/4 across the diagnoses, which may re-

flect the preferential accumulation of pathology in cortical
layer III38–40.

We next wanted to assess the similarities of disease-
associated gene expression changes between diagnoses for
each cluster. In our spatial data, although the majority of
DEGs were unique to a diagnosis (early-stage AD, late-stage
AD, or AD in DS), we still discovered many are conserved,
including genes previously associated with AD, like CST3,
VIM, NEAT1, and CLU. We also found significant and posi-
tive differential expression effect size correlations across spa-
tial and single-nucleus clusters, except in smaller vascular
clusters and OPC2 (Figures. 2c-d, S14, S15). Notably, these
trends were stronger in grey matter clusters, compared to
WM clusters, and this was matched in the single-nucleus
data, where the correlations were also stronger in neuronal
clusters relative to the glial clusters. We focused on the
DEGs shared between late-stage AD and AD in DS, con-
sidering both conditions exhibit extensive amyloid and tau
pathology. Disease-associated gene expression changes con-
served between late-stage AD and AD in DS from the spatial
data demonstrated strikingly region-specific patterns, and our
snRNA-seq dataset revealed cell-type-specific expression of
many spatial DEGs (Figure 2e-f). For example the gene QKI,
previously identified as upregulated in AD41, is upregulated
only in upper cortical layers, although it is highly expressed
in WM and oligodendrocytes. Gene ontology (GO) term en-
richment of these shared DEGs revealed region-specific en-
richment of AD-relevant biological pathways, such as upreg-
ulation of genes related to long-term potentiation in L3-5 and
downregulation of those related to amyloid fibril formation
in L3/4 and L3-5 (Figure 2g-h, Table S13). Genes associ-
ated with NIK/NF-κB signaling were downregulated in spa-
tial cluster L3/4 and excitatory neuron clusters EX L2/3 and
L3-5. However, we also found regional differences between
AD in DS and late-stage AD; NIK/NF-κB signaling genes are
upregulated in L1 and L2/3 exclusively in AD in DS samples
(Figure 2i-l). Altogether, we identified conserved regional
and cell-specific transcriptional changes between late-stage
AD and AD in DS, supporting the utility of studying AD in
DS to understand AD molecular changes in both DS and the
general population.

In addition, we wanted to identify evolutionary-
conserved AD transcriptional changes, as drug development
largely relies on mouse models. However, mouse models
of AD have been criticized for discrepancies with clinical
AD. Considering previous literature shows baseline regional
differences between human and mouse4,42, we hypothesized
that there may be also regional differences in disease. In addi-
tion, we believe that focusing on the features shared between
human and mouse will help forward in vivo research. We per-
formed differential expression analysis on our mouse spatial
transcriptomic dataset comparing 5xFAD versus WT within
each spatial cluster for each timepoint (Figures S16, S17,
S18, S19; Tables S14-17). This analysis revealed an increas-
ing number of upregulated genes with age except in thalamic
clusters, where the maximum was at the earliest timepoint
(4 months, Figure S20). Upregulated genes at 4 months in
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Figure 2. Shared and distinct gene expression signatures among subtypes of AD. Caption on the next page −→
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Figure 2. Shared and distinct gene expression signatures among subtypes of AD. a, Heatmap colored by effect size from the AD in DS versus control differential gene
expression analysis, with genes stratified by chromosome and by spatial region. Statistically significant (FDR < 0.05) genes with an absolute average log2(fold-change) >=
0.25 in at least one region are shown. b, Stacked bar chart showing the number of AD in DS versus control DEGs in each spatial region stratified by chromosome. c,
Comparison of differential expression effect sizes from early-stage AD versus control and AD in DS versus control. Genes that were statistically significant (adjusted p-value
< 0.05) in either comparison were included in this analysis. Genes are colored blue if the direction is consistent, yellow if inconsistent, and grey if the absolute effect sizes
were smaller than 0.05. Black line represents a linear regression with a 95% confidence interval shown in grey. Pearson correlation coefficients are shown in the upper left
corner of each panel. d, Comparison of differential expression effect sizes from late-stage AD versus control and AD in DS versus control, layout as in panel (c). e, Heatmap
showing the gene expression values in the snRNA-seq dataset of spatial DEGs shared between AD in DS and late-stage AD. f, Spatial feature plots of four selected DEGs
(QKI, GFAP, APP, and ERBIN) in one representative sample from each disease group. g-h, Selected pathway enrichment results from DEGs that were upregulated (g) or
downregulated (h) in both late-stage AD and AD in DS compared to controls. i-j, Selected pathway enrichment results from DEGs that were upregulated (i) or
downregulated (j) in late-stage AD exclusively. k-l, Selected pathway enrichment results from DEGs that were upregulated (k) or downregulated (l) in AD in DS exclusively.

the thalamus included disease-associated microglia (DAM)
genes43, like Cst7, Tyrobp, Ctsd, and Trem2, suggesting an
early response to plaques localized to the thalamus, and with
increasing age, we found upregulation of these genes across
brain regions. We then examined the expression of DEGs
identified in our human spatial dataset in a matched com-
parison with our mouse spatial dataset (Figure S21). We
compared mouse cortical upper and deep layer clusters with
the corresponding human cortical layer clusters (L1, L2/3,
and L3/4; L3-5, L5/6, and L6b, respectively). White mat-
ter clusters were all individually compared with each other.
We found significant and positive fold-change correlations in
most cortical layer comparisons, except L1 and L6b. Like our
comparison of AD in DS and late-stage AD, WM correlations
were weaker, indicating that the 5xFAD model recapitulates
some but not all clinical AD changes. Our analyses compiled
a list of species-conserved, regional DEGs including some
genes previously identified in disease-associated glia signa-
tures43–45.

Multi-scale co-expression network analysis reveals
spatial expression programs disrupted in AD .

We performed a multi-scale co-expression network
analysis in our ST dataset using hdWGCNA46 (Methods).
Co-expression networks enable elucidation of groups of
genes (gene modules) that are highly co-expressed and are
potentially co-regulated or involved in shared biological
functions. We constructed co-expression networks and iden-
tified gene modules individually for each cortical layer clus-
ter and white matter, yielding 166 modules from seven net-
works. Based on an approach previously employed in a brain-
wide network analysis in bulk RNA-seq47, we defined a set
of cortex-wide “meta-modules” by hierarchically clustering
these 166 modules based on their similarity in gene expres-
sion patterns (module eigengenes, MEs) and their constituent
gene sets (Figure 3a, Methods). This approach resulted in
a unified set of 15 cortex-wide meta-modules and 166 fine-
grain modules from individual spatial regions to define the
spatial co-expression architecture of the cortex in AD (Fig-
ures 3a, S22, S23; Table S18). Using this compendium of
gene-gene co-expression relationships across different spatial
contexts, we interrogated systems-level differences in gene
expression between disease groups and controls with differ-
ential module eigengene (DME) analysis (Figure 3a, Meth-
ods, Table S19).

We compared the effect sizes between the different
DME tests for each spatial module to assess the similarity
in network-level changes between subtypes of AD (Figs. 3b-

d). We broadly report similarities in the magnitude and di-
rection of the DME results between the disease groups, indi-
cating that the systems-level gene expression changes in AD
in DS reflect those found in early-stage and late-stage AD,
therefore complementing the similar comparative analysis of
our DEGs. However, we also found that the largest set of
unique differentially expressed modules were those downreg-
ulated in early-stage AD, suggesting that temporally transient
systems-level expression changes greatly contribute to the
molecular cascade underlying AD progression (Figure 3g).
In addition, many modules demonstrate a larger effect size in
early-stage AD, compared to late-stage and AD in DS.

We next sought to characterize the differences in cortex-
wide co-expression patterns by inspecting the 15 meta-
modules. We used the ST dataset and the snRNA-seq dataset
to evaluate the spatial and cellular expression patterns of the
meta-modules, noting that most of these expression signa-
tures correspond to grey matter regions and neurons (Figs.
3h-i). These meta-modules were enriched for genes from bi-
ological processes pertaining to normal brain functions like
myelination (M1) and chemical synaptic transmission (M3,
M4, M7, M10, M13), as well as processes previously impli-
cated in AD like glutamate signaling (M6), the inflammatory
response (M11), and amyloid fibril formation (M14, Figure
3h, Table S20). We likewise performed DME analysis of
the meta-modules to compare the disease groups to controls
within each spatial cluster (Methods, Figure 3i). This analy-
sis revealed that meta-module M6, which contains hub genes
such as APP, SCN2A, and CPE, is consistently upregulated
in cortical layer 1 (L1) in all three disease groups. While
L1 is less densely populated with neurons than other corti-
cal layers, module M6 is expressed primarily in neurons in
our snRNA-seq data, together indicating key processes like
APP metabolism, macroautophagy, and RNA splicing are al-
tered in AD L1 neurons. On the other hand, meta-module
M11 is expressed in glial cells and is upregulated across corti-
cal upper layer clusters. M11 contains genes associated with
the immune response and neuronal death, and its hub genes
include members of the complement system (C1QB, C3),
as well as genes previously identified in AD astrocytes12,44

(SERPINA3, VIM, CD44). In addition, we performed a cross-
species analysis of these co-expression networks identified
in our human dataset by projecting the meta-modules to our
5xFAD ST dataset (Methods). This analysis enabled us to
characterize the changes in module expression in different
brain regions throughout aging in WT and 5xFAD mice (Fig-
ure S24). Expression levels of meta-modules M1, M6, and
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Figure 3. Multi-scale spatial co-expression network analysis reveals systems-level transcriptome alterations in AD. Caption on the next page −→
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Figure 3. Multi-scale spatial co-expression network analysis reveals systems-level transcriptome alterations in AD. a, Dendrogram shows the of partitioning 166
gene co-expression modules into 15 brain-wide meta-modules. Network plot in the center represents a consensus co-expression network constructed from grey matter
cortical clusters and white matter, where each dot represents a gene colored by meta-module assignment. Heatmap shows effect sizes from differential module eigengene
(DME) testing in early-stage AD, late-stage AD, and AD in DS compared with controls. Triangular heatmaps show measures of distance between modules (bottom left:
Jaccard index, bottom right: odds ratio). b-d, Comparison of effect sizes from differential module eigengenes testing in early-stage AD and AD in DS (b), late-stage AD and
AD in DS (c), and late-stage AD and early-stage AD (d). Each dot represents a gene co-expression module, and selected modules are labeled. Black line represents a
linear regression with a 95% confidence interval shown in grey. Pearson correlation coefficients are shown in the upper left corner of each panel. e, Upset plot showing the
overlap between sets of differentially expressed modules in each disease group. f, Spatial expression profiles (module eigengenes, MEs) of the 15 meta-modules in one
representative sample. Darker color corresponds to higher expression levels. A spatial plot with each spot colored by cluster assignment is shown in the bottom right corner
as a visual aid. g, UMAP feature plots showing MEs of the 15 spatial meta-modules projected into the snRNA-seq dataset. Darker color corresponds to higher expression
levels. The UMAP plot colored by major cell type is shown in the bottom right corner as a visual aid. h, Selected pathway enrichment results for each meta-module. i,
Heatmaps showing the meta-module DME results for each cortical layer and white matter in the early-stage AD (top), late-stage AD (middle), and AD in DS (bottom)
samples compared to controls. DME tests were performed similarly to those shown in panel (a). X symbol indicates that the test did not reach statistical significance. j, Violin
plots showing MEs of selected meta-modules (M1, M6, and M11) in the 5xFAD mouse dataset, split by age group, with black line indicating the median ME. k, Lollipop plot
showing module preservation analysis of the meta-modules projected into the 5xFAD mouse dataset. Z-summary preservation > 10: highly preserved; 10 > Z-summary
preservation > 2: moderately preserved; 2 > Z-summary preservation: not preserved.

M11 were correlated with increasing age in 5xFAD mice but
not in WT for several of these meta-modules, therefore repre-
senting changes associated with disease progression (Figure
3j). In particular, the gene expression signature of M11 ap-
pears to increase with pathology in both clinical AD and in
vivo (Figure 3i-j). Furthermore, module preservation analy-
sis48 showed that the meta-modules identified in the human
dataset were broadly preserved the mouse dataset (Figure 3k,
Z-summary preservation > 2).

Investigating sex differences within the AD in DS co-
hort.

Understanding the effects of biological sex is particu-
larly important in the context of AD as well as other neu-
rological disorders, and previous AD studies have demon-
strated sex differences in clinical manifestations, disease pro-
gression, risk factors, and gene expression13,49–54. However,
there is limited knowledge as to how sex affects the AD tran-
scriptome in the DS population. Here we performed differ-
ential gene expression analysis to investigate the sex differ-
ences in the transcriptome within our AD in DS cohort using
our ST dataset (Figure 4a, Table S21, Methods). Given that
our ST dataset had a greater number of female samples com-
pared to male (n=7 female, n=3 male), we first sampled the
ST spots in the female samples to match the total number in
the male samples (Methods). We found gene expression dif-
ferences across all chromosomes, and we discovered broad
upregulation of genes in females compared to males across
the spatial clusters (Figure 4b-d). Gene set overlap analy-
sis demonstrated that many of the DEGs with the largest ef-
fect sizes were shared across multiple groups, such as the
hemoglobin subunit beta gene HBB in females and MOBP
in males (Figure 4e). Although HBB expression in female
samples may be partly due to sample variability in blood
contamination, hemoglobin is also expressed by neurons and
glia. Further, a previous study found protein-protein interac-
tions between Hbb and ATP synthase55, and we also identi-
fied ATP synthase subunits (ATP5PD and ATP5MPL) as fe-
male DEGs. In addition, GO term enrichment analysis re-
vealed that genes involved in inflammation, oxidative stress,
and glucose metabolism are upregulated in females indepen-
dent of brain region, whereas male DEGs are related to al-
ternative splicing, chromatin organization, and cytoskeletal
organization and transport (Figs. 4f-g, Table S22). Many

DEGs were also exclusively found in only one or two spatial
clusters (Figure 4e). Interestingly, amyloid-beta and amy-
loid fibril related processes were enriched in both the female
and male specific DEGs. In males, this enrichment was re-
stricted to L3-5, indicating regional specificity of sex differ-
ences in transcriptomic signatures related to amyloid pro-
cessing (Figs. 4f-g). To complement our differential ex-
pression analysis comparing sex within AD in DS, we per-
formed a similar analysis to identify differentially expressed
co-expression modules for the 166 region-specific modules
and the 15 cortex-wide meta-modules (Figs. 4h-i). This anal-
ysis highlighted many systems-level differences in the tran-
scriptome between female and male samples; for instance
meta-module M14 with genes related to Wnt and NIK/NF-κB
signaling is upregulated in females across all spatial clusters.

Spatial annotation of cell clusters to identify cell-cell
signaling dysregulated in disease.

While excitatory neuron subpopulations clustered and
easily could be annotated by cortical layer, we were not able
to stratify inhibitory neurons and glia by region with snRNA-
seq alone. Therefore, we sought to leverage our spatial tran-
scriptomic data to infer the region localization of our snRNA-
seq clusters. We used CellTrek, an algorithm that integrates
spatial and single-cell transcriptomic data to predict the spa-
tial coordinates of a cell in a tissue section56 For this anal-
ysis, we computed paired co-embeddings for each of the 39
human ST samples with the 48 snRNA-seq cortical samples
generated in this study and used CellTrek to train a multi-
variate random forest model to predict the spatial coordinates
of each cell using the shared embeddings (Methods, Figure
5a). We visualized these results in representative spatial sam-
ples by plotting each of the mapped snRNA-seq cells colored
by their cell identity and split by major cell lineages (Fig-
ure 5a), as well as the expression of selected cortical layer
marker genes side by side with the ST and mapped snRNA-
seq datasets, confirming this approach assigns cell types to
their known brain region (Figure 5b). Since this analysis
was performed on each of the ST samples, each cell from
the snRNA-seq data was mapped to multiple spatial contexts.
Using this information, we computed a probability for each
mapped cell to each of the spatial clusters. For example,
this analysis uncovered that a subpopulation of LAMP5+ in-
hibitory neurons are WM interstitial neurons57 (Figure 5c-d).
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Figure 4. Sex differences within the AD in DS cohort. a, We performed differential expression analyses between female and male samples for each spatial cluster within
the AD in DS cohort for our ST dataset. Since we had more female than male samples in the ST dataset, we subsampled the ST spots in the female samples to match the
number from the male samples (Methods). b, Heatmap colored by effect size from the AD in DS female versus male differential gene expression analysis, with genes
stratified by chromosome and by spatial region. Statistically significant (FDR < 0.05) genes with an absolute average log2(fold-change) >= 0.25 in at least one region are
shown. c, Stacked bar chart showing the number of AD in DS female versus male DEGs in each spatial region stratified by chromosome. d, Volcano plots showing the effect
size and significance level from the AD in DS female versus male differential expression tests in each of the spatial clusters. The top 10 and bottom 10 significant genes by
effect size are labeled, excluding the set of genes that are commonly DE among all the spatial clusters. e, Upset plot showing the overlap between sets of DEGs in each
spatial clusters. f-g, Selected pathway enrichment analysis from DEGs that were upregulated in female (f) or in male (g). h, Volcano plot showing the effect size and
significance level from the AD in DS female versus male differential module eigengene (DME) analysis, with the top 10 and bottom 10 modules labeled. i, Heatmap showing
the meta-module AD in DS female versus male DME results for each cortical layer and white matter. DME tests were performed similarly to those shown in panel (h). X
symbol indicates that the test did not reach statistical significance.
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Figure 5. Systematic integration of spatial and single-nucleus expression profiles. a, We performed a systematic pairwise integration of biological samples profiled
with spatial and single-nucleus transcriptomics (left). For all possible pairs of ST + snRNA-seq samples, we constructed a transcriptomic co-embedding (middle), and then
we used a multivariate random forest model (CellTrek 56) to predict the spatial coordinates of each snRNA-seq cell in the given spatial context. The snRNA-seq dataset is
shown on the right projected into two different spatial contexts (left: control sample; right: AD in DS sample), split by major cell lineages and colored by cell annotations. b,
Spatial feature plots of selected layer-specific marker genes, shown side-by-side in the ST dataset and the snRNA-seq dataset projected into the spatial context for one AD
in DS sample (left) and one control sample (right). c, Stacked bar plot showing the proportion of nuclei from each snRNA-seq cluster mapped to the spatial domains defined
by the ST clustering. d, Violin plots showing the distribution of spatial domain mapping probabilities for nuclei from each of the snRNA-seq clusters. e, UMAP plot of the
snRNA-seq dataset split by predicted spatial partitions into the upper cortical layers, lower cortical layers, or the white matter. f, Spatial density plot showing the snRNA-seq
dataset in predicted spatial coordinates, highlighting selected cell populations. g, Spatial feature plots showing selected module eigengenes in the snRNA-seq dataset in
predicted spatial coordinates.

Miyoshi & Morabito et al. 9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2023. ; https://doi.org/10.1101/2023.07.24.550282doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.24.550282
http://creativecommons.org/licenses/by-nc-nd/4.0/


Finally, for the snRNA-seq data we added a label for upper
cortical layer, lower cortical layer, or white matter based on
the spatial context that the cell was most frequently mapped
to (Methods, Figure 5e). Furthermore, we inspected the pre-
dicted cell density distributions of specific cell subpopula-
tions like subtypes of astrocytes and microglia in represen-
tative ST samples (Figure 5g). We also used these map-
pings to directly investigate the spatial and cellular contexts
of systems-level transcriptomic signatures by visualizing the
meta-module eigengenes in the predicted ST coordinates split
by the major cell types (Figure 5f).

With these spatial annotations of our snRNA-seq clus-
ters, we next wanted to assess how cell-cell communication
may be dysregulated in AD using CellChat58. CellChat iden-
tifies signaling pathways between cells based on the expres-
sion of ligand and receptor pairs and performs statistical test-
ing to compare the signaling patterns between different ex-
perimental groups. The additional spatial information allows
us to distinguish these signaling changes as short- or long-
range cellular communication, which is otherwise lost with
snRNA-seq data alone. This analysis broadly uncovered dif-
ferences in the strength of signaling interactions across dif-
ferent cell clusters between AD in DS and controls (Figure
6a). Across all the clusters, we found a reduced number of
interactions in AD in DS compared to control, but an in-
creased strength of the interactions (Figure 6b-c). We next
performed an unsupervised machine-learning based analy-
sis to inspect the functional changes in the cell-cell com-
munication landscape of specific signaling pathways (Figure
6d) and to compute the relative information flow between
AD in DS and controls (Figure 6e). We identified several
signaling pathways up- or downregulated in disease (Fig-
ure 6f-h, Table S23) and highlight the NECTIN, ANGPTL,
and CD99 signaling pathways. We found NECTIN signal-
ing is downregulated in AD in DS. Nectins are involved
in the formation and maintenance of synapses59–61, and we
discovered an absence of inhibitory neuronal NECTIN sig-
naling, as well as a loss in several excitatory neuron sub-
populations (Figures 6f-i). Though it is difficult to discern
if these loss in NECTIN signaling is attributable to neu-
rodegeneration or DS developmental changes, NECTIN2 is
a known AD risk gene62,63, indicating the importance of fur-
ther studying the role of neuronal NECTIN signaling in AD.
On the other hand, ANGPTL signaling is upregulated in AD
in DS. In control samples, ANGPTL signaling features as-
trocyte clusters in cortical lower layers and the white matter
(ASC1 and ASC3, respectively) communicating with a vari-
ety of cell types, including neurons, pericytes, and oligoden-
drocyte progenitor cells (OPCs), with the ligand ANGPTL4
(Figures 6j-m). However in AD in DS, additional astrocytes,
like ASC1 and ASC3 in the cortical upper layers, express
ANGPTL4. Increased ANGPTL4 expression has been pre-
viously observed in astrocytes from AD patients with vas-
cular changes64, and ANGPTL4 is a hub gene of the meta-
module M11, which we identified as upregulated with dis-
ease in the cortical upper layers. Interestingly, we also note a
loss of astrocyte-inhibitory neuron ANGPTL communication

with disease. Conversely, CD99 is also a hub gene of M11,
but CD99 signaling is downregulated in AD in DS (Figure
S28). We discovered pericyte and astrocyte (ASC3) commu-
nication with excitatory and inhibitory neuronal populations
is absent, suggesting that disrupted CD99-CD99L2 signaling
may contribute to the neurovascular changes seen in AD. No-
tably, despite the overall downregulation of CD99 signaling
in AD in DS, we also found CD99-PILRA signaling between
cortical lower layer pericytes and microglia exclusively in
AD in DS. PILRA, a myeloid inhibitory signaling receptor,
has been associated with AD genetic risk65–68; our findings
implicate pericytes in the modulation of microglial function
in AD via PILRA activity.

Imaging mass cytometry reveals protein-level expres-
sion changes in AD.

To complement our transcriptomic analysis, we lever-
aged imaging mass cytometry (IMC) for multiplexed imaging
of a panel of 23 proteins, allowing us to investigate the spatial
expression patterns of these proteins (Figure 7a, Methods).
Briefly, this technique uses a panel of metal-conjugated an-
tibodies for multiplexed labeling, followed by fast UV-laser
tissue ablation and cytometry by time of flight (CyTOF) to
yield quantitative single-cell spatial proteomic data, and this
approach has been previously applied in postmortem human
brain tissue69. This approach circumvents the constraints of
conventional immunohistochemistry (IHC), which only al-
lows for analysis of a handful of markers, restricting the un-
derstanding of cellular phenotypes, and avoids the autofluo-
rescence issues inherent to aged human brain tissue. By de-
vising and validating a highly multiplexed IMC approach, we
were able to profile brain cell types including neurons, astro-
cytes, and microglia. Following tissue laser ablation, spatial
expression data was acquired at approximately 1 um resolu-
tion via mass spectrometry analysis of metallic labels.

We used IMC to analyze the spatial protein expression
patterns in gray matter and white matter cortical tissue sam-
ples from the same cohort used for our ST data (post-QC
sample numbers: cognitively normal controls, n= 2; late-
stage AD, n=6; and AD in DS, n=6). The constructed im-
ages remarkably mirror images obtained from classical mi-
croscopy but with greater channel capacity (Figs. 7b-c). We
applied a supervised machine learning approach to gener-
ate cell segmentation masks, allowing us to quantify protein
intensities for individual cells, yielding 32,759 cellular pro-
files after quality controls (Methods). Using this single-cell
protein data with spatial information, we performed an unbi-
ased clustering analysis and revealed 11 distinct populations
(Methods, Figure 7d). Our antibody panel did not include
cell type marker proteins for all brain cell types due to limited
antibody availability and compatibility, but we were able to
recover proteomic profiles for astrocytes (GFAP+, S100b+),
neurons (Map2+, NeuN+), and microglia (Iba1+), as well as
populations that were enriched in extracellular matrix (ECM)
proteins or phospho-tau (Figs. 7e-f).

We next used this dataset to perform statistical compar-
isons of protein abundances between disease groups in the
different IMC clusters (Figs. 7g-l, Table S24, Methods).
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Figure 6. Altered cell-cell communication signaling networks in AD in DS. Caption on the next page −→
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Figure 6. Altered cell-cell communication signaling networks in AD in DS. a, Heatmap showing the differential cell-cell communication (CCC) interaction strength
between AD in DS and control. Each cell represents a snRNA-seq cell population, where rows correspond to signaling sources and columns correspond to signaling targets.
Bar plots on the top and right show the sum of the incoming and outgoing signaling respectively. b-c, Bar plots showing the total number of CCC interactions (b) and
interaction strength (c) for control and AD in DS. d, Joint dimensionality reduction and clustering of signaling pathways inferred from AD in DS and control data based on
their functional similarity. Each point represents a signaling pathway. e, Bar plots showing signaling pathways with significant differences between AD in DS and controls,
ranked based on their information flow (sum of communication probability among all pairs of cell populations in the network). f-g, Network plot showing the CCC signaling
strength between different cell populations in AD in DS (f) and controls (g) for the NECTIN signaling pathway. h-i, Spatial feature plots of the snRNA-seq in predicted spatial
coordinates for one control sample (h) and one AD in DS sample (i) for one ligand and one receptor in the NECTIN pathway. j-k, Network plot as in panels (f-g) in AD in DS
(j) and controls (k) for the ANGPTL signaling pathway. l-m, Spatial feature plots as in panels (h-i) for one control sample (l) and one AD in DS sample (m) for the ANGPTL
pathway.

We found that the abundances of amyloid beta and phospho-
tau were significantly increased in neurons with disease, as
expected, but microtubule-associated protein 2 (MAP2) de-
creased, indicative of neurodegeneration (Figure 7g). We
found that abundance of Cystatin C (CST3), which is known
to colocalize with amyloid beta, was significantly changed
in microglia and astrocytes from late-stage AD and AD in
DS (Figure 7i). In our spatial transcriptomic data, CST3 was
upregulated in both groups in spatial clusters L3-5 and L5/6;
however, we did not find the same congruence in our snRNA-
seq data. CST3 was upregulated in only ASC1 for AD in
DS and MG2 for late-stage AD. We additionally discovered
CD44 is upregulated in astrocytes and microglia from both
diagnoses (Figs. 7j-k). Similar to CST3, we found that CD44
expression in the spatial transcriptomic data was more con-
cordant than that in the snRNA-seq data. We expected CD44
upregulation in astrocytes, but we did not detect microglial
upregulation of CD44 at the single-nucleus transcriptome.
These discrepancies may be due to the biological discrep-
ancy between gene and protein expression or other techno-
logical and algorithmic limitations. However, we found a sig-
nificant upregulation of clusterin (Apolipoprotein J, CLU) in
both microglia and astrocyte subpopulations with increased
CD44 protein expression in both late-stage AD and AD in
DS. CD44 and CLU are hub genes of meta-module M11,
which we found upregulated in both 5xFAD and clinical AD
samples, demonstrating these are co-regulated at both gene
and protein level. Furthermore, one of our astrocyte clusters
was marked by a high phospho-Tau burden, which was sig-
nificantly elevated in disease compared to control, and was
higher in AD in DS compared to late-stage AD (Figure 7j). In
sum, our IMC experiment in light of our other -omics exper-
iments highlights the importance of a multi-faceted approach
to comprehensively understand the altered molecular signa-
tures of the brain in neurodegeneration.

Integrating spatial transcriptomics with fluorescent
amyloid imaging to identify pathology-associated
gene expression signatures.

Amyloid pathology is a defining feature of AD, and
there is a critical need to understand the development of
amyloid pathology and the cellular response. Previous stud-
ies identified amyloid-associated cell subpopulations that are
transcriptionally distinct43–45 as well as plaque-associated
gene expression changes70. However, these studies did not
investigate amyloid-associated gene expression changes re-
garding the conformational changes associated with plaque
formation. We sought to distinguish the transcriptional

changes that may be conformation-dependent by staining
each ST tissue section with Amylo-glo for dense amyloid-
beta plaques and the antibody OC for diffuse amyloid fib-
rils and fibrillar oligomers (Figure 8a-b). This yielded infor-
mation about the size and spatial location of amyloid aggre-
gates in the same coordinates as our gene expression data,
and we developed a custom image analysis pipeline to in-
tegrate these amyloid quantifications with our ST datasets
(Methods). We found that the distribution of amyloid pathol-
ogy in the spatial clusters was generally consistent with neu-
ropathological plaque staging, where amyloid pathology is
primarily in the cortical upper layers before spreading to the
deeper layers (Figure 8c). Using the amyloid imaging data
together with our ST data, we developed a consistent strat-
egy to identify amyloid-associated gene expression changes
in our human and mouse ST datasets (Methods). Briefly, we
performed geospatial statistical analysis71,72 to identify “hot
spots” of plaques and fibrils (Figures S31, S30, S31, S32),
and used generalized linear models (GLMs) to perform dif-
ferential gene expression testing with respect to the amyloid
hot spot intensity (Methods). Critically, this analysis was
agnostic of disease status or mouse age groups to specifi-
cally identify genes associated with amyloid rather than those
associated with other disease-related factors. By perform-
ing a consistent analysis in our mouse and human datasets,
we reasoned that we could assess the similarity of amyloid-
associated gene sets between human AD and 5xFAD mice.

Since amyloid depositions appear in grey matter much
more frequently than in white matter, for the human dataset
we focused our analysis on the gray matter regions (Meth-
ods). With this approach, we identified 65 amyloid plaque-
associated genes and 215 amyloid fibril-associated genes in
the human dataset (Figure 8f, Table S25). Gene set over-
lap analysis showed that 55 genes were common between the
plaque- and fibril-associated genes (Figure 8f, Fisher’s exact
test p-value = 1.8e-115, odds ratio = 1248.92). Biological
processes such as intermediate filament assembly, long-term
potentiation, neuron death, and transport across the blood
brain barrier were enriched in these shared genes (Figure
8g, Table S26). Notably, these genes included meta-module
M11’s hub genes CLU and VIM. This significant overlap is
not surprising as amyloid fibrils comprise plaques. However,
the large number of genes exclusively associated with fibrillar
amyloid represent transcriptional changes prior to plaque as-
sembly, and are related to synaptic function and hemopoiesis
(Figure 8h). A few genes were also members of M11, in-
cluding AEBP1 and DTNA, both previously found associated
with AD73–75. Further, we found that many, but not all, of
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Figure 7. Imaging mass cytometry reveals spatial proteomic changes in AD. a, We performed imaging mass cytometry (IMC) in postmortem human cortical tissue (n=2
control, n=6 late-stage AD, n=6 AD in DS) using the Standard BioTools Hyperion Imaging System. b, Representative IMC images from control, late-stage AD, and AD in DS
samples with select targets from the panel. c, Images as in panel (b) at higher magnification and focused around amyloid plaques. d, UMAP plot showing the unbiased
clustering of segmented nuclei from the IMC dataset based on their protein intensity values. Each dot represents a segmented nucleus, colored by cluster assignment. e,
Stacked bar plots showing the proportion of segmented nuclei assigned to each cluster stratified by disease groups. f, Heatmap showing the relative protein intensity of each
protein in each IMC cluster. Dendrograms depict hierarchical clustering results based on these relative intensities. g-l, Violin plots showing the distribution of protein
intensities for selected proteins in specified IMC clusters, stratified by disease groups. Wilcox test comparison results are overlaid on each plot. Not significant (ns), p > 0.05;
* p <= 0.05; ** p <= 0.01; *** p <= 0.001, **** p<= 0.0001.
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Figure 8. Identifying amyloid-associated gene expression signatures. a-b, Representative fluorescent whole-section images from one AD in DS (a) and one 12-month
5xFAD sample (b) stained with Amylo-glo and OC to mark dense amyloid plaques and diffuse amyloid fibrils respectively. ST data colored by cluster (left), amyloid
quantification (middle), and amyloid hotspot analysis (right) are shown below the images. c-d, Spatial feature plots showing the amyloid hotspot analysis results (Getis-Ord
Gi* statistic) for the human (c) and mouse (d) ST datasets for OC (left) and Amylo-glo (right). e, Box and whisker plots showing the distribution of amyloid quantifications in
the human ST dataset, stratifying samples by their neuropathological plaque staging. Box boundaries and line correspond to the interquartile range (IQR) and median,
respectively. Whiskers extend to the lowest or highest data points that are no further than 1.5 times the IQR from the box boundaries. f, Stacked bar plot showing the
number of amyloid-associated genes from Amylo-glo, OC, and shared for each of the mouse ST clusters. Euler diagram shows the number of Amylo-glo- and OC-associated
genes in the human dataset, and the overlap between these gene sets. g, Bar plots show the number of Amylo-glo- and OC-associated genes that overlap with disease
DEGs. h-i, Selected pathway enrichment results from amyloid-associated genes that were shared between Amylo-glo and OC (h) and OC-specific (i) in the human ST
dataset. j, Selected pathway enrichment results from amyloid-associated genes that were shared between Amylo-glo and OC for each cluster in the mouse ST dataset. k,
Heatmap showing gene set overlap analysis results with the mouse amyloid-associated genes and human (left), and with other relevant gene sets (DAA: Disease-associated
astrocytes 44; DAM: Disease-associated microglia 43; DOL: Disease-associated oligodendrocytes 45; PIGs: Plaque-induced genes 70). Fisher’s exact test results shown as
follows: Not significant (ns), p > 0.05; * p <= 0.05; ** p <= 0.01; *** p <= 0.001, **** p<= 0.0001. l, Spatial feature plots of selected amyloid-associated genes in
representative samples from the human (left) and mouse (right) ST datasets. m, Network plot showing module hub genes from the mouse spatial co-expression network
module SM6. n, Euler plot showing the gene set overlap of the SM6 module and the PIGs module from Chen et al. 70. o-p Spatial feature plots showing the module
eigengenes for the SM6 module (o) and the PIGs module (p) in representative samples of the mouse ST dataset.
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these amyloid-associated genes are DEGs we identified in
each diagnosis, demonstrating the increased spatial granular-
ity of this analysis (Figure 8i).

In the mouse dataset, we identified amyloid-associated
genes separately within each of the 14 spatial clusters. From
this analysis, we found a total 1,829 plaque-associated genes
and 1,759 fibril-associated genes (Figure 8f, Table S27). We
found that some of the amyloid-associated gene sets had sig-
nificant overlaps between those found across different spa-
tial clusters, but most of these genes were spatially restricted
to only one of these groups. Furthermore, we found broad
overlaps between the sets of plaque and fibril-associated
genes within each spatial cluster, with the largest overlaps
found in the hippocampus pyramidal and the upper cortical
layer clusters (Figure 8f). GO term enrichment analysis of
mouse amyloid-associated genes associated these genes to
immune and inflammation related processes like microglial
activation, as well as neurodegeneration terms like axon in-
jury, neuron death, and response to amyloid beta (Figure 8j,
Table S28). Interestingly, genes associated only with OC
staining included AD GWAS risk gene Adamts7, as well as
immune-related genes, such as Itgb2, Cd53, and Il33, sug-
gesting a unique immune signature preceding plaque for-
mation. We next compared the amyloid-associated gene
sets identified in this study with plaque-induced gene (PIG)
module from another amyloid mouse model70, in addition
to other relevant gene signatures like disease-associated mi-
croglia (DAMs43), astrocytes (DAAs44), and oligodendro-
cytes (DOLs45), which were originally identified in 5xFAD
mice. We performed gene set overlap analysis, and we com-
puted gene signature scores for these gene sets in the mouse
and human ST dataset (Methods), revealing significant over-
laps between our mouse amyloid-associated genes with these
published gene sets (Figure 8k). Since the PIG module was
previously identified using co-expression network analysis,
we performed a similar network analysis in our 5xFAD ST
dataset to see if we could recover a similar expression pro-
gram using hdWGCNA46 (Methods, Figures S33, S34, S35).
One of the gene modules identified in this analysis (SM6)
was enriched for genes related to microglial activation and
amyloid-beta response, and the expression of this module in-
creased with age in 5xFAD but not WT mice (Figure S33).
Further, we found that this module significantly overlapped
with the PIG module, and that the expression of the PIG
module also only increased with age in 5xFAD mice (Fig-
ures S36, S37). Altogether, these findings demonstrate that
these amyloid-associated gene expression changes are highly
reproducible and are mouse model-agnostic.

We next directly assessed the overlap between the
amyloid-associated genes identified in the human dataset
with those from the mouse dataset to investigate the evo-
lutionary conservation of amyloid-associated transcriptional
changes (Figure 8k). We found modest yet significant over-
laps between some of these gene sets, with a generally higher
degree of overlap in the plaque-associated genes (Figure
8k). Shared OC-associated genes in both mouse and hu-
man cortex include neurofilaments NEFH and NEFM, as

well as ALDOC, previously identified as amyloid-associated
in cerebrospinal fluid76, and MAFB, which was implicated
in AD microglial gene regulation77. Perhaps surprisingly,
we noted a general lack of microglial genes in the human
amyloid-associated genes, whereas several of these mouse
amyloid gene sets, including those from cortical regions, con-
tained microglial genes like Trem2 and Tyrobp. However,
we identified MEF2C, a microglial transcription factor as-
sociated with AD genetic risk65,66, in the shared amyloid
genes. Furthermore, these shared amyloid genes highlighted
meta-module M11 with the hub genes VIM and CLU. We
found that M11’s gene expression signature mirrors amyloid
deposition, indicating this meta-module represents species-
conserved amyloid-associated biological processes (Figures
S23, S24.

Discussion
Single-cell sequencing has uncovered cell type and cell state-
specific changes in disease, yielding novel insights into dis-
ease pathophysiology and gene targets for further study.
However, a critical limitation of these methods is their inabil-
ity to capture spatial information, and many disorders have
spatially defined characteristics. AD pathology progresses in
a predictably anatomical manner that may be linked to brain
circuitry. We generated spatial transcriptomic data from post-
mortem human brain tissue samples of clinical AD, encom-
passing early- and late-stage AD in the general population,
as well as AD in DS. Due to technical limitations, we could
not profile gene expression at a macroscopic level of multiple
brain regions, and our samples had varying amounts of corti-
cal layers and white matter. We additionally generated spatial
transcriptomic data from the 5xFAD mouse model of AD, al-
lowing us to simultaneously assess multiple brain regions and
the temporal dynamics of disease progression, with the added
benefit of reduced sample heterogeneity. Both our human
and mouse spatial datasets are the largest of our knowledge
(n=119 total), altogether representing a rich data resource for
the AD community.

We identified regional differential gene expression
changes shared between AD in the general population and
DS, in line with previous accounts of shared genetic, clin-
ical, and biomarker features27,78,79. Further, we generated
the first snRNA-seq study of AD in DS and integrated previ-
ously published AD studies to identify cellular changes con-
served between both populations. We leveraged our novel
transcriptomic data of AD in DS to investigate the role of bi-
ological sex on the AD transcriptome in the DS population,
revealing distinct biological signatures between males and
females. In addition, identification of cross-species disease
changes are of particular interest for mouse model develop-
ment and preclinical translation. Therefore, we evaluated the
expression of DEGs identified in clinical AD in the 5xFAD,
identifying regional evolutionary-conserved disease gene ex-
pression changes. Furthermore, we integrated fluorescent
imaging data to reveal amyloid-associated genes shared be-
tween both species. Although previous 5xFAD studies iden-
tified amyloid-associated subpopulations and genes, not all
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may be recapitulated in clinical AD, and this has been pre-
viously highlighted in human AD snRNA-seq studies exam-
ining the DAM signature. While this may be due to single-
cell vs single-nucleus comparisons80, a previous snRNA-seq
study using human AD and 5xFAD samples14 in addition to
our previous re-analysis12 demonstrated that this may be a
species difference. In our present study, we present a list of
species-conserved amyloid-associated genes, including pre-
viously identified and novel genes, to prioritize gene targets
with high translational value and extend our knowledge of
plaque formation by identifying conformation-specific gene
expression changes. However, we also note that the present
resolution of spatial transcriptomics (5̃5um) may have lim-
ited our findings.

In addition, we performed systems-level analyses us-
ing both our spatial and single-cell datasets to gain further
insight into the AD transcriptome. We leveraged a newly
published method, CellTrek56, to provide spatial coordi-
nates for our snRNA-seq populations and the cell-cell com-
munication analytical package CellChat58 to reveal disease-
associated cellular communication changes. Specifically,
changes in ANGPTL and CD99 signaling highlighted as-
trocyte modulation of brain vascular integrity in AD and
pinpointed downstream targets of AD astrocyte phenotype
changes. The multi-scale co-expression network analysis
utilizing hdWGCNA46 identified 166 gene modules across
different cortical layers that we then refined into 15 cortex-
wide "meta-modules". Importantly, these modules exposed
not only spatial, but also temporal patterns of gene expres-
sion; we found significant downregulation of modules specif-
ically in early-stage AD, indicating dynamic shifts in gene
expression that may play a pivotal role in the progression
of AD. Comparison of these modules in 5xFAD mice also
demonstrated these are cross-species AD dysregulated tran-
scriptomic programs, and we integrated our snRNA-seq data
to determine the cellular contexts of these spatial gene pro-
grams, uncovering both neuronal and glial components that
may be integral to disease biology. In particular, the glial
meta-module M11 is upregulated in the cortical upper layers
with disease and contains DEGs shared between sporadic AD
and AD in DS. The ligands CD99 and ANGPTL4, identified
in our cell signaling analyses, are hub genes in M11. We also
found additional hub genes in our amyloid-associated genes,
observing the expression of M11 at regions with amyloid de-
position in both mouse and human samples, altogether em-
phasizing a critical role of M11’s associated biological pro-
cesses and genes in AD pathophysiology.

Finally, we generated a spatial proteomic dataset to ex-
amine the protein expression of genes we identified in our
transcriptomic datasets, in addition to other AD-related pro-
teins. Notably we found that findings in the spatial tran-
scriptomic data were upheld at the protein level; however,
we could not confirm layer-specific expression due to techni-
cal limitations. snRNA-seq results were less concordant with
the proteomic data. Although this may be due to profiling
only nuclear RNA, resultant protein expression may also be
affected by posttranscriptional and posttranslational regula-

tory changes, as well as protein trafficking, which may not
be captured in transcriptomic data. High-throughput meth-
ods to assess protein expression are also still limited, and the
availability of effective antibodies remains a large impedi-
ment in the study of proteins. In spite of these limitations, we
found that the proteomic data confirmed that M11 represents
key AD co-regulated genes, as we found the encoded pro-
teins of both hub genes CD44 and CLU upregulated in AD
glia, demonstrating our integrative analytical approach un-
covers functional information that enriches our understand-
ing of disease-relevant gene targets.

Our work offers a pioneering exploration into the spa-
tial and temporal dynamics of gene expression in the dis-
ease pathogenesis of both sporadic AD and AD in DS by us-
ing spatial transcriptomic data from postmortem human brain
tissues and the 5xFAD mouse model. This study addition-
ally highlights the significant roles of specific cell-types in
AD and identifies key targets of cellular phenotype changes.
The application of co-expression network analysis allowed
the identification of spatial-temporal patterns of gene co-
expression across different cortical layers, notably pointing
to significant downregulation of certain gene modules dur-
ing early-stage AD. This adds new dimensions to our un-
derstanding of AD’s pathophysiology, emphasizing the dy-
namic shifts in gene expression and the critical involvement
of both neuronal and glial components in disease progres-
sion. Furthermore, the study presents a collection of species-
conserved amyloid-associated genes, creating a foundation
for future studies in AD and potentially facilitating the trans-
lation of in vitro and mouse model findings to clinical appli-
cations.
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Methods

Postmortem human brain tissue. Human brain tissue from prefrontal cortex and posterior cingulate cortex was obtained
from UC Irvine’s Alzheimer’s Disease Research Center and the NIH NeuroBioBank under UCI’s Institutional Review Board
(IRB). Samples were assigned to groups based on both NFT and plaque staging, in addition to clinical diagnoses. Samples
were also selected based upon several covariates, including age, sex, race, postmortem interval (PMI), RNA integrity number
(RIN), and disease comorbidity. RIN values were obtained by isolating total RNA with the Zymo Direct-zol RNA Isolation kit
and running on the Agilent TapeStation 4200. Sample information is available in Table S1.

Mouse brain tissue. All mouse work was approved by the Institutional Animal Care and Use (IACUC) committee at UCI.
5xFAD hemizygous (C57BL16) and wildtype littermates were bred and housed until sacrifice at 4, 6, 8, and 12 months. Sample
information is available in Table S2. For genotyping, we used the following primers (for PSEN1): 5’ – AAT AGA GAA CGG
CAG GAG CA – 3’ (Forward), 5’ – GCC ATG AGG GCA CTA ATC AT – 3’ (Reverse). Mice were euthanized by carbon
dioxide inhalation. After PBS transcardiac perfusion, one brain hemisphere was flash frozen in isopentane chilled with dry ice
for RNA analyses, while the other hemisphere was fixed in 4% paraformaldehyde for immunohistochemistry.

Single-nucleus RNA-sequencing. Single-nucleus isolations were performed in randomized groups of 12 samples. 50mg
fresh frozen postmortem human brain tissue was homogenized in Nuclei EZ Lysis buffer (NUC101-1KT, Sigma-Aldrich) and
incubated for 5 min before being passed through a 70µm filter. Samples were then centrifuged at 500 g for 5 min at 4°C
and resuspended in additional lysis buffer for 5 min. After another centrifugation at 500 g for 5 min at 4°C, samples were
incubated in Nuclei Wash and Resuspension buffer (NWR, 1xPBS, 1% BSA, 0.2U/µl RNase inhibitor) for 5 min. To remove
myelin contaminants, we prepared sucrose gradients with Nuclei PURE Sucrose Buffer and Nuclei PURE 2M Sucrose Cushion
Solution from the Nuclei PURE Nuclei Isolation Kit (NUC-201, Sigma-Aldrich), and samples were carefully overlaid and
centrifuged at 13,000 g for 45 min at 4°C. Samples were then washed in NWR before processing with the Nuclei Fixation
Kit (SB1003, Parse Biosciences). After nuclei fixation and permeabilization, samples were cryopreserved with DMSO until
day of library preparation. Library preparations were performed as 4 batches of 24 samples, with an additional batch to
increase numbers of nuclei/sample for 16 samples. We generated single-nucleus libraries with the WTK Whole Transcriptome
Kit (SB2001, Parse Biosciences). cDNA library quantification and quality were assessed with Qubit dsDNA HS assay kit
(Q32851, Invitrogen) and D5000 HS kit (5067-5592, 5067-5593; Agilent) or D1000 HS kit (5067-5584, 5067-5585; Agilent)
for the Agilent TapeStation 4200. Libraries were sequenced using Illumina Novaseq 6000 S4 platform using 100bp paired-end
sequencing for a sequencing depth of 50,000 read pairs/cell.

Spatial transcriptomics. Fresh frozen tissue samples were sectioned on a HM525NX cryostat (Fisher) at -15°C for 10µm
thick sections that are immediately mounted onto 10x Genomics Visium slides. Slides were individually stored in slide mailers
(sealed airtight in a plastic bag) at -80°C until staining. We followed 10x Genomics Methanol Fixation, Immunofluorescence
Staining & Imaging for Visium Spatial Protocols (Rev C), except after tissue sections were fixed in methanol and blocked,
the sections were incubated with Amylo-glo (1:100; TR-300, Biosensis) for 20 min. Sections were then incubated with the
primary antibody OC (1:500 for mouse, 1:200 for human; polyclonal, AB2286, Millipore) and respective secondary antibody
(1:400; goat anti-rabbit secondary antibody Alexa Fluor 488, Life Tech or Alexa Fluor 647, Life Tech). Immediately after im-
munostaining, capture areas were imaged on a widefield Nikon Ti2-E microscope at 20X magnification. Spatial transcriptomic
libraries were then generated from the tissue sections according to the 10x Genomics Visium User Guide (Rev E). Library
quantification, quality check, and sequencing were performed as previously described, but sequencing depth was based on an
estimated 60% tissue area coverage per sample for 50,000 read pairs per covered spot.

Spatial proteomics. Primary antibodies were formulated carrier-free except for YKL-40, which contained glycerol and was
purified before metal conjugation with Amicon 10K Buffer Exchange Columns (UFC501096, EMD Millipore). All antibody
concentrations were obtained using a Nanodrop 2000c Spectrophotometer and formulated with a final stock concentration of
0.5mg/ml. All antibodies were conjugated using Standard BioTool’s (SBT, formerly Fluidigm) Maxpar X8 metal conjugation
protocol with Maxpar metal labeling kits (201300, SBT).

Fixed and cryoprotected tissue was sectioned on a HM525NX cryostat (Fisher) at -15°C for 14µm thick sections onto
Fisher Superfrost Plus slides. Slides were stored at -80°C until staining, sealed airtight in a plastic bag. We followed the fresh
frozen staining protocol from SBT; however, since the tissue was previously fixed, we skipped the fixation step. Slides were
transferred on dry ice to incubate at 37°C for 5 min on a PCR machine, similar to the 10x Genomics Visium protocol. Sections
were washed in PBS 3 times for 5 min before drawing a hydrophobic barrier. After the hydrophobic barrier dried, we incubated
the sections with 3% BSA in PBS with 0.2% Triton X-100 for 45 min at room temperature. We then incubated the sections with
the primary antibody cocktail diluted in 0.5% BSA/PBS with 0.2% Triton X-100 overnight at 4°C. The antibodies and dilutions
used in the primary antibody cocktail are in Table S29. Sections were then washed in PBS with 0.2% Triton X-100 twice for
8 min before incubating with the iridium intercalator (1:100 in PBS; 201192A, SBT) for 30 min at room temperature. We
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then washed the sections in water twice for 5 min before allowing them to air dry before ablation. Hyperion Imaging System
(SBT) was tuned prior to ablation using Hyperion Tuning Slide (201088, SBT) for optimal instrument performance. Ablations
were performed with an ablation energy of four with a reference energy of zero in 1000x1000µm regions of interest, with the
exception of one due to unexpected consumption of Argon gas that resulted in a 1000x922 acquisition.

Preprocessing gene expression data. For the snRNA-seq dataset, we aligned sequencing reads to the reference transcrip-
tome (GRCH38) and quantified gene expression using splitpipe (Parse Biosciences) in each of the five snRNA-seq experiments.
We quantified and corrected ambient RNA signal present in our samples using Cellbender81 remove-background (v 0.2.0). Het-
erotypic barcode collisions were inferred in each snRNA-seq experiment using Scrublet82 (v 0.2.3) with default settings. We
merged the individual snRNA-seq experiments into a single anndata (v 0.8.0) object, totaling 611,999 barcodes and 29,889
genes before additional quality control (QC) filtering. For each snRNA-seq experiment, we removed barcodes in the 95th
percentile for number of UMIs detected, doublet score from Scrublet, and percentage of mitochondrial reads. We also applied
dataset-wide cutoffs to remove barcodes with less than or equal to 250 UMIs, greater than or equal to 50,000 total UMIs, and
greater than or equal to 10% mitochondrial reads. For one of the snRNA-seq experiments, we applied a more stringent filter to
remove cells with less than or equal to 500 UMIs, and greater than or equal to 5% mitochondrial reads. We retained 431,534
barcodes for downstream analysis.

The 10X Genomics Loupe Browser image alignment tool was used to select Visium ST spots that intersected the tissue
based on the fluorescent images. Sequencing reads from the human and mouse Visium experiments were processed using the
10X Genomics Spaceranger (v 1.2.1) pipeline, with GRch38 and MM10 as the respective reference transcriptomes. Spaceranger
count was used to align sequencing reads to the reference, quantify gene expression, and perform a preliminary clustering
analysis for each sample. Unlike the snRNA-seq dataset, we did not filter out additional spots based on sequencing QC metrics.
The UMI counts matrices and fluorescent images for the human and mouse samples were combined into merged Seurat83–85

objects for the respective species.

Initial snRNA-seq data analysis. Following QC filtering, we processed the snRNA-seq dataset using SCANPY86 and scVI87.
The UMI counts matrix was first normalized using the functions sc.pp.normalize_total and sc.ppl.log1p. We set
up the anndata object to train the scVI model using snRNA-seq as the batch key and the following additional continuous and
categorical covariates: sample ID, diagnosis, brain region, age at death, percentage of mitochondrial counts, number of UMI,
postmortem interval (PMI) and RNA integrity number (RIN). We set up the scVI model with two hidden layers, 128 nodes
per layer, a 30-dimensional latent embedding after the encoder phase, and a dropout rate of 0.1. We trained the model over 50
epochs and noted a flattened loss curve by the end of the training procedure. The latent embedding learned from the scVI model
accounts for the batch effects and additional covariates specified in the model setup step, and we used this embedding for Leiden
clustering and UMAP88 dimensionality reduction in SCANPY. With a resolution parameter of 1.5 we identified 43 clusters. We
inspected gene expression patterns in these clusters for a panel of canonical CNS cell type marker genes to assign major cell
type labels to each cluster. We also checked the distribution of QC metrics in each cluster to identify outlier clusters. Six clusters
(7, 29, 33, 35, 50, 51) were removed from downstream analysis as QC outliers, or due to presence of potential doublets. We
recomputed the UMAP and Leiden clustering (resolution = 1.2) after filtering these clusters, yielding 29 clusters. Glutamatergic
neuron clusters were annotated based on expression of known cortical layer marker genes, and GABAergic neuron clusters were
annotated based on expression of known markers (VIP, SST, PVALB, LAMP5). At this stage, non-neuronal cell clusters were
simply labeled by their major cell type (astrocytes, microglia, oligodendrocytes, oligodendrocyte progenitors, vascular cells).
To identify subpopulations in non-neuronal cells, we performed subclustering analysis in each of the major non-neuronal cell
populations (microglia, astrocytes, oligodendrocytes, vascular cells). Each group was isolated in its own anndata object, and
Leiden clustering was performed (see GitHub repository for subclustering parameters).

Reprocessing publicly available single-nucleus gene expression datasets. We obtained sequencing data from obtained
three published snRNA-seq studies12–14 of AD. Sequencing data from the Mathys et al. 2019 and Zhou et al. 2020 datasets
were downloaded from Synapse (syn18485175 and syn21670836), and the data from the Morabito et al. 2021 study generated
by our own group was not re-downloaded. We used a uniform pipeline to process each of these datasets, with slightly varying
parameters which are noted in our GitHub repository. This pipeline and the resulting anndata objects are identical to those
used in another study from our group46, and we reiterate the main analysis steps here. Sequencing reads were pseudoaligned
to the reference transcriptome (GRch38) and gene expression was quantified using the count function from kallisto bustools89.
Ambient RNA signal was corrected in UMI counts matrices for each sample using Cellbender81 remove-background, and we
used Scrublet82 to identify barcodes attributed to more than one cell. Individual samples were then merged into one anndata
object for each of the three studies. Analogous to the snRNA-seq data we generated in this study, we performed percentile
filtering based on the following QC metrics: doublet score, number of UMI per cell, and percentage of mitochondrial reads
per cell. The downstream processing was performed using SCANPY86. Gene expression was normalized using the func-
tions sc.pp.normalize_total and sc.pp.log1p, resulting in a ln(CPM) transformation of the input UMI counts
data. Highly variable features were identified using sc.pp.highly_variable_genes, which were then scaled to unit
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variance and centered at zero using sc.pp.scale. Linear dimensionality reduction was performed on the scaled expression ma-
trix using PCA with the function sc.tl.pca. Harmony90 was used to batch correct the PCA representation with the function
sc.external.pp.harmony_integrate. A cell neighborhood graph was computed based on the harmony representa-
tion using sc.pp.neighbors, followed by Leiden30 clustering and non-linear UMAP dimensionality reduction with sc.tl.leiden
and sc.tl.umap respectively. Canonical CNS cell type marker genes were used to assign coarse-grain identities to each cluster,
and to identify additional doublet clusters that passed our previous filtering steps. We inspected the distribution of the QC
metrics in each cluster and removed outlier clusters. After filtering additional low-quality clusters, we ran UMAP and Leiden
clustering again to result in the final processed anndata object for each dataset.

Spatial transcriptomics clustering analysis. In the human and mouse ST datasets, we grouped spots into biologically rel-
evant clusters by accounting for transcriptome measurements and spatial coordinates. The BayesSpace31 clustering algorithm
uses a low-dimensional representation of the transcriptome with a spatial prior to encourage assignment of neighboring spots in
the same cluster. Critically, BayesSpace produces a single unified clustering across many different ST experiments, rather than
separate clustering and annotation for each ST slide. Seurat objects were converted to the SingleCellExperiment format using
the function as.SingleCellExperiment. Absolute and relative spatial coordinates were stored in the meta-data compartment of
the SingleCellExperiment objects to inform the BayesSpace model of the spatial information, ensuring to offset each sample
such that there was no overlap. Each dataset was log normalized and linear dimensionality reduction was performed with PCA
using the function spatialPreprocess from the BayesSpace R package. Harmony90 batch correction was applied on the basis
of individual samples using the RunHarmony function. For the human dataset, we ran BayesSpace clustering using the spa-
tialCluster function in the BayesSpace R package, varying the q parameter (number of resulting clusters) from 5 through 10.
We inspected the output of each clustering and found that q=9 produced results that were most consistent with the underlying
anatomy of the cortex, allowing us to annotate clusters based on cortical layers and white matter. Similarly, we ran BayesSpace
clustering on the mouse dataset varying the q parameter between 10 and 20, and we selected q=15 for downstream analysis.

Reference-based integration of snRNA-seq datasets. We performed reference-based integration of the snRNA-seq
dataset from the current study with the three published AD snRNA-seq datasets. Using our new snRNA-seq dataset as the
reference, we projected the three published datasets into the reference latent space using scANVI33, and we performed transfer
learning to predict cell identities using scArches91. While scANVI shares similarities with the scVI model that we previously
used to process our snRNA-seq data, it is a semi-supervised model that leverages cell annotations in the reference dataset to
inform the latent representation of the query dataset. We trained the scANVI model separately for each of the query datasets
using the class scvi.model.SCANVI, training for 100 epochs in each case. For each query dataset, this process resulted in a
low-dimensional representation of the transcriptome in the latent space originally learned from the reference snRNA-seq dataset
with the model.get_latent_representation function, and predicted cell annotation labels from the model.predict
function. We merged the reference dataset with the three query datasets, and we ran UMAP on the scANVI latent representation
to visually represent the unified dataset in two dimensions.

Cluster marker gene analysis. We performed cluster marker gene analysis for each snRNA-seq cluster using the snRNA-
seq dataset generated in this study. For this analysis, we employed a “one-versus-rest” strategy to systematically perform
differential gene expression analysis comparing each cluster to all the other clusters. We used MAST92 as our differential
expression model for this test, accounting for the sequencing batch and the number of UMI per nuclei as covariates in our
model. We a similar strategy to perform cluster marker gene analysis in our human and mouse Visium spatial transcriptomics
datasets where we used the biological sample ID and the number of UMI per spot as model covariates for MAST.

Differential gene expression analysis. We systematically performed differential gene expression analysis in each of our
datasets to compare the disease conditions with controls. For all our differential gene expression tests, we use MAST92 as the
underlying model, which has shown favorable results in recent benchmarks for differential expression analysis in datasets with
multiple sequencing batches98. For the snRNA-seq dataset generated in this study, we compared gene expression between the
AD in DS and cognitively normal control groups for each cluster and major cell type, and we performed this analysis separately
for the two brain regions profiled in this study (frontal cortex and posterior cingulate cortex). We used the sequencing batch,
number of UMI per nuclei, sample postmortem interval (PMI), and sample RNA integrity number (RIN) as model covariates
for these tests. We used a similar strategy for the differential expression analysis of the previously published snRNA-seq
datasets12–14 to compare late-stage AD samples with cognitively normal controls, accounting for study of origin and number
of UMI per nuclei as model covariates. We compared gene expression between cognitively normal controls and the three
experimental groups (early-stage AD, late-stage AD, and AD in DS) separately in our human spatial transcriptomics dataset.
For these comparisons, we used RIN, PMI, number of UMI per spot, date of sequencing library preparation, and sequencing
batch as model covariates. In the mouse spatial transcriptomics dataset, we performed differential gene expression analysis to
compare gene expression between 5xFAD and wild type mice in each ST cluster, and we stratified this analysis by each age
group (4, 6, 8, and 12 months). For the mouse analysis, we used the number of UMI per spot, sequencing batch, date of sacrifice,
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and date of sequencing library preparation as model covariates. We visualized the results of the differential expression tests as
volcano plots to show the statistical significance and the effect sizes for each gene. For the human datasets, we also visualized
the differential expression results using a heatmap stratified by chromosome to inspect the contribution of each chromosome to
the overall set of DEGs.

Within the human snRNA-seq and ST datasets, we compared the results of the differential expression analyses across
the different conditions within each snRNA-seq and ST group. For these comparisons we computed Pearson correlations
and performed linear regression on the differential expression effect sizes for the set of genes that were significantly different
between condition and control for either of the analyses. We visualized these results using scatter plots, and indicated genes
that were consistent or inconsistent in terms of their effect sizes across the different comparisons. We used the EnrichR93 R
package (version 3.1) to identify biological pathways and processes that are enriched in our sets of DEGs, and in sets of DEGs
that were shared across different differential expression tests.

Hierarchical co-expression network analysis in human spatial transcriptomics . We performed hierarchical co-
expression network analysis across different cortical layers and white matter in our human ST dataset using the R package
hdWGCNA46,94 (version 0.2.19). Prior to network analysis, we computed pseudo-bulk gene expression profiles for each of our
39 ST samples in the for the cortical layer clusters and white matter (L1, L2-3, L3-4, L3-4-5, L5-6, L6b, WM), and we calcu-
lated log2(CPM) (counts per million mapped reads) normalized expression values. Genes were retained for network analysis
if they were expressed above 0 UMI counts in at least 5% of cells in any of the spatial annotations, thereby retaining 10,199
genes. We selected soft-power threshold parameters for each spatial region by computing the scale-free topology model fit at
for different soft-power values, and using the smallest parameter which yielded a model fit greater than 0.8. Co-expression
networks were then computed separately for the seven spatial regions using the hdWGCNA function ConstructNetwork, using
a minimum module size of 50, a merge cut height of 0.1 for dynamic tree cutting95, the soft power thresholds as previously
described, and all other parameters set to the default values. This process yielded 166 gene co-expression modules across
the seven spatial regions, and we assigned a unique name to each module based on a combination of their spatial region of
origin and a numeric identifier. For example, module “L1-M7” is the seventh module originating from spatial region L1. We
calculated gene expression summary values, called “module eigengenes” (MEs) for each of these 166 modules in each of the
ST spots using the hdWGCNA function ModuleEigengenes, applying a Harmony95 correction to the MEs based on biolog-
ical sample of origin. We then computed eigengene-based connectivity (kME) for each gene using the hdWGCNA function
ModuleConnectivity.

We next sought to perform a hierarchical analysis of these co-expression networks using a strategy similar to a previous
study47. First, we calculated similarity metrics between pairs of co-expression modules that arose from different spatial regions
by computing gene overlap statistics such as Jaccard similarity (J) using the R package GeneOverlap (version 1.34.0). Next, we
calculated pairwise Pearson correlations between each of the 166 co-expression modules within each of the seven brain regions,
and we kept the component-wise maximum of these correlations (E). Using these two measures of similarity, we computed a
module-module dissimilarity matrix D = 1 – (E + (3J)/4). We then computed Euclidean distance between modules in this
matrix and performed hierarchical clustering with the R function hclust. We refer to the 15 groups of modules that arose from
this hierarchical clustering analysis as “meta-modules”. Similar to our previous co-expression network analysis, we computed
MEs and kMEs for these meta-modules to summarize gene expression in the ST spots and to quantify the eigengene-based
connectivity of each gene. For cases where a single gene was assigned to more than one meta-module, we re-assigned the gene
to only the meta-module where the gene had the highest eigengene-based connectivity. Additionally, we computed a consensus
topological overlap matrix (TOM) based on the seven TOMs from the co-expression analysis in each spatial regions, and we
visualized this consensus TOM as a UMAP plot using the hdWGCNA function RunModuleUMAP. We identified enriched
biological processes in each of the meta-modules using the EnrichR93 R package (version 3.1) to overlap these gene sets with
those associated via Gene Ontology (GO).

We performed differential module eigengene (DME) analysis to compare the differences in the expression of each co-
expression module between disease groups (early-AD, late-AD, and AD in DS) with cognitively normal controls. This analysis
was done using the hdWGCNA function FindDMEs, using a Wilcoxon rank sum test for the comparisons. Like differential
gene expression analysis, DME analysis results in measures of statistical significance and effect sizes for each co-expression
module across each comparison. For the 166 region-specific co-expression modules, we performed DME analysis only within
the region that the modules were derived from. Alternatively, for the meta-modules we performed DME analysis within each
of the spatial regions. After performing these tests, we sought to compare the results of these tests across the different disease
conditions to identify similarities and differences among the co-expression patterns. For the 166 co-expression modules, we
computed Pearson correlations and linear regressions comparing the effect sizes of the DME results and visualized the results as
scatter plots. We next tested the overlap between sets of co-expression modules that were significantly differentially expressed
between the groups using the UpSetR96 package.

To inspect the activity of these spatially derived co-expression networks in other related contexts, we projected the 166
co-expression modules and the 15 meta-modules into our snRNA-seq and mouse ST datasets using the hdWGCNA function
ProjectModules. This function computes MEs in a query dataset for sets of genes from co-expression modules that were found
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in a different reference dataset. In this case, the reference dataset is the human ST dataset and the query datasets are the human
snRNA-seq and the mouse ST datasets. We coarsely inspected the distributions of the meta-modules in specific cell types within
the human snRNA-seq dataset with UMAP visualizations where each cell is colored by the projected ME value. In the mouse
ST dataset, we inspected these trends using violin plots stratified by age group and genotype. Furthermore, in the mouse dataset
performed module preservation analysis48 to assess the reproducibility of these modules across species using the hdWGCNA
function ModulePreservation.

Co-expression network analysis in mouse spatial transcriptomics. We used hdWGCNA46 to perform a brain-wide
gene co-expression network analysis in our mouse ST dataset, similar to the analysis from the mouse brain ST dataset from
Chen et al.70 which was used to identify the “plaque-induced gene” (PIG) network. First, since co-expression network analysis
is sensitive to noise in sparse datasets, we computed “meta-spots” by merging the transcriptomes of adjacent ST spots in a
grid pattern for each of the 80 ST samples. Genes were retained for network analysis if they were expressed above 0 UMI
in at least 5% of spots originating from any of the different brain regions, yielding a total of 12,579 genes. After performing
a soft-power threshold search similar to our human co-expression network analysis, we computed the co-expression network
topological overlap matrix (TOM) and identified gene modules using the hdWGCNA function ConstructNetwork with default
parameters. In total, this process yielded 10 brain-wide spatial co-expression modules. We computed module eigengenes (MEs)
for these modules using the hdWGCNA function ModuleEigengenes, applying a Harmony90 correction to the MEs based on
the sequencing batch. Next, we computed eigengene-based connectivity (kME) for each gene using the hdWGCNA function
ModuleConnectivity. We visualized the co-expression network in two dimensions by computing a UMAP representation of the
TOM with the hdWGCNA function RunModuleUMAP. We used the EnrichR93 R package (version 3.1) to identify biological
processes from Gene Ontology (GO) that were enriched in these co-expression modules.

We sought to compare these co-expression modules with other relevant gene sets. For this analysis we used the same
gene sets described in the Quantifying gene expression signatures of disease-relevant gene sets section. We performed pairwise
Pearson correlations of the MEs with the UCell37 scores of these gene signatures to assess the similarity of gene expression
patterns using the hdWGCNA function ModuleTraitCorrelation. We next computed gene overlap statistics between the sets of
genes in each co-expression modules with these other gene sets using the R package GeneOverlap. To further our comparison
with the spatial co-expression modules from the Chen et al. study, such as the PIG module, we used the hdWGCNA function
ProjectModules to quantify gene expression patterns of the Chen et al. modules in our mouse ST dataset. We then computed
pairwise Pearson correlations between the MEs for the co-expression modules derived from our mouse ST dataset to those
derived from the Chen et al. dataset.

Sex differences within the AD in DS cohort. We performed additional differential gene expression tests to identify sex
differences within the AD in DS cohort, using a similar strategy as the other differential expression tests with MAST92 as
the underlying model. For the snRNA-seq dataset, we compared expression between nuclei from female versus male samples
in each cell type and each cell cluster, and we used sequencing batch, the number of UMI per nuclei, and the postmortem
interval (PMI) as the model covariates. Since the spatial transcriptomics dataset had a greater number of female samples (7)
as compared to male (3), before running the differential expression analysis we first down sampled the dataset (stratified by
biological sample) such that the number of spots from the female samples matched that from the male samples. We then
performed differential expression analysis with MAST using the number of UMI per spot and the PMI as the model covariates.
We inspected the overlap between sets of DEGs between the different spatial regions using the R package UpSetR96 (version
1.4.0). We used the EnrichR R package to identify biological processes enriched in DEGs in each spatial region. To complement
the differential expression analysis, we also used the hdWGCNA R package to perform differential module eigengene (DME)
analysis to compare the expression of our co-expression modules between female and male samples in each spatial region.

Spatial mapping of snRNA-seq data. We mapped our snRNA-seq dataset into spatial coordinates using the R package
CellTrek56 (v 0.0.94). Briefly, the CellTrek pipeline enables spatial mapping of single-cell transcriptomes by creating an
integrated co-embedding of ST and single-cell data, followed by a multivariate random forest model to predict the biological
coordinates from the shared feature space. In our testing, we found that this algorithm was limited in that it could not scale
to large datasets comprising hundreds of thousands of single cells. Additionally, this algorithm only maps data to a single ST
slide at a time. We also found that the CellTrek algorithm only provided predicted coordinates for a subset of the input single
cell transcriptomes. For these reasons, we mapped our snRNA-seq frontal cortex data to the human ST dataset in a pairwise
fashion for each snRNA-seq sample and each ST sample. For a given pair of ST and snRNA-seq samples, we constructed
an integrated co-embedding using the CellTrek function traint with default parameters. We then iteratively mapped the
single-cell transcriptomes into the ST coordinates using the celltrek function over three iterations. The second iteration only
included cells that were not mapped in the first iteration, and the third iteration only included cells that were not mapped in the
first or second iterations. We then computed the Euclidean distance between each mapped cell and each of the ST spots, and we
labeled each cell with a spatial annotation based on the most frequently observed annotation among the labels of the ten closest
spots. After running the pairwise CellTrek mappings, we compiled the results into a single table. In sum, this process yielded
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multiple spatial coordinates and multiple annotations for each cell across the 39 human ST samples in this study. Given that
these tissue samples varied in their grey and white matter content, the CellTrek mappings and inferred spatial annotations are
generally not consistent across the ST samples. To come up with a consensus regional annotation across the different spatial
mappings, we excluded the mappings from ST samples which were excessively high in white matter or grey matter content.
We computed a metric summarizing the grey to white matter ratio in each ST sample by counting the number of grey matter
spots and white matter spots, taking the difference, and dividing by the total number of spots. Positive values indicate higher
grey matter content, while negative values indicate higher white matter content. We excluded samples with greater than 0.9 and
less than -0.3, thereby retaining mappings from 34 of the ST samples. For each cell, we counted the number of times it was
mapped to each spatial region, and labeled the cell based on the most frequently mapped region across the different samples.
We further simplified these spatial annotations by upper cortical, lower cortical, or white matter regions.

Cell-cell signaling analysis. We performed cell-cell signaling analysis in our snRNA-seq frontal cortex dataset with
CellChat58 (v 1.1.3), using the predicted spatial annotations in addition to cell type labels. The human CellChatDB ligand-
receptor interaction database was used for this analysis. To facilitate downstream comparisons of the signaling networks in
DSAD versus control samples, we ran the CellChat workflow separately based on disease status. The CellChat object was
created using the normalized gene expression matrix and the cell type annotations with the predicted spatial regions from
CellTrek, removing any cell groups with fewer than 30 cells. We then ran the recommended CellChat workflow using the fol-
lowing functions: identifyOverExpressedGenes, identifyOverExpressedInteractions, projectData,
computeCommunProb, filterCommunication, subsetCommunication, computeCommunProbPathway,
aggregateNet, and netAnalysis_computeCentrality. The DSAD and control CellChat objects were merged
into one object using the mergeCellChat function. We compared the signaling networks across conditions both functionally and
structurally using the computeNetSimilarityPairwise function. Furhter, we used the rankNet function to compute the relative
information flow changes between AD in DS and control across all signaling pathways. We identified differentially expressed
ligands and receptors as well as their signaling pathways using the identifyOverExpressedGenes function, visualizing selected
results with the netVisual_bubble function.

Quantifying gene expression signatures of disease-relevant gene sets. We used the UCell37 R package (version 2.2.0)
to quantify gene expression signatures of several relevant gene sets with the function AddModuleScore_UCell. The
following gene sets were used for this analysis; homeostatic microglia43, disease-associated microglia43, disease-associated
astrocytes44, disease-associated oligodendrocytes45, plaque-induced genes70. The full list of genes within each gene set used
for this analysis can be found on our GitHub repository.

Integration of amyloid imaging data and spatial transcriptomic data. Since we stained the brain sections used for ST
with amylo-glo and OC, we developed a custom data analysis pipeline to identify gene expression changes associated with
amyloid-beta plaque depositions in our human and mouse ST datasets. For this analysis, our data processing pipeline was
uniform among the human and mouse datasets. We used custom automated imaging analysis protocols (General Analysis
protocols on NIS-Elements) to obtain Amylo-glo+ and OC+ binaries thresholding by intensity and size, as well as accounting
for autofluorescence/non-specific staining by negative thresholding based on an empty channel. We exported the following
values for each binary: Area (µm2), Diameter, center X and Y coordinates. Only 5xFAD samples were used for the mouse
samples, as there is no amyloid pathology in WT mice. Samples with high background were excluded. The image analysis
of the amylo-glo and OC fluorescent images gives us the coordinates and sizes of stained amyloid bodies which can then be
directly compared to the Visium ST data. We separately counted the number of amyloid aggregates stained with amylo-glo or
OC that overlapped each of the ST spots. We then calculated the number of Amylo-glo or OC+ binaries per spot by testing for
an intersection between a spot and binary.

The radius of a spatial spot was calculated according to values provided by 10x Genomics, where a spot is 55µm with
a 100µm distance between spot centers, and expanded the radius of a spot to account for the gap between spots. To account
for the size of each amyloid aggregate, we also computed the sum of the areas of all amyloid aggregates overlapping each ST
spot. We next used the R package Voyager97 (version 1.0.10) to perform hot spot analysis by computing the Getis-Ord Gi*71,72

statistics for the amylo-glo and OC area scores in each ST sample.

Identifying amyloid-associated gene expression signatures in human and mouse. We used the Getis-Ord Gi*71,72

hot spot statistics for amyloid aggregates stained with amylo-glo and OC to identify gene expression signatures associated with
amyloid aggregation in the human and mouse ST datasets. We used generalized linear models (GLMs) to identify genes that
were significantly altered in expression with respect to the amyloid hot spot statistics. This analysis was done using the fit_-
models function from the R package monocle398 (version 1.3.1). We used the biological sample of origin and the number of
UMI per spot as model covariates. Further, this analysis was performed separately for the amylo-glo and OC hot spot statistics,
since these two stains identify different forms of amyloid aggregates. Since our mouse brain dataset profiled an entire brain
hemisphere and the clusters broadly corresponded to different major brain regions, we also performed this analysis separately
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for each of the clusters in the mouse ST dataset. Alternatively, the human dataset contains ST profiles only in the frontal
cortex grey matter and white matter. Amyloid aggregation tends to primarily occur in the grey matter, as seen in our hot spot
analysis, and for this reason we chose to exclude the human white matter ST spots from the analysis. After running the GLM,
we computed Pearson correlations between the amyloid hot spot scores and gene expression for the significant results. We
consider genes to be amyloid-associated if there was a significant result from the GLM (FDR < 0.05) and a positive correlation
between gene expression and the amyloid score.

For each of these sets of amyloid-associated genes, we performed biological pathway enrichment analysis using the R
package EnrichR93 (version 3.1) with gene sets from the Gene Ontology database. In both the human and mouse datasets,
we computed overlap statistics between the sets of amyloid-associated genes from amylo-glo and OC using the R package
GeneOverlap (version 1.34.0). Further, we computed overlap statistics between each set of amyloid-associate genes and other
disease relevant gene sets which were previously described in the Quantifying gene expression signatures of disease-relevant
gene sets section. We also performed a gene overlap analysis to compare the set of amyloid-associated genes between the
human and mouse datasets.

Spatial proteomics data analysis. SBT MCD files were imported into Visiopharm Software version 2022.03. Image classes
were created for training and included background, nuclei, and nuclei boarder. Nuclei detect AI App (version 2023.01.2.13695),
a pre-trained deep learning app developed by Visiopharm was used to detect nuclei with Ir191 and Ir193 nuclear channels.
Single cell data was exported to a .tsv file for further analysis.

We performed an unbiased clustering analysis of our imaging mass cytometry (IMC) spatial proteomic dataset using the R
package Seurat83–85 (version 4.3.0). We first created a Seurat object using the protein intensity by nuclei segments matrix as the
input, and then we log-normalized this matrix using the Seurat function NormalizeData. We next performed dimensionality
reduction by scaling and centering the data with the ScaleData function, performing principal component analysis (PCA)
with the RunPCA function. To correct for the sample-specific differences in our protein intensity data, we ran Harmony90

to correct the PCA matrix prior to running Louvain clustering and UMAP. We then performed a one-versus-rest marker test
(Wilcoxon rank sum test) with the Seurat function FindAllMarkers to identify proteins which were significantly expressed
in each cluster in order to annotate them with cell-type labels. Following our cell-type annotation, we performed additional
Wilcoxon rank sum tests to compare the different experimental groups (cognitively normal controls, late-stage AD, AD in DS)
within each cluster for each protein in our panel.
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Figure S1. Quality control of the human and mouse spatial transcriptomics datasets.

Figure S2. Clustering results in the human ST dataset.

Figure S3. Clustering results in the mouse ST dataset.

Figure S4. Quality control of the integrated snRNA-seq dataset.

Figure S5. Early-stage AD versus control DEGs in the ST dataset.

Figure S6. Late-stage AD versus control DEGs in the ST dataset.

Figure S7. AD in DS versus control DEGs in the ST dataset.

Figure S8. Late-stage AD versus control DEGs in the snRNA-seq dataset.

Figure S9. AD in DS versus control DEGs in the FCX snRNA-seq dataset.

Figure S10. AD in DS versus control DEGs in the PCC snRNA-seq dataset

Figure S11. Comparison of snRNA-seq AD in DS versus control DEG effect sizes in the PCC and FCX

Figure S12. snRNA-seq DEGs examined by chromosome

Figure S13. Spatial transcriptomic DEGs examined by chromosome

Figure S14. Comparison of spatial transcriptomic DEG effect sizes between early-stage AD and late-stage AD

Figure S15. Comparison of snRNA-seq DEG effect sizes between sporadic AD and AD in DS

Figure S16. 5xFAD versus wild type DEGs at four months of age.

Figure S17. 5xFAD versus wild type DEGs at six months of age.

Figure S18. 5xFAD versus wild type DEGs at eight months of age.

Figure S19. 5xFAD versus wild type DEGs at twelve months of age.

Figure S20. Number of 5xFAD DEGs and GO term enrichment analysis.

Figure S21. Comparisons of human and mouse DEGs.

Figure S22. Module hub gene networks for the human ST co-expression meta-modules.

Figure S23. Module eigengenes for the human ST meta-modules.

Figure S24. Module eigengenes of human co-expression meta-modules in the mouse ST dataset.

Figure S25. Cell-type deconvolution results in the human ST dataset.

Figure S26. Cell-type deconvolution results in the mouse ST dataset.

Figure S27. Differential cell-cell signaling between AD in DS and control.

Figure S28. CD99 signaling changes between AD in DS and control.

Figure S29. Integration of amyloid plaque imaging (Amylo-glo) and hotspot analysis in the human ST dataset

Figure S30. Integration of amyloid fibril imaging (OC) and hotspot analysis in the human ST dataset.

Figure S31. Integration of amyloid plaque imaging (Amylo-glo) and hotspot analysis in the mouse ST dataset

Figure S32. Integration of amyloid fibril imaging (OC) and hotspot analysis in the mouse ST dataset

Figure S33. Co-expression network analysis in the mouse ST dataset

Figure S34. Module hub gene networks from the mouse co-expression network analysis

Figure S35. Module eigengenes in representative samples from the mouse ST dataset

Figure S36. Module-trait correlation analysis in the mouse co-expression network

Figure S37. Investigating the gene co-expression modules from Chen et al in our 5xFAD ST dataset
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