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Abstract

Alzheimer’s disease (AD) is a devastating neurological disorder characterized by changes in cell-type proportions and
consequently marked alterations of the transcriptome. Here we use a data-driven systems biology meta-analytical approach
across three human AD cohorts, encompassing six cortical brain regions, and integrate with multi-scale datasets
comprising of DNA methylation, histone acetylation, transcriptome- and genome-wide association studies and quantitative
trait loci to further characterize the genetic architecture of AD. We perform co-expression network analysis across more
than 1200 human brain samples, identifying robust AD-associated dysregulation of the transcriptome, unaltered in normal
human aging. We assess the cell-type specificity of AD gene co-expression changes and estimate cell-type proportion
changes in human AD by integrating co-expression modules with single-cell transcriptome data generated from 27 321
nuclei from human postmortem prefrontal cortical tissue. We also show that genetic variants of AD are enriched in a
microglial AD-associated module and identify key transcription factors regulating co-expressed modules. Additionally, we
validate our results in multiple published human AD gene expression datasets, which can be easily accessed using our
online resource (https://swaruplab.bio.uci.edu/consensusAD).

Introduction
Alzheimer’s disease (AD) is a progressive neurodegenerative dis-
ease, which is symptomatically characterized by impairment in
cognitive and executive functions, including memory loss (1,2).
AD is pathologically characterized by the presence of neurofib-
rillary tangles and senile plaques, which are composed of hyper-
phosphorylated microtubule associated protein tau (MAPT;
tau) inclusions and amyloid beta (Aβ) deposits, respectively
(2,3). While aging is the major non-genetic risk factor for AD,
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several genetic risk factors, including mutations in MAPT, have
been found and associated with the disease (4–7). Despite the
identification of causal genetic mutations and disease risk genes
implicated by genome-wide association studies (GWAS) of AD
(6,7), the molecular mechanisms of neurodegeneration are
highly complex and are still poorly understood, impeding the
design of effective therapeutic intervention.

Transcriptomics coupled with gene network analysis
are powerful tools for investigating quantitative molecular
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phenotypes and pathways underlying disease progression in
a genome-wide manner. These approaches have the potential
to unravel previously unidentified disease-associated pathways,
as well as highlighting disease regulators, which themselves
serve as candidate targets for drug development. Within this
context, the National Institute of Aging has developed a
Target Identification and Preclinical Validation Project of the
Accelerating Medicines Project–Alzheimer’s Disease (AMP-AD)
consortium (8), whose goal is to integrate high-throughput
genomic and molecular data from the diseased brain within a
network driven structure (8,9). Under this program, several AD-
specific large-scale RNA sequencing (RNA-seq) projects have
been conducted. These projects have identified transcriptomic
networks and splicing events that are altered in the AD cortex (9–
15). However, these studies were limited to specific brain banks,
and a holistic meta-analysis across hundreds of samples with
integrative genomic approaches is pertinent to robustly identify
disease-specific signatures in an unbiased manner.

Here we have taken a functional genomics and integrative
systems biology approach to identify human AD-specific
transcriptomic alterations conserved across multiple cohorts
and multiple cortical regions. We applied consensus weighted
gene co-expression network analysis (cWGCNA), a meta-
analytical approach, to more than 1200 postmortem brain RNA-
seq samples across brain banks and identified robust, disease
relevant co-expression modules. With this approach, we were
not only able to identify strong, disease-specific signatures
across multiple cohorts but also were able to define brain-
region specific alterations that are fundamental to disease
pathophysiology. We found several neuronal and glial specific
modules that are altered in AD but not in normal human aging,
and one of the glial modules was enriched in AD candidate risk
genes from AD GWAS datasets. We also extensively examined
module enrichment of GWAS SNPs associated with other
neurological disorders. We used generic and brain-specific
ATAC-seq and ChIP-seq datasets to define transcription factors
(TFs) regulating the neuronal and glial modules, identifying
members of the NF-κB pathway as regulators of AD-associated
co-expression changes. In addition, we have leveraged various
orthogonal datasets, including DNA methylation, histone acety-
lation (H3K9ac) and expression and methylation quantitative
loci (eQTLs and mQTLs), to provide a comprehensive picture
of the genetic alterations associated with AD. While most co-
expression modules were enriched in AD-associated epigenetic
changes, one glial module was notably and consistently not
enriched in these epigenetic marks.

Massive changes in cell composition are concurrent with
the progression of AD, impairing accurate estimation of tran-
scriptomic changes from bulk tissue data. To circumvent this
problem, we generated single-nuclei transcriptomics data from
aged, cognitively healthy postmortem human brain samples and
used their transcriptomic signatures to accurately estimate cell-
type proportion changes from bulk RNA-seq samples and to
classify AD-specific co-expression modules by cell type. Finally,
we confirm the robustness of our findings by computing the
preservation of co-expression modules in multiple orthogonal
published gene expression datasets of AD encompassing sev-
eral brain regions. Such a comprehensive study across multi-
scale datasets has not been performed in neurodegeneration
and provides a framework for future meta-analytic integration
studies. Together, our findings define a core set of transcriptomic
changes altered during the progression of the disease and high-
light several regulators of these changes, which may be used as
therapeutic targets.

Results
In order to identify robust, key transcriptional changes in AD,
we analyzed RNA-seq data from three different studies—Mayo
Clinic Brain Bank (Mayo) (10), the Religious Orders Study and
Memory and Aging Project (ROSMAP) (14) and Mount Sinai
School of Medicine (MSSM) (16). The Mayo dataset contained
temporal cortex samples (n = 160) (10), while the ROSMAP
dataset was composed of prefrontal cortex samples (n = 632)
(14). The MSSM cohort included samples from four different
regions—parahippocampal gyrus, inferior frontal gyrus, superior
temporal gyrus and the frontal pole (n = 476, Fig. 1) (16). Control
samples were classified as Braak stage 0-I. Early-stage pathology
samples were defined as Braak stage II-IV and CERAD score of
possible AD, while late-stage pathology samples were Braak
stage V-VI and CERAD score of probable and definite AD (see
Supplementary Material, Table S1 for all case information). All
datasets were uniformly processed and regressed for cell-type
proportion changes and other technical and biological covariates
(see Materials and Methods).

cWGCNA (17,18) is a widely used analysis method to discover
biologically relevant gene modules across multiple gene expres-
sion datasets. We performed cWGCNA on the three bulk tis-
sue RNA-seq datasets—Mayo, ROSMAP and MSSM—to examine
disease-related changes conserved across more than a thousand
individuals from different cortical regions and different brain
tissue repositories (Fig. 2A). We identified 10 consensus mod-
ules significantly correlated with AD diagnosis—four negatively
(CM7, CM1, CM10 and CM12) and six positively correlated (CM16,
CM5, CM4, CM8, CM9 and CM23; FDR < 0.05; Fig. 2B, Supplemen-
tary Material, Table S2). To better understand these modules,
we examined the relationships between co-expression modules
using a bi-weighted mid-correlation (Fig. 2C). We found modules
CM9 and CM23 were strongly positively correlated, but CM23
was strongly anti-correlated with CM1, providing us an idea
of how these modules function together. In addition, cWGCNA
modules were found to be concordant with gene modules con-
structed using several other co-expression and gene clustering
algorithms (19–22) (see Materials and Methods, Supplementary
Material, Fig. S1).

Identification of cell-type clusters in the aged human
brain

Due to the cell-type composition changes during the progression
of the disease, profiling gene expression in only bulk tissue sam-
ples may obscure biologically relevant cell-type specific changes.
While single-cell RNA-seq allows us to evaluate transcriptional
changes within cell-types, it is prohibitively costly to execute
on large cohorts (i.e. hundreds of individuals). To circumvent
this issue, we developed a framework that leverages single-
cell RNA-seq data from a smaller cohort in conjunction with
co-expression network analysis in order to estimate cell-type
specific transcriptomic changes in large, bulk tissue RNA-seq
datasets.

We isolated nuclei and performed single-nuclei RNA-seq
(snRNA-seq, n = 27 321 nuclei) on postmortem human brain
tissue from aged, neurologically healthy controls (n = 5, 67 to 90+
years old, PFC, Supplementary Material, Table S1) to clarify cell-
type proportions and the corresponding transcriptional profiles
of the aged, adult human cortex. Through unsupervised Louvain
community detection, we identified 18 transcriptionally distinct
cell populations that we visualized using t-distributed stochastic
neighbor embedding (t-SNE; Fig. 3A, Supplementary Material,
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Figure 1. Schematic representation of the various analyses performed in the study. Consensus weighted gene co-expression network analysis (cWGCNA) with datasets

from three different studies—Mayo Clinic Brain Bank (Mayo) temporal cortex (TC); Religious Orders Study and Memory and Aging Project (ROSMAP) prefrontal cortex

(PFC); Mount Sinai School of Medicine (MSSM) para-hippocampal gyrus (PHG), inferior frontal gyrus (IFG), superior temporal gyrus (STG) and frontal pole (FP)—identified

Alzheimer’s disease (AD)-associated modules. Distinct cell-types were detected using single-nuclei RNA-sequencing (snRNA-seq) from postmortem human brain tissue

revealing cell-type proportion changes in AD. Disease-associated modules and cell-type clusters were used for functional pathway analysis in addition to GWAS

enrichment, transcription factor binding site enrichment and validation in published datasets.

Table S3). Canonical cell-type marker genes, such as SLC17A7
for neurons, were examined in order to assign a cell type to each
of the 18 clusters (Fig. 3B, Supplementary Material, Fig. S2A).
The majority of the profiled nuclei was classified as excitatory
neurons (Fig. 3C). This strategy identified both neuronal and
non-neuronal subpopulations: seven excitatory neuron, four
inhibitory neuron, two astrocyte and two oligodendrocyte
subpopulations. We additionally found clusters consistent with
endothelial cells, microglia and oligodendrocyte precursor cells
(OPCs), and there was one cluster we were unable to confirm its
cell-type origin.

Moreover, differential gene expression analysis identified
gene markers specific to each cell-type cluster (Fig. 3D, Supple-
mentary Material, Fig. S2B). These included previously estab-
lished cell-type markers, such as PVALB, NEUROD6 and CX3CR1,
and layer-specific markers like SV2C and HTR2C (23,24). We also
utilized the Allen Human Brain Atlas to verify the expression
of these marker genes in the human cortex (Supplementary
Material, Fig. S2C). Since we found multiple neuronal subpopu-
lations, we aimed to characterize them further, distinguishing
three selectively and highly co-expressed genes in each neuronal
cluster (Fig. 3E, Supplementary Material, Fig. S2D). Based on

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddaa182/5892988 by U

niversity of C
alifornia, Irvine user on 21 Septem

ber 2020

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa182#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa182#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa182#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa182#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa182#supplementary-data


4 Human Molecular Genetics, 2020, Vol. 00, No. 00

Figure 2. Consensus transcriptomic analysis identifies disease-relevant modules. (A) Consensus WGCNA dendrogram showing consensus modules from Mayo, ROSMAP

and MSSM datasets. Red indicates positive correlation of covariate (diagnosis, age, RIN) with gene expression, and blue is negative correlation. (B) Signed correlation of

mRNA module eigengenes with AD diagnosis. (C) Multidimensional scaling plot demonstrates relationships between consensus modules significantly correlated with

diagnosis. Color signifies biweighted mid-correlation (R2) value. Modules are also annotated with summarizing terms.

these genes we were able to identify our excitatory neuron
clusters 7 and 8 as deep layer neurons, while our inhibitory
neuron cluster 3 likely originated from layer 3 neurons. In
addition, we found inhibitory neuron subpopulations similar
to Darmanis et al. (25)—our inhibitory neuron clusters 1 and 4,

CALB2-VIP and CRH-PVALB neurons, respectively. We also exam-
ined genes differentially expressed across the cell-type clusters
in respect to sex, identifying X chromosome inactivation gene
XIST upregulated in astrocytes from females (Supplementary
Material, Fig. S3, Supplementary Material, Table S4). Additionally,
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Figure 3. Single nuclei RNA-seq on the aged human brain elucidates bulk tissue RNA-seq analyses. (A) Cell-type clusters visualized with t-SNE plot. Cell types were

labeled post hoc based on marker gene expression. (B) Marker gene expression in cell-type clusters visualized with same t-SNE plot as in (A). (C) Bar graph indicating

fraction of nuclei identified as each cell type. (D–E) Dot plots showing differentially expressed cell-type markers (D) and excitatory neuronal markers (E) in cell-type

clusters. Color denotes average gene expression, while size denotes percent of nuclei expressing the gene. (F) Boxplots depicting estimated cell-type abundance with

pathological state for four different cell-type clusters—excitatory neuron cluster 1, astrocyte cluster 1, microglia cluster and oligodendrocyte cluster 1 (top to bottom)—in

the Mayo TC dataset. (G) Enrichment of consensus modules in cell-type clusters identified by snRNA-seq.
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NRXN1 was upregulated in several clusters from males and
has been previously associated with male-specific behavioral
changes (26,27).

Clarifying AD bulk tissue RNA-seq changes with
snRNA-seq

We reasoned that our cell-type clusters from snRNA-seq in
the aged human brain could be leveraged to estimate AD-
related changes in cell-type proportions across different brain
regions and by disease stage. We devised a statistical framework
to estimate the cell-type composition in bulk tissue RNA-
seq data, not regressed for cell-type proportion changes,
using our cell-type clusters (see Materials and Methods). Using
the specificity score obtained from single-nuclei data, we
independently estimated cell-type composition in each of the
bulk RNA-seq datasets used. In the Mayo TC Set, we found
that all excitatory and inhibitory neuronal subpopulations
significantly decreased with late stage pathology (P < 0.001),
as expected; however, there was little change with early
stage pathology (P > 0.05; Fig. 3F, Supplementary Material, Fig.
S4A). On the other hand, microglia and astrocytes increased
with late stage pathology (P < 0.001). Microglia only tended
to increase at early stage pathology (P > 0.05), while both
astrocyte subpopulations significantly increased (P < 0.05). We
also saw that at late stage pathology, OPCs greatly decreased
(P < 0.001), but both oligodendrocyte subpopulations tended to
increase (P > 0.05), suggesting the differentiation of OPCs into
oligodendrocytes with increasing pathology. In addition, we
used a published deconvolution algorithm, CIBERSORT (28),
and found that our results were comparable to CIBERSORT
(Storey’s π1 = 0.93).

Notably, AD progresses in an anatomical manner (1,29), and
gene expression changes may be causal or an effect of these
region-specific cellular changes. While we found similar pat-
terns in the other datasets, we noticed that RNA-seq datasets
from temporal cortical regions demonstrated more pronounced
changes in cell-type proportions than frontal cortical regions
(Supplementary Material, Fig. S4B, Supplementary Material, Figs
S5–S6). This regional difference resembles the progression of
pathology in which the temporal cortex is affected before the
frontal cortex in AD (1,29).

Accordingly, we also utilized the cell-type clusters from
snRNA-seq in order to further characterize the consensus
modules we identified through cWGCNA. We classified the
consensus modules as neuronal or non-neuronal based on
enrichment of cell-type markers and additionally confirmed our
classification by integrating our snRNA-seq results (Fig. 3G). For
example, upregulated consensus module CM8 was selectively
enriched in the microglia cell-type cluster, while CM23 was
selectively enriched in both astrocyte clusters.

Neuron-specific co-expression changes in AD

We next wanted to examine the AD-associated modules more
closely and used experimentally derived databases of human
protein–protein interactions (PPIs) from Inweb (30) and Biogrid
(31) to guide our attention to important genes. We created
integrated co-expression-PPI networks based on the expectation
that a subset of the edges defined by co-expression are due
to PPI (32–35); such interactions functionally annotate the
networks’ edges and provide orthogonal module validation
with independent data (35). While gene expression and protein
levels do not always correlate, we used a recently published

dataset of proteomics in human AD (n > 2000 samples) to
further investigate each cWGCNA module (36). We projected
cWGCNA modules into a human AD proteomics dataset
and observed agreement between module eigenprotein and
module eigengene trajectories throughout AD progression
(see Materials and Methods, Supplementary Material, Fig. S7),
demonstrating that AD-associated transcriptomic cWGCNA
modules show similar expression patterns at the protein
level. In these integrated networks, the edges between genes
(nodes) represent both gene co-expression and PPI (Fig. 4A, N),
permitting us to focus on hub genes observed at both the RNA
and protein level.

Consistent with the neuronal dysfunction and neuronal
loss seen in AD, we determined the downregulated consensus
module CM1 was highly enriched in neuronal markers and our
neuronal cell-type clusters (Fig. 3G). CM1’s hub genes (CALM1,
CALM2, CALM3, CAMKV, CLTC and ATP2B1) are indicative of
calcium signaling dysregulation, providing evidence for the
calcium hypothesis of AD (37) (Fig. 4A, Supplementary Material,
Table S2). GO analysis of CM1 demonstrated enrichment of terms
like synaptic transmission and axonogenesis, further supporting
its neuronal specificity (Fig. 4B). One of CM1’s members was also
PTK2B, which has been previously identified as an AD risk gene
(7). In the Mayo TC dataset we found that CM1’s module eigen-
gene significantly decreased with late stage pathology (P < 0.001)
but was unchanged with early stage pathology (P > 0.05; Fig. 4C),
and the module’s trajectory declined with increasing Braak
stage (R = −0.47, P = 1.4e-06; Fig. 4D). Additionally, we examined
CM1’s trajectory in the ROSMAP PFC dataset and found a
similar but weaker decline with increasing pathology (Fig. 4E–G).
We also saw that CM1’s module eigengene increased with
MMSE score (R = 0.13, P = 1.1e-03; Fig. 4H). However, similar to
the regional differences we found with cell-type proportions,
we noticed that the decrease in CM1 module eigengene was
greater in the MSSM datasets from temporal cortical regions
(parahippocampal gyrus and superior temporal gyrus) compared
to those from frontal cortical regions (inferior frontal gyrus and
frontal plate; Fig. 4I–L). Further, we wanted to confirm that CM1
was associated with disease state rather than normal human
aging, so we calculated a synthetic module eigengene in a
North American Brain Expression Consortium (NABEC) dataset,
comprising brain gene expression data from hundreds of normal
human patients between the age of 16 and 100 years old (38). We
found that CM1 was not correlated with age (adjusted R2 = 0.031,
Fig. 4M), supporting that the co-expression changes are specific
to AD.

We then performed similar analyses on another downregu-
lated consensus module, CM10, and we likewise identified this
module as neuronal. One of CM10’s hub genes is APP, classically
studied in AD because it transcribes the precursor of Aβ (Fig. 4N).
Notably, CM10 is enriched in GO terms related to proteasomal
degradation and ubiquitination (Fig. 4O), and CM10’s hub gene
CAND1 regulates neddylation (39). Neddylation has been found
dysregulated in AD and may impact ubiquitination (39). Like
CM1, we found the module eigengene decreased with late stage
pathology (P < 0.01), but we also surprisingly discovered CM10’s
module eigengene tended to increase with early stage pathol-
ogy (P > 0.05; Fig. 4P). This may suggest that in the early stages
of disease, neurons attempt to degrade pathological protein
aggregates. Again, we saw that the module’s declining trajectory
was more pronounced in the temporal cortex in comparison to
the frontal cortex (Fig. 4Q–T, Supplementary Material, Fig. S8)
and CM10 was disease specific, rather than an effect of aging
(adjusted R2 = 0.093, Fig. 4U).
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Figure 4. Consensus transcriptomics analysis identifies neuron-specific changes in disease. (A–B) Co-expression plot (A) and gene ontology term enrichment (B) for

neuronal consensus module CM1. (C–D) Module eigengene trajectory with pathological state (C) and with Braak stage (D) for CM1 in Mayo TC dataset. (E–H) Module

eigengene trajectory with pathological state (E), Braak stage (F), CERAD score (G) and MMSE score (H) for CM1 in ROSMAP PFC dataset. (I–L) Module eigengene trajectory

with pathological state for CM1 in MSSM PHG (I), MSSM STG (J), MSSM IFG (K) and MSSM FP (L). (M) Module eigengene trajectory with age for CM1 in NABEC dataset.

(N–O) Co-expression plot (N) and gene ontology term enrichment (O) for neuronal consensus module CM10. (P–Q) Module eigengene trajectory with pathological state

(P) and with Braak stage (Q) for CM10 in Mayo TC dataset. (R–T) Module eigengene trajectory with pathological state (R), Braak stage (S) and MMSE score (T) for CM10 in

ROSMAP PFC dataset. (U) Module eigengene trajectory with age for CM10 in NABEC dataset.
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In addition, we examined consensus module CM7, which
we also found neuronal and downregulated in AD. CM7’s hub
genes include ATP synthase subunits (ATP5G1, ATP5D, ATP5L,
etc.), consistent with CM7’s enrichment of GO terms related
to mitochondrial function and ATP synthesis (Fig. 5A–B). While
mitochondrial dysfunction and oxidative stress have been stud-
ied in neurodegeneration in the context of both neuronal and
non-neuronal cell types (40–43), mitochondria in the synapse,
specifically, have been found affected in AD (44), and the gene
members of CM7 may contribute to this phenomenon. Similar to
CM1 and CM10, we saw CM7’s module eigengene declined with
increasing pathology, and this decrease was greater in datasets
from the temporal cortex compared to those from the frontal
cortex (Fig. 5C–G, Supplementary Material, Fig. S8). Moreover,
CM7 also showed no correlation with age, indicating the module
as disease specific (adjusted R2 = 0.0072, Fig. 5H).

Glial-specific co-expression changes in AD

We next inspected modules that were classified as non-
neuronal, specifically consensus modules, CM8, CM9, CM4
and CM5. These modules were positively correlated with AD
diagnosis, and we identified CM8 as highly enriched in the
microglia cell-type cluster from our snRNA-seq (Fig. 3G). Its hub
genes (C1QA, C3, CASP1, CD14, etc.) and GO term enrichment
of immune-related mechanisms support a critical role of
neuroinflammation in AD (Fig. 5I–J). Microglia have been shown
to secrete cytokines that induce a deleterious astrocytic state
(A1)—one of these cytokines is C1Q (45). Similarly, members
of consensus module CM9 included genes involved in some
of the immune-related pathways recently implicated in AD,
such as TGFβ/BMP (TGFBR2, BMPR1B), JAK/STAT (STAT3) and
MAPK signaling (EGFR, FGFR1, FGF2; Fig. 5Q) (46,47). GO analysis
indicated enrichment of terms related to positive regulation
of signaling pathways (Fig. 5R). CM9 was highly enriched in
astrocyte and endothelial cell-type clusters (Fig. 3G), and the
JAK/STAT3 pathway previously has been shown to mediate
astrocyte reactivity in AD (46).

In the Mayo TC dataset, both CM8 and CM9’s module
eigengenes significantly increased with late stage pathology
(P < 0.001), but while CM9 significantly increased in early stage
pathology (P < 0.05), there was little change for CM8 (P > 0.05,
Fig. 5K, S). In addition, we again saw that the changes were
more prominent in the temporal cortex than the frontal cortex
(Fig. 5, Supplementary Material, Fig. S8), and both CM8 and
CM9 demonstrated little correlation with age, supporting that
these immune-related changes are specific to disease (adjusted
R2 = 0.0014, adjusted R2 = 0.056; Fig. 5P, X).

Further, consensus module CM4 contained gene members
involved in various signaling pathways (NOTCH1, NFKB, ROCK1,
RHOA, SMAD2, etc.; Fig. 6A), and GO analysis demonstrated
enrichment of terms related to transcriptional regulation
(Fig. 6B). With our snRNA-seq data, we determined this module
to be enriched in OPC and both oligodendrocyte cell-type
clusters (Fig. 3G), and this provided us a better functional
understanding of CM4. It has been shown that the RhoA-
ROCK pathway and Notch1 inhibit OPC differentiation (48–
51); however, another member of CM4, ITGB1, has been
demonstrated to promote myelination (52). Smad signaling
also has been implicated in myelination (49,51). We additionally
found that CM4’s module eigengene increased with pathology,
and this increase again was greater in datasets from the
temporal cortex than those from the frontal cortex (Fig. 6C–G,
Supplementary Material, Fig. S8). Moreover, we found CM4 was

not dependent on aging but was specific to disease (adjusted
R2 = 0.018; Fig. 6h).

On the other hand, CM5’s GO term enrichment and
genes (HNRNPA2B1, PAN2, CLK2, etc.) were associated with
microRNA (miRNA) processing (Fig. 6I–J). miRNAs have been
largely studied in the context of development (53). For exam-
ple, two of miRNA-125’s predicted targets are SMAD4 and
RHOA (members of CM4) (51), but miRNAs have been more
recently demonstrated to play roles also in the immune
system and neurodegeneration (34,54,55). Alterations in miRNA
processing may mediate differential expression of miRNAs
in AD. Similar to the previously mentioned non-neuronal
modules, CM5’s module eigengene increased with late stage
pathology (P < 0.01); however, the module eigengene also
tended to decrease with early stage pathology (P > 0.05,
Fig. 6K). We again saw that the increase in CM5’s module
eigengene with late stage pathology was more pronounced
in the temporal cortex than frontal cortex and that CM5
showed little correlation with age (adjusted R2 = 0.11; Fig. 6L–P,
Supplementary Material, Fig. S8). The remaining modules can be
found in Supplementary Material, Figure S9.

Assessment of genetic risk within consensus modules

The previously described transcriptomic alterations can be a
cause or consequence of the disease. To address this question,
we used GWAS SNPs as causal anchors and integrated our
module-level information to find which modules harbor these
causal anchors. We examined the enrichment of GWAS genes
in our modules using the Multi-marker Analysis of GenoMic
Annotation (MAGMA) pipeline (56), which controls for confounds
like gene length. Each gene was assigned a score based on
the best P-value of a single nucleotide polymorphism from
an AD GWAS study (5), and MAGMA P-value <0.05 was used
as the cut-off to include a gene as an AD candidate. We
found that AD candidate genes were highly enriched in the
microglial module CM8, further asserting a key role of the
immune system in AD (Fig. 7A, Supplementary Material, Table
S5). Several candidate genes, including CSF2RB, MS4A6A, CD33,
SPI1 and CD14, were mapped in CM8, and these have been
previously implicated in AD (57–60). In addition, our findings
were consistent with a previous study (61) in which they reported
AD risk genes in a microglial module. We wanted to further
confirm our results by examining the largest number of GWAS
enrichment analysis to date, including other neurodegenerative
and neurological disorders (7,62–99). We found that CM8 was
enriched only in GWAS hits from an AD study and a multiple
sclerosis study (Supplementary Material, Fig. S10). Interestingly,
CM8 was not enriched in risk genes associated with other
tauopathies (frontotemporal dementia and progressive supranu-
clear
palsy).

In addition, we validated our results in data from genome-
wide gene-based association analysis (GWGAS), employed by
Jansen et al., using MAGMA on a much larger cohort comprising
71 880 AD cases and 383 378 controls (6). Similar to our GWAS
enrichment scores, we found that GWGAS genes were enriched
in CM8 (Fig. 7B). Moreover, we inspected brain-specific eQTLs
and mQTLs overlapping with AD GWAS SNPs (AD-associated
brain eQTLs and mQTLs, see Materials and Methods) and found
that CM8 was enriched in AD-associated brain eQTLs. On
the other hand, astrocytic module, CM9, was enriched in AD-
associated brain mQTLs; these results again highlight glial
immune-related processes in AD.
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Figure 5. Consensus transcriptomics analysis identifies neuron-specific mitochondrial changes and glial-specific immune-related changes in disease. (A–B) Co-

expression plot (A) and gene ontology term enrichment (B) for neuronal consensus module CM7. (C–D) Module eigengene trajectory with pathological state (C) and

with Braak stage (D) for CM7 in Mayo TC dataset. (E–G) Module eigengene trajectory with pathological state (E), Braak stage (F) and MMSE score (G) for CM7 in ROSMAP

PFC dataset. (H) Module eigengene trajectory with age for CM7 in NABEC dataset. (I–J) Co-expression plot (I) and gene ontology term enrichment (J) for non-neuronal
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Integration with orthogonal datasets and drug
databases

We sought to understand the regulatory landscape of these
AD-associated modules and integrated multiple layers of data
to gain novel insights. We performed a transcriptome-wide
association study (TWAS) to identify genes with cis-regulated
expression associated with pathological and clinical traits of
AD (100). We used plaque and tangle density as quantitative
measures of the pathological changes in AD along with clinical
dementia rating (CDR) scores to find significant transcriptome-
wide associations. Using hypergeometric overlap tests, we found
that downregulated cWGCNA modules—CM1, CM7, CM10 and
CM12—were enriched in TWAS genes anti-correlated with
plaque and tangle density, and these modules also were enriched
in TWAS genes positively correlated with cognitive decline
(Fig. 7C). Conversely, upregulated modules—CM4, CM16 and
CM23, for example—were enriched in TWAS genes positively
correlated with plaque and tangle density and TWAS genes
negatively correlated with cognitive decline. These findings
confirm our module trajectories with pathology and cognition
previously discussed, but interestingly, module enrichment
of TWAS genes associated with tangle density was not only
less but also sometimes incongruent to module enrichment
of TWAS genes associated with plaque density. Interestingly,
microglial module CM8 was enriched in TWAS genes positively
correlated with plaque density but was not enriched in TWAS
genes associated with tangle density. This suggests that the
upregulation of cis-regulated microglial immune-related genes
may be either driving or affected by Aβ pathology but not by
tau pathology. On the other hand, CM7, which we identified as
neuron-specific and mitochondrial-related, was highly enriched
in TWAS genes anti-correlated with plaque density but is
also enriched in TWAS genes positively correlated with tau
density, indicating contrasting relationships between tau and
Aβ pathology with neuronal mitochondrial function.

As a further step to characterize our modules and to identify
co-expression changes associated with epigenetic changes, we
leveraged histone H3 lysine 9 acetylation (H3K9ac) marks, which
are found near active transcription start sites and enhancers,
associated with plaque or tangle density (101). We found that
all AD-associated modules except microglial module CM8 were
enriched in H3K9ac marks significantly associated with tangles
(Fig. 7D). In addition, only neuronal module CM1 and astrocytic
module CM9 were enriched in plaque-associated H3K9ac marks
at promoter regions. We also examined our consensus mod-
ules with a dataset of AD-associated DNA methylated regions
(102,103) and found only upregulated modules CM5, CM16 and
CM23 were enriched in AD-associated hypo-methylated DNA
regions. However, downregulated modules CM10, CM12, CM1
and CM7 were enriched in hyper-methylated DNA regions. The
notable lack of CM8 enrichment in both AD-associated H3K9ac
marks and AD-associated DNA methylation hints at an intrigu-
ing possibility that microglial immune-related changes in dis-
ease may not be mediated by epigenetic changes.

Additionally, we queried the Library of Integrated Network-
Based Cellular Signatures (LINCS) database to identify potential
drugs to target each consensus module (see Materials and Methods,

Supplementary Material, Fig. S11). For modules upregulated in
AD, we queried for drugs that would inhibit module expression,
whereas for modules downregulated in AD, we queried for drugs
that activate module expression. Notably, we found several
drugs previously reported to be beneficial in AD and other
neurodegenerative diseases. For example, histone deacetylase
inhibitor Vorinostat, found to modulate CM9, is currently
in human clinical trials (NCT03056495). Both saracatinib, an
inhibitor of the Src/abl family of kinases and a modulator of
CM8, and resveratrol, a modulator of CM5, have been found to
have beneficial effects in human clinical trials (104,105).

Identification of TFs regulating consensus modules

Network analysis identifies co-expressed modules that are likely
co-regulated (33,106,107). With this in mind, we performed tran-
scription factor binding site (TFBS) enrichment analysis (see
Materials and Methods) to identify TFs that may be regulating
disease-associated modules. This method has been successfully
used previously to accurately predict TFs (32). TFBS revealed that
master TF—RELA, otherwise known as p65, appears to control
both neuronal and non-neuronal modules (Fig. 7E–F). It becomes
further evident that NFκB signaling may be mediating transcrip-
tional changes in AD since we found TFs NKFB1 and RELB associ-
ated with non-neuronal modules. Previous studies have reported
increased NFκB activation in AD and pointed to a relationship
with Aβ pathology (108–111). Moreover, Withaferin A has been
identified as an inhibitor of NFκB signaling (112,113) and has
shown therapeutic potential to protect against Aβ toxicity (114),
and we found Withaferin A is a modulator of CM9, CM4 and CM1
(Supplementary Material, Fig. S11).

Validation of consensus modules in external datasets

Since modules can be affected by non-biological variables like
differences in sample preparation, we needed to authenticate
the existence of our modules of interest in other datasets.

In order to do this, we utilized module preservation
analysis, which helps us quantify the features of a particular
module that are preserved across multiple networks (see
Materials and Methods). We found that our consensus modules
were highly preserved across published human RNA-seq and
microarray datasets (61,115,116), indicated by Z-summary
preservation (Fig. 8A, Supplementary Material, Table S6).
Moreover, we examined the module eigengene trajectories of
modules—CM10, CM1 and CM8—in these datasets and found
comparable changes with diagnosis (Fig. 8B-D). As expected
and also in line with our findings, we observed that changes
were notably greater in the temporal cortex than the frontal
cortex, again reflecting AD’s progressive atrophy of different
brain regions (1) (Supplementary Material, Fig. S12). These results
altogether support the robustness of our findings.

Discussion
Previous AD transcriptomic studies have been limited to tissue
from a single brain repository or a single brain region (11,14,15);

consensus module CM8. (K–L) Module eigengene trajectory with pathological state (K) and with Braak stage (L) for CM8 in Mayo TC dataset. (M–O) Module eigengene

trajectory with pathological state (M), Braak stage (N) and MMSE score (O) for CM8 in ROSMAP PFC dataset. (P) Module eigengene trajectory with age for CM8 in

NABEC dataset. (Q–R) Co-expression plot (Q) and gene ontology term enrichment (R) for non-neuronal consensus module CM9. (S–T) Module eigengene trajectory with

pathological state (S) and with Braak stage (T) for CM9 in Mayo TC dataset. (U–W) Module eigengene trajectory with pathological state (U), Braak stage (V) and MMSE

score (W) for CM9 in ROSMAP PFC dataset. (X) Module eigengene trajectory with age for CM9 in NABEC dataset.
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Figure 6. Consensus transcriptomics analysis identifies non-neuronal changes in disease. (A–B) Co-expression plot (A) and gene ontology term enrichment (B) for

non-neuronal consensus module CM4. (C–D) Module eigengene trajectory with pathological state (C) and with Braak stage (D) for CM4 in Mayo TC dataset. (E–G) Module

eigengene trajectory with pathological state (E), Braak stage (F) and MMSE score (G) for CM4 in ROSMAP PFC dataset. (H) Module eigengene trajectory with age for CM4

in NABEC dataset. (I–J) Co-expression plot (I) and gene ontology term enrichment (J) for non-neuronal consensus module CM5. (K–L) Module eigengene trajectory with

pathological state (K) and with Braak stage (L) for CM5 in Mayo TC dataset. (M–O) Module eigengene trajectory with pathological state (M), Braak stage (N) and MMSE

score (O) for CM5 in ROSMAP PFC dataset. (P) Module eigengene trajectory with age for CM5 in NABEC dataset.

we performed cWGCNA (17,18) on three bulk tissue RNA-seq
datasets (ROSMAP, Mayo and MSSM) in order to identify robust,
conserved and biologically important transcriptomic alterations
in AD across six cortical regions. We then integrated various
genetic and epigenetic datasets, along with our own snRNA-seq
data, in order to provide a more comprehensive picture of the
genome-wide transcriptomic alterations occurring in AD and to
begin to examine the associated gene regulatory programs.

A limitation of bulk tissue RNA-seq is that it does not address
cell-type heterogeneity-associated changes that occur in dis-
ease, thus in order to probe the cell-type-specific transcriptional
changes occurring in AD, we generated single-nuclei transcrip-
tomic profiles on more than 27 000 nuclei from the aged human
prefrontal cortex. We used a novel algorithm in order to estimate
the cell-type abundance in bulk tissue RNA-seq data with our

single-nuclei transcriptomic dataset. With this approach, we
were able to show that the abundance of several excitatory and
inhibitory neuronal clusters decreased with late stage pathology,
whereas the abundance of microglial and astrocyte clusters
increased. In addition, these changes in cell-type proportion
were dependent on the brain region, modeling the progression
of AD pathology in the brain (1,29).

Furthermore, we integrated our snRNA-seq data in order to
help classify the cWGCNA modules based on cell type, allowing
us to determine that AD co-expression changes related to cal-
cium signaling (CM1), ubiquitination (CM10) and mitochondria
function (CM7) are neuron specific. Gene set enrichment anal-
ysis showed that CM4 was associated with transcriptional reg-
ulation, but integration of our snRNA-seq data helped to clarify
that this module was related to myelination and oligodendrocyte
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Figure 7. Integration of orthogonal datasets to identify associated gene regulatory programs. (A) Mean scaled enrichment of AD genome-wide association study (GWAS)

hits from Kunkle et al. (5) in consensus modules. (B) Heat map showing enrichment of consensus modules in genome-wide gene-based association analysis (GWGAS)

(6) hits and AD-associated brain expression and methylation quantitative trait loci (eQTLs and mQTLs). (C) Heat map indicating enrichment of consensus modules

with genes identified through transcriptome-wide association analysis (TWAS) (100). TWAS genes were measured in relation to plaque and tangle density, as well as

clinical dementia rating (cognitive decline). (D) Heat map showing enrichment of consensus modules with H3K9 acetylation marks, correlated with tangle and plaque

burden, in promoter, enhancer or other genomic regions and AD-associated hypermethylated and hypomethylated DNA regions. (E) Co-expression plot demonstrating

demonstrates relationships between neuronal consensus modules and transcription factors. Red edges reflect low correlation and green reflect high correlation. (F)

Co-expression plot demonstrating demonstrates relationships between non-neuronal consensus modules and transcription factors.
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Figure 8. Validation of findings in external datasets. (A) Heat map indicating module preservation in other human RNA-seq and microarray datasets. (E–I) Boxplot

showing module eigengene trajectory with diagnosis of consensus modules CM10, CM8 and CM1 in datasets Zhang et al. PFC (61) (E), Berchtold et al. superior frontal

gyrus (SFG, F) and post-central gyrus (115) (PCG, G), and Webster et al. FC (H) and TC (116) (I). The upper and lower lines represent the 75th and 25th percentile, respectively,

and the central line represents the median.

maturation. While white matter changes have been previously
implicated in AD, the associated molecular changes occurring
have been largely unstudied (11,117–121), and a recent snRNA-
seq study of AD also has highlighted myelination-related genes
(122), supporting the importance of future work into understand-
ing the gene members of CM4.

We also were able to confirm the role of astrocytes and
microglia (CM9 and CM8) in immune-related processes in AD.
Notably, we found that the microglial module CM8 was highly
enriched in genetic risk signals associated with AD but not
other tauopathies, suggesting that the concurrence of Aβ and tau
pathology may be important. However, recently, a transcriptomic
study of microglia isolated from APP and tau transgenic mice
investigated the differential effects of Aβ and tau pathology, find-
ing that Aβ pathology results in an exacerbated inflammatory
response from microglia, unseen in the tau transgenic-derived
microglia (123). Similarly, we found that microglial module CM8
was enriched in TWAS genes associated with plaque density
but not TWAS genes associated with tangle density, reinforcing
the relationship between Aβ pathology and microglial immune-
related transcriptional changes.

Moreover, we wanted to clarify the epigenetic changes associ-
ated with AD co-expression changes, examining AD-associated
DNA methylation regions and mQTLs, along with H3K9ac marks
associated with tangle and plaque density. Interestingly, despite
finding other modules significantly enriched in H3K9ac marks
associated with pathology, we found that microglial module CM8
was not enriched in H3K9ac marks associated with either tangle
or plaque density. Accordingly, CM8 was not enriched in AD-
associated hypermethylated or hypomethylated DNA regions or
AD-associated mQTLs, suggesting a lack of epigenetic regula-
tion of CM8. Histone deacetylase inhibitors, however, have been
shown to suppress microglial activation, which is associated
with transcriptional changes (124,125), indicating that further
work to elucidate the epigenetic mechanisms underlying AD is
needed.

Since aging is the most important non-genetic risk factor
for AD, we wanted to investigate if the AD-associated con-
sensus modules are altered during normal human aging. Nor-
mal aging has been shown to alter glial and neuronal gene-
expression changes in the brain (38); however, we hypothe-
sized that these changes are distinct from pathological changes
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occurring in neurodegenerative diseases. By calculating syn-
thetic module eigengenes from AD-associated consensus mod-
ules in a NABEC dataset (38), we were able to confirm that the
AD-associated modules were not significantly correlated with
normal aging.

In addition, one of the biggest challenges in co-expression
analysis is to find robust co-expressed modules that are altered
in different cohorts and datasets. In order to tackle this problem,
we used module preservation analysis, which is a powerful tool
to find conserved modules in different datasets. Through mod-
ule preservation analysis, we found that our AD-associated con-
sensus modules are robustly preserved in multiple published AD
datasets from different brain regions (61,115,116). This finding in
combination with the modules’ lack of correlation with normal
human aging verified that we have identified disease-specific
transcriptomic signatures.

Altogether, our study emphasizes the value of integrative
analyses in order to fully understand the molecular changes
occurring in disease. While single-cell RNA-seq provides the
advantage of profiling gene expression changes at the cellular
level, it is still not only expensive but also limited to mRNA. Thus,
at this time, analyses incorporating both single-cell and bulk
tissue transcriptomic data are important for thorough investi-
gation of AD transcriptomic alterations. Additionally, we have
examined epigenetic and TF regulation by integrating multi-
ple orthogonal datasets, providing a framework for disease-
associated gene regulatory networks in AD and further high-
lighting a need to employ integrative analyses of multiple types
of data. We also hope that our findings will help pave way for
accelerated drug development, a critical need in AD, since our
study has identified robust co-expression modules and their
hubs, in addition to TFs, which may be regulating these modules,
all of which can be targets for novel therapeutics.

Materials and Methods
Data and code availability

RNA-seq data and details can be found on https://www.syna
pse.org using corresponding synapse (syn) IDs- Mayo RNA-seq
(syn5550404), Mount Sinai Brain Bank (MSBB) (syn3159438) and
ROSMAP (syn3219045). Single-cell data can be found on synapse
website using synID# syn18915937. Additionally, we have created
shiny apps to easily visualize gene, network-level and single-
cell data, which can be accessed through our lab website at
https://swaruplab.bio.uci.edu/consensusAD. Code for consensus
WGCNA can be found here: https://github.com/vswarup/Conse
nsusWGCNA.

Description of human samples and RNA-seq data

For single-cell analysis control human prefrontal cortex brain
samples were obtained from UCI MIND’s Alzheimer’s Disease
Research Center brain bank. These samples were obtained under
UCI’s Institutional Review Board. Post-mortem human brain tis-
sues were obtained from three cohorts—Mayo study, MSBB study
and ROSMAP study. All the human samples were obtained under
their respective institutional review board. For details on human
samples used in this study and their availability, please see
Supplementary Material, Table S1. RNA-seq data and details can
be found on synapse.org website using corresponding synapse
(syn) IDs—Mayo RNA-seq (syn5550404), MSBB (syn3159438) and
ROSMAP (syn3219045).

Other published datasets used in the study

For normal human aging, we used NABEC data ranging from
16 to 101 years old from frontal cortex (38,126,127). The gene-
expression arrays are available from Gene Expression Omnibus
(GEO)—GSE36192. Published AD microarray datasets were also
downloaded from GEO including Zhang et al. prefrontal cortex
data (61) (GSE44770), Berchtold et al. frontal and temporal cortex
data (115) (GSE48350) and Webster et al. (116) (GSE15222).

RNA-seq data processing

We performed standard alignment, QC and gene-expression
analysis on each of the three datasets (ROSMAP, Mayo and MSSM)
to ensure uniform processing of data. All samples were aligned
to the human genome (GRCh38, GENCODE v25 gene model)
using rnaSTAR aligner. Counts were obtained using rnaSTAR
quantification and conditional quantile normalized FPKM data
were used for downstream analysis. We used linear regression
model to remove the effects of biological covariates like diag-
nosis, age, gender, post-mortem interval and technical variables
like batch (depending on the cohort), RNA integrity number and
sequencing biases and cell-type changes using gene-expression
PCs from cell-type specific markers. The final model used was
implemented in R as follows:

lm
(
expression ∼ diagnosis + age + gender + PMI + batch

+RIN + Seq.PC1 + Seq.PC2 + Neuron.PC1

+Astrocytes.PC1 + Microglia.PC1 + Oligodendrocytes.PC1
)

where Seq.PC1 and Seq.PC2 are sequencing PCs obtained
from aggregating sequencing metrics obtained from Picard
tools, and cell-type specific PCs are denoted as Neuron.PC1,
Astrocytes.PC1, Microglia.PC1 and Oligodendrocytes.PC1. Cell-
type specific genes were obtained from previously published
work (34).

Consensus WGCNA

cWGCNA was performed with ROSMAP, Mayo and MSSM
datasets using WGCNA package in R (17). We employed a signed
cWGCNA approach by calculating component-wise values for
topological overlap for individual brain banks. First, bi-weighted
mid-correlations were calculated for all pairs of genes, and
then a signed similarity matrix was created. In the signed
network, the similarity between genes reflects the sign of the
correlation of their expression profiles. The signed similarity
matrix was then raised to power β (β = 12) to emphasize strong
correlations and reduce the emphasis of weak correlations
on an exponential scale. The resulting adjacency matrix was
then transformed into a topological overlap matrix as described
elsewhere (33). Modules were defined using specific module
cutting parameters, which included minimum module size
of 100 genes, deepSplit = 4 and threshold of correlation = 0.2.
Modules with correlation greater than 0.8 were merged together.
We used first principal component of the module, called module
eigengene, to correlate with diagnosis and other variables.
Hub genes were defined using intra-modular connectivity
(kME) parameter of the WGCNA package. Gene-set enrichment
analysis was done using enrichR package (128). Potential drugs
targeting consensus modules were identified using enrichR to
query the LINCS (www.clue.io) chemical perturbations database.
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Comparison to other gene-clustering algorithms

In addition to cWGCNA, we constructed gene modules using sev-
eral alternate methods to demonstrate that these modules are
detected using different techniques. For this analysis, we used
samples from the Mayo cohort to construct gene modules using
DICER, DiffCoEx, MEGENA and self-organizing maps (SOMs). We
compared the overlap between the modules resulting from these
algorithms to the top 200 genes in each cWGCNA module by
intra-modular connectivity (kME) using a hypergeometric test
(phyper function in R). Default parameters were used for DICER
(v0.6.0) and MEGENA (v1.3.7) in their respective R packages. To
perform DiffCoEx, we used the diffcoex function from the R pack-
age MODifieRDev (https://github.com/ddeweerd/MODifieRDev)
with default parameters. We constructed a SOM of the scaled
gene expression data using the som function from the R package
kohonen (v 3.0.10) using a grid of 40 by 40 nodes, whereby each
gene in the expression dataset is assigned to one of these nodes
throughout the SOM training routine. Gene modules are then
constructed by hierarchically clustering the resulting SOM nodes
using the hclust function in R. We then visualized bi-weighted
mid correlations between genes and relevant biological variables
such as AD diagnosis, age at death and sex on the SOM to ensure
that the SOM gene modules were capturing relevant biological
features.

Proteomic Module Eigengenes—Processed proteomic AD data-
set (36) was downloaded from synapse website (syn20933797).
Consensus AD transcriptomic module definitions were used to
calculate synthetic module eigengenes using the moduleEigen-
genes function in WGCNA package and plotted as boxplots
stratified by control, asymptomatic AD and AD samples.

Co-expression PPI networks—Co-expression PPI networks were
created as described previously (34). Briefly, we used two PPI
resources, InWeb (30,129) and BioGRID (31) and using the union
of the two resources, the subset of compiled PPIs between genes
in a module was extracted and all edges were counted. The PPI
dataset was matrix-multiplied with co-expression data from the
RNA-seq data, the edges that were present both in PPI and co-
expression datasets were eventually kept. This approach allowed
us to infer tissue and species specificity in the PPI network. The
PPI network was then visualized using the igraph package in R.

Module Preservation Analysis

To understand the functional relationship of modules and
its network properties in orthogonal datasets, we performed
module preservation analysis. Module definitions from the
cWGCNA analysis was used and Z-statistics were calculated
using the module preservation function in WGCNA package in
R (130).

Genetic enrichment with eQTLs, mQTLs and GWGAS

Brain specific eQTLs were generated from databases including
the CommonMind Consortium Portal, AMP-AD, BRAINEAC and
xQTL Serve. A false discovery rate of 0.05 was used to define
significant eQTL associations. eQTLs that overlapped with AD
associated SNPs from either Lambert et al. or Jansen et al. GWAS
datasets (6,7) were annotated as AD-associated eQTLs. Simi-
larly, methylation QTLs (mQTLs) defined in AMP-AD, and Com-
monMind Consortium Portal were annotated as AD-associated
mQTLS if they overlapped with AD GWAS data. We also used
GWGAS data using MAGMA (56). GWAS enrichment analysis
in modules was done using MAGMA pipeline. Briefly, GWAS
summary statistics was obtained for AD from IGAP website

(7). Using MAGMA approach, we assigned each gene a score
based on the best P-value of an SNP in a given GWAS study
within 20 kB of the gene, and then set a P-value cut-off at
0.05 to define the gene as included in the common variant set
related to AD. We performed enrichment analysis with logis-
tic regression controlling for gene length, LD blocks and other
biases (33).

TWAS Enrichment Analysis

We performed AD TWAS using the FUSION package (http://
gusevlab.org/projects/fusion/) (100) with gene-expression mea-
sured in ROSMAP PFC data and GWAS summary statistics from
AD GWAS (7). We chose the best model of accuracy in the
FUSION package (best cis-eQTL, best linear unbiased predictor,
Bayesian sparse linear mixed model (131), Elastic-net regres-
sion, LASSO regression) and used for downstream association
analyses. TWAS association statistics were Bonferroni corrected
per GWAS, gene and intron separately. Association for TWAS
was assessed for plaque and tangle densities and genome-wide
significant genes were used for enrichment analysis. Similarly,
CDR reported in ROSMAP dataset was used for association with
cognitive decline.

Single-cell Library Preparation

Five control human brain samples were processed for nuclei
isolation following modified version of the published protocol
(132). All procedures were carried on ice. Approximately 50 mg
of the brain sample was homogenized in 500 μl chilled Nuclei
EZ lysis buffer (Sigma-Aldrich), using a motorized tissue grinder
and disposable pellet pestles (Fisher Scientific) by stroking ∼10–
20 times. The homogenate was then incubated for 5 min after
adding 1 ml of the Nuclei EZ lysis buffer. Homogenate was then
filtered using a 70 μm MACS strainer (Miltenyi Biotec). The flow
through was centrifuged at 500 g for 5 min at 4◦C and the
supernatant was carefully removed. The nuclei pellet was then
re-suspended in another 1.5 ml of Nuclei EZ lysis buffer and
incubated for 5 min. The cell suspension was again centrifuged
(500 g, 5 min, 4◦C) and the supernatant was removed. A total
of 500 μl of Nuclei wash and re-suspension buffer (NWR buffer:
1× PBS (Fisher Scientific), 1% BSA (Sigma-Aldrich) and 0.2 U/μl
RNase inhibitor (New England Bio Labs)) was then added and
incubated without re-suspending, to allow buffer interchange.
After the incubation, 1 ml of NWR buffer was added and the
nuclei were re-suspended. The resuspension was centrifuged
(500 g, 5 min, 4◦C) and the supernatant was removed. The nuclei
pellet was then gently resuspended in 1.4 ml of NWR buffer, cen-
trifuged (500 g, 5 min, 4◦C), removed supernatant and was gently
re-suspended in another 500 μl of NWR buffer. All nuclei were
collected by washing the walls of the centrifuge tube. Nuclei re-
suspension was then filtered using 40-μm Flowmi cell strainer
(Bel-Art). The number of nuclei was then counted using an
automated cell counter (Bio-Rad). Samples were directly sorted
by FACS using DAPI positive gates at the UCI Immunology FACS
core in the 10X buffer and libraries were prepared using Single-
cell RNA-seq library kit (v3, 10X Genomics). Samples were pooled
and sequenced at an average read-depth of 100 000 reads/cell.

Single-cell Clustering and analysis

Raw sequencing Illumina bcl2 files were demultiplexed using
10X Genomics Cell Ranger software. Further analysis was per-
formed in Seurat V3 package in R (133). We used sctransform
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function in Seurat to normalize the data and top 75 PCs were
used for clustering and visualization using Fourier transforma-
tion t-SNE (FItsne (134)). Differential expression between clusters
were performed using MAST package in Seurat (135). Addition-
ally, differential expression was performed to compare cells
originating from male and female samples within each cluster
using MAST.

Cell-type composition analysis

For cell-type composition analysis, unregressed FPKM data
which did not account for cell-type principal components, were
used. Using the most variable genes in a cluster, we performed
WGCNA analysis and determined the intramodular connectivity
(kME) of each gene. kME values are correlation of first principal
components of a module/cluster to the expression of that gene.
Thus, higher kME values can often explain most of the variance
in the data because of their high correlation to PC1. Using Fisher’s
transformation, we converted kME values to specificity scores
(Z-scores). We then used the top one percentile of genes by their
kME values and calculated their module eigengene in respective
bulk RNA-seq dataset. These module eigengene values were
then plotted to understand the cell-composition changes in
control and AD samples.

Transcription factor binding site enrichment

TFBS enrichment was done using pipeline published elsewhere
(106). Briefly, the computational pipeline identifies the TFs (in
the promoter region) in the given gene list using experimentally
validated TFs. The pipeline used TF position-weighted matric
from JASPAR and TRANSFAC databases as well as included
experimental associated datasets obtained from ENCODE (136)
and ChEA (137). The pipeline uses clover algorithm and corrects
for background using human chromosome 22.

Supplementary Material
Supplementary Material is available at HMG online.
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