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Biological systems are immensely complex, organized into a
multi-scale hierarchy of functional units based on tightly-
regulated interactions between distinct molecules, cells, or-
gans, and organisms. While experimental methods enable
transcriptome-wide measurements across millions of cells, the
most ubiquitous bioinformatic tools do not support systems-
level analysis. Here we present hdWGCNA, a comprehensive
framework for analyzing co-expression networks in high di-
mensional transcriptomics data such as single-cell and spatial
RNA-seq. hdWGCNA provides built-in functions for network
inference, gene module identification, functional gene enrich-
ment analysis, statistical tests for network reproducibility, and
data visualization. In addition to conventional single-cell RNA-
seq, hdWGCNA is capable of performing isoform-level net-
work analysis using long-read single-cell data. We showcase
hdWGCNA using publicly available single-cell datasets from
Autism spectrum disorder and Alzheimer’s disease brain sam-
ples, identifying disease-relevant co-expression network mod-
ules in specific cell populations. hdWGCNA is directly compat-
ible with Seurat, a widely-used R package for single-cell and
spatial transcriptomics analysis, and we demonstrate the scal-
ability of hdWGCNA by analyzing a dataset containing nearly
one million cells.

Introduction
The development and widespread adoption of single-cell and
spatial genomics approaches has lead to routine generation of
high-dimensional datasets in a variety of biological systems.
These technologies are frequently used to study developmen-
tal stages, evolutionary trajectories, disease states, drug per-
turbations, and other experimental conditions. Despite the in-
herent complexity and interconnectedness of biological sys-
tems, studies leveraging single-cell and spatial genomics typ-
ically analyze individual features (genes, isoforms, proteins,
etc.) one by one, greatly oversimplifying the underlying biol-
ogy. These datasets provide an opportunity for investigating
and quantifying the relationships between these features to
further contextualize their roles across biological conditions
of interest.

Here we developed hdWGCNA, a framework for co-
expression network analysis (1) in single-cell and spatial
transcriptomics data. Co-expression networks are based on

transformed pairwise correlations of input features, result-
ing in a quantitative measure of relatedness between genes
(1, 2). Hierarchical clustering on the network structure al-
lows us to uncover functional modules of genes whose ex-
pression profiles are tightly intertwined (3, 4), which typi-
cally correspond to specific biological processes and disease
states. Considering that unique cell types and cell states have
distinct gene expression programs, we designed hdWGCNA
to facilitate multi-scale analysis of cellular and spatial hierar-
chies. hdWGCNA provides a rich suite of functions for data
analysis and visualization, providing biological context for
co-expression networks by leveraging a variety of biologi-
cal knowledge databases. To maximize usability amongst the
genomics community, the hdWGCNA R package extends the
data structures and functionality of the widely-used Seurat
package (5–7). We used hdWGCNA to analyze a single-cell
RNA-seq (scRNA-seq) dataset consisting of 1M cells, show-
casing the scalability of hdWGCNA in large datasets.

We applied hdWGCNA in a variety of high-dimensional
transcriptomics datasets from different technologies and bi-
ological conditions. As a common use case, we per-
formed iterative network analysis of the major cell types
in the human prefrontal cortex (PFC), identifying shared
and specific network modules in each cell type. We con-
structed co-expression networks in anterior and posterior
mouse brain sections profiled with 10× Genomics Visium
ST, and found distinct spatial patterns of these gene expres-
sion programs. Using long-read scRNA-seq (scRNA-seq)
data from the mouse hippocampus (8), we uncovered splic-
ing isoform co-expression networks in the radial glia lin-
eage involved in cell fate specification. Network analysis
of inhibitory neurons from published single-nucleus RNA-
seq (snRNA-seq) in Autism spectrum disorder (ASD) donors
(9) revealed modules disrupted in ASD containing key ge-
netic risk genes such as SCN2A, TSC1, and SHANK2. We
performed consensus co-expression network analysis of mi-
croglia from three Alzheimer’s disease (AD) snRNA-seq
studies (10–12), yielding multiple gene modules correspond-
ing to disease-associated microglia and polygenic risk of AD.
Finally, we used hdWGCNA to project gene modules from
the bulk RNA-seq AMP-AD cohort (13) into several pub-
lished snRNA-seq datasets of AD brains, showing that our
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Fig. 1. Overview of the hdWGCNA workflow and application in the human prefrontal cortex. a. Schematic overview of the standard hdWGCNA workflow on a
scRNA-seq dataset. UMAP plot shows 36,671 cells from control donors in the Zhou et al. human PFC dataset. Cell type abbreviations are the following: ASC: astrocytes;
EX: excitatory neurons; INH: inhibitory neurons; MG: microglia; ODC: oligodendrocytes; OPC: oligodendrocyte progenitor cells. b. Density plot showing the distribution of
pairwise Pearson correlations between genes from the single-cell (sc) expression matrix, and metacell expression matrices with varying values of the K-nearest neighbors
parameter K. c. Expression matrix density (1 - sparsity) for the single-cell (sc), pseudo-bulk (pb), and metacell matrices with varying values of K in each cell type. d.
Heatmap of scaled gene expression for the top five hub genes by kME in INH-M6, EX-M2, ODC-M3, OPC-M2, ASC-M18, and MG-M14. e. snRNA-seq UMAP colored by
module eigengene (ME) for selected modules as in d. f. UMAP plot of the ODC co-expression network. Each node represents a single gene, and edges represent
co-expression links between genes and module hub genes. Point size is scaled by kME. Nodes are colored by co-expression module assignment. The top two hub genes
per module are labeled. Network edges were downsampled for visual clarity. g. snRNA-seq UMAP as in a colored by MEs for the ten ODC co-expression modules as in f. h.
Module preservation analysis of the ODC modules in the Morabito & Miyoshi et al. 2021 human PFC dataset. The module’s size versus the preservation statistic (Z
preservation) is shown for each module. Z < 5: not preserved; 10 > Z ≥ 5: moderately preserved; Z ≥ 10: highly preserved.

approach allows for interrogation of gene modules and net-
works that have been previously identified.

Results

Constructing co-expression networks from high-di-
mensional transcriptomics data. Here we describe a
comprehensive framework for constructing and analyzing co-
expression networks in high dimensional transcriptomic data
(Fig. 1a). Given a gene expression dataset as input, co-
expression network analysis typically consists of the follow-
ing analysis steps: computing pairwise correlations of input
features, weighting correlations with a soft power threshold
(β), computing the topological overlap between features, and
unsupervised clustering via the Dynamic Tree Cut algorithm
(3) (Fig. S1, Methods). The sparsity and noise inherent in
single-cell data can lead to spurious gene-gene correlations,
thereby complicating co-expression network analysis. Ad-
ditionally, the correlation structure of single-cell or spatial
transcriptomic data varies greatly for different subsets (cell
types, cell states, anatomical regions). A typical hdWGCNA
workflow in scRNA-seq data accounts for these considera-
tions by collapsing highly similar cells into "metacells" to
reduce sparsity while retaining cellular heterogeneity, and by
allowing for a modular design to perform separate network
analyses in specified cell populations. Here, we demonstrate

hdWGCNA in single-cell data through an iterative network
analysis of six major cell types in a published dataset of hu-
man PFC samples from healthy donors (Fig. 1a) (11).

Metacells are defined as small groups of transcriptomi-
cally similar cells representing distinctive cell states. There
are several approaches to identify metacells from single-cell
genomics data (14–17). Here, we leverage a bootstrapped ag-
gregation (bagging) algorithm for constructing metacell tran-
scriptomic profiles from single-cell datasets by applying K-
nearest neighbors (KNN) to a dimensionality-reduced repre-
sentation of the input dataset (Methods, Algorithm 1). This
approach can be performed for each biological replicate to
ensure that critical information about each sample (age, sex,
disease status, etc.) is retained for downstream analysis. We
computed gene-gene correlations in the normalized gene ex-
pression matrix from the single-cell dataset and metacell ex-
pression matrices while varying the number of cells to col-
lapse into a single metacell (the KNN K parameter). The
distribution of these gene-gene correlations displays a spike
at zero for the single-cell expression matrix, with flattened
distributions corresponding to more non-zero correlations in
the metacell matrices, indicating that metacell expression
profiles are less prone to noisy gene-gene correlations com-
pared to the single-cell matrix (Fig. 1b) (Methods). We note
that sparsity (defined in Equation 1) is greatly reduced in the
metacell matrices for each cell type compared to the single-
cell matrices, with over a tenfold reduction in some cases
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Fig. 2. Spatial co-expression networks represent regional expression patterns in the mouse brain. a. Visium spatial transcriptomics (ST) in anterior (left) and
posterior (right) mouse brain sections, colored by Louvain clusters annotated by anatomical regions. b. UMAP plot of the mouse brain ST co-expression network. Each node
represents a single gene, and edges represent co-expression links between genes and module hub genes. Point size is scaled by kME. Nodes are colored by co-expression
module assignment. The top 5 hub genes per module are labeled. Network edges were downsampled for visual clarity. c. ST samples colored by module eigengenes (MEs)
for the 12 spatial co-expression modules. Grey color indicates a ME value less than zero.

(Fig. 1c). We applied hdWGCNA to a dataset of CD34+
hematopoietic stem and progenitor stem cells (17) using two
additional metacell approaches (15, 17), and found that all
approaches were suitable for downstream network analysis
(Supplementary Fig. S2, Supplementary Table 1).

While co-expression modules consist of many genes, it
is often convenient to summarize the expression of the entire
module into a single metric. WGCNA uses module eigen-
genes (MEs), the first principal component of the module’s
gene expression matrix, to describe the expression patterns
of co-expression modules. hdWGCNA computes MEs using
specific accommodations for high-dimensional data, allow-

ing for batch correction and regression of continuous covari-
ates (Methods, Algorithm 2). Optionally, hdWGCNA can
use alternative gene scoring methods such as or UCell (18)
or Seurat’s AddModuleScore function, and we show that
these scores are correlated with MEs (Fig. S3).

We constructed metacells and performed co-expression
network analysis for each major cell type in the human
PFC dataset (11) using the standard hdWGCNA workflow,
yielding distinct network structures and sets of gene mod-
ules (Supplementary Tables 2-3). Through differential mod-
ule eigengene (DME) analysis, we found shared and dis-
tinct modules across different cell types (Supplementary Ta-
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ble 4, Methods), and we highlight specific modules from
each cell type (Figs. 1d, e). The expression of module
hub genes, which are highly connected members of the co-
expression network ranked by eigengene-based connectivity
(kME), tend to display cell-type specific patterns, such as the
myelination genes CNP and PLP1 in oligodendrocyte (ODC)
module ODC-M3 (Fig. 1d). However, some co-expression
modules may correspond to cellular processes common to
multiple cell-types, in which case the hub genes may be
widely expressed. We inspected the MEs of selected cell-
type specific modules, and found that the overall expression
patterns were similar to that of their constituent hub genes
(Fig. 1d,e)

We demonstrate some of the downstream functionalities
of hdWGCNA using the ODC co-expression network (Fig.
1f-h). For network visualization, we used UMAP (19) to em-
bed the co-expression network TOM into a two-dimensional
manifold, using the topological overlap of each gene with the
top hub genes from each module as input features (Methods,
Fig. 1f). We found that eight of the ten ODC modules were
specifically expressed in ODC cells based on their MEs (Fig.
1g, Wilcoxon rank sum test Bonferroni-adjusted P -value <
0.05). Finally, we performed module preservation analysis
(20) to test the reproducibility of these modules in an inde-
pendent dataset (12) and found that all of the ODC-specific
modules were significantly preserved (Z-summary preserva-
tion ≥ 5). In sum, these network analyses in the human
PFC dataset shows the core capabilities of the hdWGCNA
workflow, (Fig. S1). Finally, we performed a similar itera-
tive network analysis on a peripheral blood mononuclear cell
(PBMC) scRNA-seq dataset of nearly 1M cells, highlighting
the scalability of hdWGCNA in large datasets (Fig. S4, Sup-
plementary Table 5).

Spatial co-expression networks represent regional ex-
pression patterns in the mouse brain. Spatial transcrip-
tomics (ST) enables the investigation of biological patterns
that might otherwise be hidden in other -omics technolo-
gies such as single-cell or bulk RNA-seq (21, 22). Here
we used hdWGCNA to identify spatial co-expression net-
work modules in the murine brain using a publicly available
Visium transcriptomics dataset from 10× Genomics (Fig.
2a). Sequencing-based ST approaches like Visium yield
transcriptome-wide gene expression profiles localized to in-
dividual "spots", where a single spot likely contains multiple
cells. Data sparsity is also inherent to the current genera-
tion of these technologies, therefore we propose a metaspot
aggregation approach prior to network analysis (Fig. S5).
Evenly spaced spots throughout the input ST slide are used
as principal spots, with at least one other spot in between
two principal spots. The transcriptomes of the principal spots
and their direct neighbors are aggregated into metaspot ex-
pression profiles, containing at most seven ST spots (Fig.
S6a). Similar to metacells in scRNA-seq, the sparsity of
the metaspot expression matrix was reduced compared to the
original ST matrix S6b), and the distribution of gene-gene
correlations in the metaspot expression matrix were less con-
centrated at zero S6c). hdWGCNA is capable of processing

any number of ST samples in the same co-expression net-
work analysis by constructing metaspots separately for each
sample.

We applied hdWGCNA in the mouse brain Visium
dataset, identifying twelve spatial modules (SM1-12, Fig. S6,
Supplementary Table 6), and we embedded the co-expression
network in two dimensions using UMAP (Fig. 2b). DME
analysis showed that spatial co-expression modules displayed
distinct regional expression profiles based on their MEs (Fig.
2c, Supplementary Table 7), encompassing a wide array of
cellular processes such as the myelination module SM1 in
the white matter tracts, and synaptic transmission modules
SM7, SM9, SM11, and SM12 (Fig. S6c, Supplementary Ta-
ble 8). For example, DME analysis showed that expression
of SM4 was localized to the ventricles and cortical layer 1
near the blood-brain barrier (Fig. 2c). Further, the hub genes
of SM4 include hemoglobin subunits (Hba-a1, Hba-a2, Hbb-
bt), and we show that SM4 was enriched for biological pro-
cesses associated with brain vasculature (Figs. 2b, S6c). We
compared these gene modules to cluster marker genes from
a whole mouse brain snRNA-seq dataset (23) and found sig-
nificant correspondences, such as the striatum module SM7
and medium spiny neurons (Fisher’s exact test FDR < 0.05,
Fig. S6d). Additionally, we performed network analysis on
a subset of this dataset containing cortical layers 2-6 (Fig.
S7), identifying additional fine-grained spatial co-expression
modules localized to specific cortical layers (Supplementary
Tables 9, 10).

Isoform-level co-expression networks reveal cell fate
decisions in the radial glia developmental lineage. Dif-
ferent isoforms of the same gene are often involved in dis-
tinct biological processes (26). Conventional single-cell tran-
scriptomics assays capture information at the gene level,
thereby missing much of the biological diversity and reg-
ulatory mechanisms that occurs at the isoform level (27).
Emerging long-read sequencing approaches enable us to pro-
file cellular transcriptomes at isoform resolution (8, 28–30),
thus providing new opportunities to model the relationships
between isoforms using co-expression network analysis.

We used hdWGCNA to perform isoform co-expression
network analysis in radial glia lineage cells from the mouse
hippocampus at postnatal day 7 (P7) profiled with ScISOrSeq
(8) (Fig. 3a, Methods). Radial glia, which share tran-
scriptomic similarities with mature astrocytes, are progenitor
cells that give rise to numerous distinct cell fates including
neuronal cells, astrocytes, oligodendrocytes, and ependymal
cells (31, 32). To model this developmental process, we ap-
plied Monocle3 (33) pseudotime to 2,190 radial glia lineage
cells (Fig. 3b). We identified three trajectories corresponding
to distinct cell fates, termed the ependymal (EPD) trajectory,
astrocyte (ASC) trajectory, and the neural intermediate pro-
genitor cell (NPC) trajectory.

Isoform co-expression network analysis revealed eleven
modules in the radial glia lineage (Fig. 3c, Supplementary
Table 11). Of the genes retained for network analysis, 61.5%
had a single isoform, 18.2% had multiple isoforms that were
all assigned to the same module, and 20.4% had multiple
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Fig. 3. Co-expression network analysis of the radial glia lineage in the mouse hippocampus. a. UMAP plot of cells from the mouse hippocampus ScISOrSeq dataset
(8). Major cell types are labeled and the cells used for co-expression network analysis are colored. This dataset contains expression information for 96,093 isoforms and
31,053 genes in 6,832 cells. b. UMAP plot of the radial glia lineage, colored by Monocle 3 (24) pseudotime assignment. Top left: ependymal (EPD) trajectory; top right:
astrocyte (ASC) trajectory; bottom left: neuronal intermediate progenitor cell (NPC) trajectory. c. UMAP plot of the radial glia lineage isoform co-expression network. Each
node represents a single isoform, and edges represent co-expression links between isoforms and module hub isoforms. Point size is scaled by kMEiso. Nodes are colored
by co-expression module assignment. Network edges were downsampled for visual clarity. d. Donut chart showing the percentage of genes with one isoform, with multiple
isoforms that are all assigned to the same module, and with multiple isoforms that are spread across more than one module. e. Module eigenisoforms (MEiso) as a function
of pseudotime for each co-expression module. For each module, a separate loess regression line is shown for each developmental trajectory. f. Dot plot showing selected
GO term enrichment results for each co-expression module. g. Gene models for selected isoforms of Gfap, colored by co-expression module assignment. h. Gene models
for selected isoforms of H3f3b, colored by co-expression module assignment. i. Top: gene models for selected isoforms of Cd9, colored by co-expression module
assignment. Bottom: Swan (25) graphical representation of Cd9 alternative splicing isoforms. Splice sites and transcript start / end sites are represented as nodes; introns
and exons are represented as connections between nodes. These two isoforms are distinguished by alternative TSS usage. Gene models from the GENCODE VM23
comprehensive transcript set are shown below transcripts in panels g,h, and i.

Morabito et al. | hdWGCNA bioRχiv | 5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.22.509094doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.22.509094
http://creativecommons.org/licenses/by-nc-nd/4.0/


isoforms spread across several modules (Fig. 3d). Thus,
these network modules capture information about the roles
of different isoforms of the same gene in distinct biologi-
cal processes. We inspected module eigenisoform (MEiso)
patterns throughout the developmental lineage, thereby un-
covering isoform modules critical for cell fate decisions (Fig.
3e, Supplementary Tables 12, 13). Increased expression of
modules RGL-M1 and RGL-M2, which were enriched cil-
ium assembly genes (Fig. 3f), was associated with the tran-
sition from a radial glia to an ependymal cell state. A steady
expression level of module RGL-M5 (glial development, as-
trocyte differentiation) was found in the transition from radial
glia to astrocytes, while a decreased expression of RGL-M5
lead to alternative fates. Four modules (RGL-M3, RGL-M8,
RGL-M9, and RGL-M11) displayed an increase in expres-
sion in the neuronal trajectory, containing genes associated
with cellular processes such as non-canonical Wnt signaling,
neuronal synaptic plasticity, and RNA splicing (Fig. 3f).

We inspected the isoforms of three selected genes which
had hub isoforms in different co-expression modules: Gfap,
H3f3b, and Cd9 (Figs. 3g-i). Gfap encodes a key intermedi-
ate filament protein in astrocytes that is involved in astrocytic
reactivity during central nervous system injuries or neurode-
generation (34), and we found that modules RGL-M4 and
RGL-M6 contained hub isoforms of Gfap featuring alterna-
tive splicing, alternative transcription start site (TSS) usage,
and alternative transcription end site (TES) usage (Fig. 3g).
Different isoforms of the histone H3.3 subunit gene H3f3b
were hubs for modules RGL-M1 and RGL-M11, which were
associated with ependymal and neuronal cell fates respec-
tively, suggesting that alternative TES usage in H3f3b plays
a role in regulating epigenetic factors in murine hippocam-
pal development (Fig. 3f). Cd9 encodes a transmembrane
protein and is a known glioblastoma biomarker (35), and we
found subtle differences in the TSS between hub isoforms in
modules RGL-M6 and RGL-M9 that we show as a splicing
summary graph (25) (Fig. 3i), supporting functional changes
mediated by small isoform differences.

Co-expression network analysis of inhibitory neu-
rons in Autism spectrum disorder. Co-expression net-
works can be interrogated to further understand the molec-
ular phenotypes of complex polygenic diseases in primary
human tissue samples. We applied hdWGCNA to inhibitory
neruons (INH) from a published snRNA-seq dataset of the
PFC in Autism spectrum disorder (ASD) patients and age-
matched controls (9) (Figs. 4a, S9, Supplementary Table
14). The INH network contained 14 modules, and we show
hub genes that have a known association with ASD in the
SFARI database on the co-expression UMAP (Fig. 4b). The
MEs showed that some modules were primarily confined to
a single INH cluster (INH-M3, INH-M1) while others were
spread across multiple neuronal groups (Fig. 4c). Further-
more, DME analysis revealed significant differences between
MEs in ASD and control samples for all modules except
INH-M4 in at least one INH subpopulation (Fig. 4d, Sup-
plementary Table 15, Wilcoxon rank sum test Bonferroni-
adjusted P -value < 0.05). Three co-expression modules

(INH-M11, INH-M13, and INH-M3) were significantly en-
riched in ASD-associated genes from the SFARI database
(Fig. 4e), but we note that all of these modules contained
several ASD-associated SFARI genes.

INH-M11 was enriched for genes associated with
synaptic transmission, ion transport, glutamate receptor sig-
naling, and nervous system development (Fig. 4f, Supple-
mentary Table 16), and this module was down-regulated in
ASD for five of the six INH subtypes (Fig. 4d). Similarly,
INH-M13 was associated with RNA processing (Fig. 4f)
and was down-regulated in ASD in all INH subtypes except
PVALB+ neurons (Fig. 4d). One of the ING-M13 hub genes
is CHD2, whose de novo variants have been identified in in-
dividuals with ASD (36, 37). CHD2 is part of the CHD fam-
ily of chromatin modifying proteins and can alter gene ex-
pression by modification of chromatin structure. Similarly,
rare loss-of-function mutations have been reported in SCN2A
gene, a hub gene of INH-M11 module (38). We also find en-
richment of several ASD-associated genes like TSC1 (INH-
M8), SMARCA4 (INH-M8), SHANK2 (INH-M4), CPEB4
(INH-M1), highlighting that these modules are functional
and provide new insights into the role of inhibitory neurons
in ASD. Finally, we tested for the preservation of these mod-
ules in a snRNA-seq dataset from of the PFC from major
depressive disorder (MDD) donors, and found substantial ev-
idence of preservation across all modules except INH-M1
(Figs. S9c-e).

Consensus network analysis of microglia in
Alzheimer’s disease. Microglia, the resident immune
cells of the brain, are implicated in the pathology and genetic
risk of several central nervous system (CNS) diseases, in-
cluding AD (39–42). Transcriptomic and epigenomic studies
in human tissue and AD mouse models have identified
multiple cell states of microglia, representing a spectrum be-
tween homeostatic and disease-associated microglia (DAMs)
(12, 43, 44). Our previous study defined a set of transcription
factors, genes, and cis-regulatory elements involved in the
shift between homeostatic and DAM cell states in human
AD, identifying shared and distinct signatures compared
to the DAM signature from 5xFAD mice (12). Here we
sought to expand on previous work by providing a systems
level analysis of gene expression throughout the spectrum of
microglia cell states.

We modeled the cell-state continuum between home-
ostatic and DAM-like microglia by employing a pseudo-
time analysis of microglia from three human AD snRNA-seq
datasets (10–12) (Figs. 5a, b, S10). Next, we performed con-
sensus co-expression network analysis using microglia inte-
grated from three human AD snRNA-seq datasets (10–12),
identifying four consensus modules (Fig. 5c, Supplementary
Table 17). Consensus network analysis is an approach that
performs network analysis separately for each dataset, fol-
lowed by a procedure to retain structures common across the
individual networks, and thus it is well-suited for analyzing
microglia co-expression from these different sources (Meth-
ods).
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Fig. 4. Co-expression network analysis of inhibitory neurons in Autism spectrum disorder. a. UMAP plot of 121,451 nuclei from the cortex of ASD donors and
controls profiled with snRNA-seq. Inhibitory neuron subtypes are highlighted. b. Gene co-expression network derived from inhibitory neurons, represented as a
two-dimensional UMAP embedding of the TOM. Nodes represent genes, colored by module assignment. Module hub genes with prior evidence of ASD association from
SFARI are labeled. Edges represent co-expression relationships between genes and module hub genes. Network edges were downsampled for visual clarity. c. Gene
overlap analysis comparing ASD-associated genes from SFARI and INH co-expression modules, using Fisher’s exact test. × indicates that the overlap was not significant
(FDR > 0.05). d. snRNA-seq UMAP plots as in panel A colored by module eigengenes (MEs) for INH co-expression modules. e. Violin plots showing MEs in each INH
cluster. Two-sided Wilcoxon test was used to compare ASD versus control samples. Not significant (ns): P > 0.05; *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001; ****:
P ≤ 0.0001. f. Selected GO enrichment results for each co-expression module.
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Classical markers of homeostatic microglia, such as
CSF1R, CX3CR1, and P2RY12 were members of MG-M2,
while known DAM genes including APOE, TYROBP, and
B2M were members of MG-M1. GO term enrichment analy-
sis associated MG-M2 with homeostatic microglia functions
such as cell migration, synapse organization, and response
to colony-stimulating factor, contrasting disease-related pro-
cesses enriched in MG-M1 including amyloid fibril forma-
tion, microglial activation, maintenance of blood-brain bar-
rier, and cytokine production (Fig. 5d, Supplementary Table
18). Together, this suggests that MG-M1 comprises the gene
network underlying disease-associated microglial activation
in AD, while MG-M2 represents the network of homeostatic
microglia genes. The MEs for MG-M1 and MG-M2 display
opposing patterns throughout the microglia pseudotime tra-
jectory, contextualizing this trajectory as the transcriptional
shift from homeostatic microglia (start) to a DAM-like cell
state (end) (Figs. 5e, f). Furthermore, DME analysis revealed
significant changes in these modules between AD and control
brains in evenly spaced windows throughout the microglia
trajectory (Fig. 5g, Wilcoxon rank sum test Bonferroni-
adjusted P -value < 0.05, Supplementary Table 19). Co-
expression networks behave as functional biological units,
therefore we reason that the hub genes and other members of
MG-M1 represent candidates for an expanded set of human
DAM genes including ACTB, TPT1, and EEF1A1.

Aside from modules MG-M1 and MG-M2 which con-
tained well-known microglia gene signatures, we also iden-
tified modules MG-M3 and MG-M4 containing genes as-
sociated with key microglial processes like axon guidance,
phagocytosis, and myeloid cell differentiation (Fig. 5c, d).
CD163, a hub gene of MG-M4, is known to be involved in the
breakdown of the blood-brain barrier (45, 46). The trajectory
of MG-M4, containing CD163 as a hub gene, was consistent
with that of DAM-like module MG-M1, and was enriched
for processes including phagocytosis, myeloid cell differen-
tiation, and neutrophil activation (Fig. 5d), therefore it is pos-
sible that MG-M4 represents an alternative microglial activa-
tion module (47). We performed single-cell polygenic risk
enrichment for AD risk in the microglia trajectory (39, 48),
and identified a significant increase throughout the trajectory,
revealing an enrichment of AD genetic risk SNPs in DAMs
(Fig. 5h, Methods, Supplementary Table 20). We show that
expression of the these modules were significantly correlated
with AD genetic risk (Pearson correlation P -value < 0.05),
with the strongest correlation in alternative activation mod-
ule MG-M4 (Fig. 5i).

To ensure that these microglial modules were repro-
ducibile across other datasets and in mouse models of AD,
we performed module preservation analysis (20) (Methods,
Fig. 5j). We projected the microglial consensus modules into
a dataset of the PFC in aged human samples (49), the supe-
rior frontal gyrus (SFG) and entorhinal cortex (EC) in AD
samples (50), the occipital cortex (OC) and the occipitotem-
poral cortex (OTC) in human AD samples (51), the PFC from
5xFAD mice (11), and whole brain samples from 5xFAD
mice (23) (Fig. 5h). Additionally, we projected these mod-

ules into a snATAC-seq dataset of the PFC in human AD (12),
using gene activity (52) as a proxy for gene expression from
chromatin accessibility data. These module preservation tests
showed the microglia consensus modules were broadly pre-
served and reproducible across brain regions and in mouse
models of AD, providing further support that this network is
relevant in AD biology and microglial activation.

Projecting network modules from bulk RNA-seq co-
horts into relevant single-cell datasets. hdWGCNA al-
lows for interrogating co-expression modules inferred from a
given reference dataset in a query dataset. Modules can be
projected across datasets by computing module eigengenes
in the query dataset, and preservation of the network struc-
ture can be assessed via statistical testing (20). For exam-
ple, modules can be projected between different species to
link transcriptomic changes between mouse models and hu-
man disease patients, or modules can be projected across data
modalities from single-cell to spatial transcriptomics to pro-
vide regional context to cellular niches.

To date, it remains cost-prohibitive for most researchers
to perform high dimensional -omics studies of large patient
cohorts, but there are numerous large-scale disease-relevant
bulk RNA-seq datasets containing thousands of samples from
consortia such as ENCODE (53), GTEx (54), and TCGA
(55). By projecting co-expression modules derived from bulk
RNA-seq patient cohorts into single-cell datasets, we can
layer disease-related information onto the single-cell dataset
and attribute cell-state specific expression patterns to the bulk
RNA-seq data. We demonstrate projecting modules in this
manner using co-expression modules from two bulk RNA-
seq studies of AD (13, 49) as the references and an AD
snRNA-seq dataset (12) as the query. These studies both used
AD samples and controls from the same patient cohorts (Re-
ligious Orders Study and Memory and Aging Project, Mayo
clinic, Mount Sinai School of Medicine) (56–58), but they
took unique approaches for co-expression network analysis.
The AMP-AD study from Wan et al. (13) performed network
analysis separately from each brain region, while in our pre-
vious study (49) we performed consensus network analysis
across the different brain regions. We projected these mod-
ules into a snRNA-seq dataset of AD and control samples
from the PFC (Fig. 6a), and we found distinct cell-type spe-
cific expression patterns based on their MEs (Figs. 6b, c).
This analysis demonstrates hdWGCNA’s ability to transfer
co-expression information across datasets to uncover other-
wise unseen biological insights.

Discussion
Classical bioinformatic approaches like differential gene ex-
pression analysis are useful for finding individual genes that
are altered in a particular disease or condition of interest, but
they do not provide information about the broader context
of these genes in specific pathways or regulatory regimes.
For example, biological processes like development or re-
generation require coordination of distinct sets of genes in
certain cell types with spatial specificity. Therefore to under-
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Fig. 5. Consensus network analysis of microglia in Alzheimer’s disease. Caption on the next page −→
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Fig. 5. Consensus network analysis of microglia in Alzheimer’s disease. a. Left: table showing the number of samples and the number of microglia nuclei from
published AD snRNA-seq datasets used for co-expression network analysis. Right: Integrated UMAP plot of nuclei from three snRNA-seq datasets. b. UMAP plot of
microglia, colored by Monocle 3 (24) pseudotime assignment. c. UMAP plot of the microglia co-expression network. Each node represents a single gene, and edges
represent co-expression links between genes and module hub genes. Point size is scaled by kME. Nodes are colored by co-expression module assignment. The top 10 hub
genes per module are labeled, as well as additional genes of interest. Network edges were downsampled for visual clarity. d. Selected gene ontology (GO) terms enriched
in co-expression modules. Bar plots show the log-scaled enrichment of each term. e. Module eigengenes (MEs) as a function of pseudotime, points are averaged MEs in 50
pseudotime bins of equal size. Line represents loess regression with a 95% confidence interval. f. Microglia UMAP colored by ME. g. Differential module eigengene (DME)
results in ten pseudotime bins of equal size. For each pseudotime bin, we performed DME analysis between cells from AD (positive fold change) and control samples. ×
symbol indicates that the test did not reach significance (Wilcoxon rank sum test Bonferroni-adjusted P -value > 0.05). h. Top: Microglia UMAP colored by AD single-cell
disease relevance score (scDRS) (48) Z-score. Bottom: scDRS Z-score as a function of pseudotime, points are averaged scDRS Z-scores in 50 pseudotime bins of equal
size. Line represents linear regression with a 95% confidence interval. i. Heatmap of Pearson correlations of MEs and scDRS Z-scores, split by cells from AD and control
samples. j. Heatmap showing module preservation Z-summary statistics for validation datasets. Abbreviations denote the following brain regions: Prefrontal cortex (PFC),
superior frontal gyrus (SFG), entorhinal cortex (EC), occipital cortex (OC), occipitotemporal cortex (OTC). **: highly preserved (Z ≥ 10: highly preserved); *: moderately
preserved (10 > Z ≥ 5); x: not preserved (Z < 5).

Fig. 6. Projecting bulk RNA-seq co-expression modules into a single-cell dataset. a. UMAP plot of 57,950 nuclei from a snRNA-seq dataset of the human PFC from
AD and control brains (12). Cells are colored by major cell type assignment. b. Multi-region consensus co-expression modules from Morabito et al. 2020 (49) bulk RNA-seq
analysis projected into the snRNA-seq dataset as in panel a. c. Co-expression modules from the AMP-AD bulk RNA-seq dataset (13) projected into the snRNA-seq dataset
as in panel a. CBE: cerebellum; DLPFC: dorsolateral prefrontal cortex; FP: frontal pole; IFG: inferior frontal gyrus; PHG: parahippocampal gyrus; STG: superior temporal
gyrus; TCX: temporal cortex.

stand these complex processes, we must look beyond indi-
vidual genes. hdWGCNA was developed to provide a suc-
cinct methodology for investigating systems-level changes
in the transcriptome in single-cell or ST datasets. We de-
signed hdWGCNA to be highly modular, allowing for multi-
scale analyses of different cellular or spatial hierarchies in a
technology-agnostic manner.

In this study, we demonstrated that hdWGCNA is
compatible with single-cell and ST datasets and can be
easily adapted for novel transcriptomics approaches like
ScISOrSeq. Co-expression networks have been successful
for analyzing bulk proteomics datasets in human disease
samples (59, 60), and we expect that hdWGCNA could be
swiftly adapted for single-cell and spatial proteomics datasets
as the technology matures and becomes more widely avail-
able (61). hdWGCNA includes built in functions to lever-
age external biological knowledge sources to provide in-
sight for co-expression networks, for example by compar-
ing gene modules to functional gene sets such as disease-
associated genes from GWAS expression quantitative trait
loci (eQTLs), or transcription factor target genes. Unlike
other network analysis pipelines such as SCENIC (62) or
CellChat (63), hdWGCNA is a purely unsupervised approach

and does not require prior knowledge or databases in their in-
ference procedure. The co-expression information computed
by hdWGCNA can be easily retrieved from the Seurat ob-
ject to facilitate custom downstream analyses beyond the hd-
WGCNA package. hdWGCNA allows for comparisons be-
tween experimental groups via differential module eigengene
testing and module preservation analysis, which allowed us
to identity inhibitory neuron modules that were dysregulated
in ASD and enriched for ASD genetic risk genes, and mi-
croglial modules that were dysregulated in AD and enriched
for DAM genes. Our network analyses of the ASD and AD
datasets shows that hdWGCNA is capable of uncovering ex-
panded disease-relevant gene sets via the interaction part-
ners of known disease-associated genes like the ASD SFARI
genes or the AD DAM genes. We demonstrated that the
co-expression networks inferred by hdWGCNA were highly
reproducible in unseen datasets, indicating that this is a ro-
bust methodology which reflects the underlying biology of
the system of interest rather than picking up on technical ar-
tifacts. Further, hdWGCNA sheds new light on previously
identified co-expression networks and gene modules by al-
lowing modules to be projected from a reference dataset to
a query dataset. The hdWGCNA R package directly ex-
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tends the familiar Seurat pipeline and the SeuratObject data
structure, enabling researchers to rapidly incorporate net-
work analysis into their own workflows, going beyond cell
clustering and differential gene expression analysis towards
systems-level insights.

ACKNOWLEDGEMENTS
Funding for this work was provided by UCI and UCI MIND start-up funds,
National Institute on Aging grants 1RF1AG071683, U54 3U54AG054349-04S2,
3U19AG068054-02S, Adelson Medical Research Foundation funds, and an Amer-
ican Federation of Aging Research young investigator awarded to V.S. This work
utilized the infrastructure for high-performance and high-throughput computing, re-
search data storage and analysis, and scientific software tool integration built, op-
erated and updated by the Research Cyberinfrastructure Center (RCIC) at the Uni-
versity of California, Irvine (UCI). We thank Anoushka Joglekar for providing the
ScISOrSeq dataset.

AUTHOR CONTRIBUTIONS
S.M. and V.S. conceptualized this study. The manuscript was written by S.M. F.R.,
and E.M. with assistance and approval from all authors. S.M. developed the hd-
WGCNA R package. S.M. and F.R. designed the structure of the hdWGCNA R
package. S.M. collected, processed, and performed network analysis on pub-
licly available sequencing datasets. F.R. performed bioinformatics analysis of the
ScISOrSeq dataset. N.R. performed polygenic risk analysis of the integrated mi-
croglia snRNA-seq dataset.

DATA AVAILABILITY
All data used in this study are publicly available, specified in Table 1.

CODE AVAILABILITY
The hdWGCNA R package is available on GitHub at (https://github.com/
smorabit/hdWGCNA), with documentation and tutorials available at (https:
//smorabit.github.io/hdWGCNA). All code used for data analysis in this pa-
per is available on GitHub at (https://github.com/smorabit/hdWGCNA_
paper).

Bibliography
1. Peter Langfelder and Steve Horvath. WGCNA: an R package for weighted correlation net-

work analysis. BMC Bioinformatics, 9(1):559, 2008. doi: 10.1186/1471-2105-9-559.
2. Andy M Yip and Steve Horvath. Gene network interconnectedness and the general-

ized topological overlap measure. BMC Bioinformatics, 8(1):22–22, 2007. doi: 10.1186/
1471-2105-8-22.

3. Peter Langfelder, Bin Zhang, and Steve Horvath. Defining clusters from a hierarchical clus-
ter tree: the Dynamic Tree Cut package for R. Bioinformatics, 24(5):719–720, 2007. ISSN
1367-4803. doi: 10.1093/bioinformatics/btm563.

4. Jun Dong and Steve Horvath. Understanding network concepts in modules. BMC Systems
Biology, 1(1):24, 2007. doi: 10.1186/1752-0509-1-24.

5. Andrew Butler, Paul Hoffman, Peter Smibert, Efthymia Papalexi, and Rahul Satija. Integrat-
ing single-cell transcriptomic data across different conditions, technologies, and species.
Nature Biotechnology, 36(5):411–420, 2018. ISSN 1087-0156. doi: 10.1038/nbt.4096.

6. Tim Stuart, Andrew Butler, Paul Hoffman, Christoph Hafemeister, Efthymia Papalexi,
William M. Mauck, Yuhan Hao, Marlon Stoeckius, Peter Smibert, and Rahul Satija. Com-
prehensive Integration of Single-Cell Data. Cell, 177(7):1888–1902.e21, 2019. ISSN 0092-
8674. doi: 10.1016/j.cell.2019.05.031.

7. Yuhan Hao, Stephanie Hao, Erica Andersen-Nissen, William M. Mauck, Shiwei Zheng, An-
drew Butler, Maddie J. Lee, Aaron J. Wilk, Charlotte Darby, Michael Zager, Paul Hoffman,
Marlon Stoeckius, Efthymia Papalexi, Eleni P. Mimitou, Jaison Jain, Avi Srivastava, Tim
Stuart, Lamar M. Fleming, Bertrand Yeung, Angela J. Rogers, Juliana M. McElrath, Cather-
ine A. Blish, Raphael Gottardo, Peter Smibert, and Rahul Satija. Integrated analysis of
multimodal single-cell data. Cell, 184(13):3573–3587.e29, 2021. ISSN 0092-8674. doi:
10.1016/j.cell.2021.04.048.

8. Anoushka Joglekar, Andrey Prjibelski, Ahmed Mahfouz, Paul Collier, Susan Lin,
Anna Katharina Schlusche, Jordan Marrocco, Stephen R. Williams, Bettina Haase, Ash-
ley Hayes, Jennifer G. Chew, Neil I. Weisenfeld, Man Ying Wong, Alexander N. Stein, Si-
mon A. Hardwick, Toby Hunt, Qi Wang, Christoph Dieterich, Zachary Bent, Olivier Fedrigo,
Steven A. Sloan, Davide Risso, Erich D. Jarvis, Paul Flicek, Wenjie Luo, Geoffrey S. Pitt,
Adam Frankish, August B. Smit, M. Elizabeth Ross, and Hagen U. Tilgner. A spatially re-
solved brain region- and cell type-specific isoform atlas of the postnatal mouse brain. Nature
Communications, 12(1):463, 2021. doi: 10.1038/s41467-020-20343-5.

9. Dmitry Velmeshev, Lucas Schirmer, Diane Jung, Maximilian Haeussler, Yonatan Perez, Si-
mone Mayer, Aparna Bhaduri, Nitasha Goyal, David H. Rowitch, and Arnold R. Kriegstein.
Single-cell genomics identifies cell type–specific molecular changes in autism. Science,
364(6441):685–689, 2019. ISSN 0036-8075. doi: 10.1126/science.aav8130.

10. Hansruedi Mathys, Jose Davila-Velderrain, Zhuyu Peng, Fan Gao, Shahin Mohammadi,
Jennie Z. Young, Madhvi Menon, Liang He, Fatema Abdurrob, Xueqiao Jiang, Anthony J.
Martorell, Richard M. Ransohoff, Brian P. Hafler, David A. Bennett, Manolis Kellis, and Li-
Huei Tsai. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature, 570(7761):
332–337, 2019. ISSN 0028-0836. doi: 10.1038/s41586-019-1195-2.

11. Yingyue Zhou, Wilbur M. Song, Prabhakar S. Andhey, Amanda Swain, Tyler Levy, Kelly R.
Miller, Pietro L. Poliani, Manuela Cominelli, Shikha Grover, Susan Gilfillan, Marina Cella,
Tyler K. Ulland, Konstantin Zaitsev, Akinori Miyashita, Takeshi Ikeuchi, Makoto Sainouchi,
Akiyoshi Kakita, David A. Bennett, Julie A. Schneider, Michael R. Nichols, Sean A. Beau-
soleil, Jason D. Ulrich, David M. Holtzman, Maxim N. Artyomov, and Marco Colonna.
Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-
independent cellular responses in Alzheimer’s disease. Nature Medicine, 26(1):131–142,
2020. ISSN 1078-8956. doi: 10.1038/s41591-019-0695-9.

12. Samuel Morabito, Emily Miyoshi, Neethu Michael, Saba Shahin, Alessandra Cadete Mar-
tini, Elizabeth Head, Justine Silva, Kelsey Leavy, Mari Perez-Rosendahl, and Vivek Swarup.
Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s
disease. Nature Genetics, 53(8):1143–1155, 2021. ISSN 1061-4036. doi: 10.1038/
s41588-021-00894-z.

13. Ying-Wooi Wan, Rami Al-Ouran, Carl G. Mangleburg, Thanneer M. Perumal, Tom V. Lee,
Katherine Allison, Vivek Swarup, Cory C. Funk, Chris Gaiteri, Mariet Allen, Minghui Wang,
Sarah M. Neuner, Catherine C. Kaczorowski, Vivek M. Philip, Gareth R. Howell, Heidi
Martini-Stoica, Hui Zheng, Hongkang Mei, Xiaoyan Zhong, Jungwoo Wren Kim, Valina L.
Dawson, Ted M. Dawson, Ping-Chieh Pao, Li-Huei Tsai, Jean-Vianney Haure-Mirande,
Michelle E. Ehrlich, Paramita Chakrabarty, Yona Levites, Xue Wang, Eric B. Dammer,
Gyan Srivastava, Sumit Mukherjee, Solveig K. Sieberts, Larsson Omberg, Kristen D. Dang,
James A. Eddy, Phil Snyder, Yooree Chae, Sandeep Amberkar, Wenbin Wei, Winston Hide,
Christoph Preuss, Ayla Ergun, Phillip J. Ebert, David C. Airey, Sara Mostafavi, Lei Yu,
Hans-Ulrich Klein, Accelerating Medicines Partnership-Alzheimer’s Disease Consortium,
Gregory W. Carter, David A. Collier, Todd E. Golde, Allan I. Levey, David A. Bennett, Karol
Estrada, T. Matthew Townsend, Bin Zhang, Eric Schadt, Philip L. De Jager, Nathan D.
Price, Nilüfer Ertekin-Taner, Zhandong Liu, Joshua M. Shulman, Lara M. Mangravite, and
Benjamin A. Logsdon. Meta-Analysis of the Alzheimer’s Disease Human Brain Transcrip-
tome and Functional Dissection in Mouse Models. Cell Reports, 32(2):107908, 2020. ISSN
2211-1247. doi: 10.1016/j.celrep.2020.107908.

14. Yael Baran, Akhiad Bercovich, Arnau Sebe-Pedros, Yaniv Lubling, Amir Giladi, Elad Chom-
sky, Zohar Meir, Michael Hoichman, Aviezer Lifshitz, and Amos Tanay. MetaCell: analysis
of single-cell RNA-seq data using K-nn graph partitions. Genome Biology, 20(1):206, 2019.
ISSN 1474-7596. doi: 10.1186/s13059-019-1812-2.

15. Oren Ben-Kiki, Akhiad Bercovich, Aviezer Lifshitz, and Amos Tanay. Metacell-2: a divide-
and-conquer metacell algorithm for scalable scRNA-seq analysis. Genome Biology, 23(1):
100, 2022. ISSN 1474-7596. doi: 10.1186/s13059-022-02667-1.

16. Hannah A. Pliner, Jonathan S. Packer, José L. McFaline-Figueroa, Darren A. Cusanovich,
Riza M. Daza, Delasa Aghamirzaie, Sanjay Srivatsan, Xiaojie Qiu, Dana Jackson, Anna
Minkina, Andrew C. Adey, Frank J. Steemers, Jay Shendure, and Cole Trapnell. Cicero
Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data.
Molecular Cell, 71(5):858–871.e8, 2018. ISSN 1097-2765. doi: 10.1016/j.molcel.2018.06.
044.

17. Sitara Persad, Zi-Ning Choo, Christine Dien, Ignas Masilionis, Ronan Chaligné, Tal Nawy,

Morabito et al. | hdWGCNA bioRχiv | 11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.22.509094doi: bioRxiv preprint 

https://github.com/smorabit/hdWGCNA
https://github.com/smorabit/hdWGCNA
https://smorabit.github.io/hdWGCNA
https://smorabit.github.io/hdWGCNA
https://github.com/smorabit/hdWGCNA_paper
https://github.com/smorabit/hdWGCNA_paper
https://doi.org/10.1101/2022.09.22.509094
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chrysothemis C Brown, Itsik Pe’er, Manu Setty, and Dana Pe’er. SEACells: Inference of
transcriptional and epigenomic cellular states from single-cell genomics data. doi: 10.1101/
2022.04.02.486748.

18. Massimo Andreatta and Santiago J. Carmona. UCell: Robust and scalable single-cell gene
signature scoring. Computational and Structural Biotechnology Journal, 19:3796–3798,
2021. ISSN 2001-0370. doi: 10.1016/j.csbj.2021.06.043.

19. Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction. arXiv, 2018.

20. Peter Langfelder, Rui Luo, Michael C. Oldham, and Steve Horvath. Is My Network Module
Preserved and Reproducible? PLoS Computational Biology, 7(1):e1001057, 2011. ISSN
1553-734X. doi: 10.1371/journal.pcbi.1001057.

21. Lambda Moses and Lior Pachter. Museum of Spatial Transcriptomics. bioRxiv, page
2021.05.11.443152, 2021. doi: 10.1101/2021.05.11.443152.

22. Jeffrey R. Moffitt, Emma Lundberg, and Holger Heyn. The emerging landscape of spatial
profiling technologies. Nature Reviews Genetics, pages 1–19, 2022. ISSN 1471-0056. doi:
10.1038/s41576-022-00515-3.

23. Sepideh Kiani Shabestari, Samuel Morabito, Emma Pascal Danhash, Amanda McQuade,
Jessica Ramirez Sanchez, Emily Miyoshi, Jean Paul Chadarevian, Christel Claes, Mor-
gan Alexandra Coburn, Jonathan Hasselmann, Jorge Hidalgo, Kayla Nhi Tran, Alessan-
dra C. Martini, Winston Chang Rothermich, Jesse Pascual, Elizabeth Head, David A. Hume,
Clare Pridans, Hayk Davtyan, Vivek Swarup, and Mathew Blurton-Jones. Absence of mi-
croglia promotes diverse pathologies and early lethality in Alzheimer’s disease mice. Cell
Reports, 39(11):110961, 2022. ISSN 2211-1247. doi: 10.1016/j.celrep.2022.110961.

24. Cole Trapnell, Davide Cacchiarelli, Jonna Grimsby, Prapti Pokharel, Shuqiang Li, Michael
Morse, Niall J Lennon, Kenneth J Livak, Tarjei S Mikkelsen, and John L Rinn. The dynamics
and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.
Nature Biotechnology, 32(4):381–386, 2014. ISSN 1087-0156. doi: 10.1038/nbt.2859.

25. Fairlie Reese and Ali Mortazavi. Swan: a library for the analysis and visualization of long-
read transcriptomes. Bioinformatics, 37(9):btaa836–, 2020. ISSN 1367-4803. doi: 10.1093/
bioinformatics/btaa836.

26. Charlotte J. Wright, Christopher W. J. Smith, and Chris D. Jiggins. Alternative splicing as a
source of phenotypic diversity. Nature Reviews Genetics, pages 1–14, 2022. ISSN 1471-
0056. doi: 10.1038/s41576-022-00514-4.

27. Shanika L. Amarasinghe, Shian Su, Xueyi Dong, Luke Zappia, Matthew E. Ritchie, and
Quentin Gouil. Opportunities and challenges in long-read sequencing data analysis.
Genome Biology, 21(1):30, 2020. ISSN 1474-7596. doi: 10.1186/s13059-020-1935-5.

28. Elisabeth Rebboah, Fairlie Reese, Katherine Williams, Gabriela Balderrama-Gutierrez,
Cassandra McGill, Diane Trout, Isaryhia Rodriguez, Heidi Liang, Barbara J. Wold, and Ali
Mortazavi. Mapping and modeling the genomic basis of differential RNA isoform expres-
sion at single-cell resolution with LR-Split-seq. Genome Biology, 22(1):286, 2021. doi:
10.1186/s13059-021-02505-w.

29. Carter R. Palmer, Christine S. Liu, William J. Romanow, Ming-Hsiang Lee, and Jerold Chun.
Altered cell and RNA isoform diversity in aging Down syndrome brains. Proceedings of
the National Academy of Sciences, 118(47):e2114326118, 2021. ISSN 0027-8424. doi:
10.1073/pnas.2114326118.

30. Simon A. Hardwick, Wen Hu, Anoushka Joglekar, Li Fan, Paul G. Collier, Careen Foord,
Jennifer Balacco, Samantha Lanjewar, Maureen McGuirk Sampson, Frank Koopmans, An-
drey D. Prjibelski, Alla Mikheenko, Natan Belchikov, Julien Jarroux, Anne Bergstrom Lu-
cas, Miklós Palkovits, Wenjie Luo, Teresa A. Milner, Lishomwa C. Ndhlovu, August B.
Smit, John Q. Trojanowski, Virginia M. Y. Lee, Olivier Fedrigo, Steven A. Sloan, Dóra
Tombácz, M. Elizabeth Ross, Erich Jarvis, Zsolt Boldogkői, Li Gan, and Hagen U.
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Methods

Bootstrapped aggregation of single cell transcriptomes to form metacells. Single-cell gene expression datasets typi-
cally contain many more zero valued entries than non-zero valued entries, meaning that these datasets are sparse. We formally
define the sparsity of a gene expression matrix in equation 1. Given an un-normalized counts matrix X with Ng genes and Nc

cells, sparsity is the sum of all zero valued elements.

sparsity =

∑Ng

i=1
∑Nc

j=1

{
1 if Xi,j = 0
0 else

Ng×Nc
(1)

Complementing sparsity, the density of a single gene expression matrix is the sum of all non-zero valued elements, such
that density = 1−sparsity. A matrix is considered sparse if sparsity > 0.5. Conventional single-cell gene expression assays
yield sparse gene expression matrices. In general, correlations of sparse vectors may lead to downstream conclusions that are not
robust or reproducible. Thus, as part of the hdWGCNA workflow, we propose a bootstrapped aggregation (bagging) algorithm
to construct a gene expression matrix M with considerably reduced sparsity prior to performing co-expression network analysis.
Zero valued entries in a gene expression matrix have both biological and technical origins (64), and it is important to prioritize
preserving relevant biological signals while reducing technical noise. For example, a biological zero may be attributed to a
gene that is only expressed in a given cell population, whereas a technical zero may arise from low sequencing depth.

We define the set of unique cell barcodes C and the set of unique genes G such that ∥C∥= Nc and ∥G∥= Ng . Transcrip-
tomically similar cells are identified in a dimensionally-reduced representation D of the gene expression matrix X using the
k-nearest neighbors (KNN) algorithm (65), yielding Nc sets of k cells. Inherently, there is overlap between these Nc sets of k
neighboring cells, and we include a parameter m to control for the maximum allowable overlap. Cells are uniformly randomly
sampled from C, and gene expression signatures from X are aggregated (sum or average) with their k nearest neighbors. A cell
is skipped if its neighbors have too much overlap with the set of neighbors from previously selected cells, in order to reduce
redundancy in the downstream metacell expression matrix. The cell sampling loop converges when there are no more cells
that satisfy the m, or when the number of target metacells t has been reached, yielding a metacell gene expression matrix M .
Sparsity of the input and output matrices X and M are computed to check that sparsity is reduced throughout this process. This
metacell bagging algorithm is implemented as part of the hdWGCNA R package in the ConstructMetacells function,
and the pseudocode for this algorithm is defined in Algorithm 1. We denote a vector containing the elements of the i-th row of
a matrix as Mi∗ and a vector containing the elements of the i-th column as M∗i.

Algorithm 1 ConstructMetacells

Require: X such that dim(X) = Ng,Nc ▷ gene expression matrix of Ng genes and Nc cells
Require: D such that dim(D) = c,d ▷ dimensional reduction of X , with Nc cells and d dimensions
Require: C ▷ the set of unique cell barcodes
Require: k ≥ 2
Require: m≥ 0
Require: t≥ 1

K← KNN(D,k) ▷ K is a matrix of Nc rows and k columns with the k nearest neighbors of each cell
S← [∅] ▷ list containing barcodes of cells selected for aggregation, initialized as empty
i← 0
while i < Nc and ∥S∥< t do

i← i+1
c← c ∈R C ▷ c is randomly sampled from C
No←max(∥Kc∗∪Kj∗∥∀j ∈ S) ▷ the maximum number of overlapping neighbors between c and barcodes in S
if No < m then

S← [S,c]
end if
C← C \S

end while
J ← [Ks∗∀s ∈ S] ▷ subset of K with the selected cells S

M ← [
∑S

i=S1
(X∗s where s = Ji∗)]. ▷ final metacell expression matrix
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Aggregation of neighboring spatial transcriptomic spots to form metaspots. Sequencing-based ST approaches such
as the 10× Genomics Visium platform also yield sparse transcriptomic profiles, thus introducing the same potential pitfalls
as single-cell data for co-expression network analysis. To alleviate these issues, we sought to develop a data aggregation
approach similar to our metacell algorithm. This approach leverages spatial coordinates rather than the dimensionality-reduced
representation (Fig. S5). For each ST spot, we obtain a list of physically neighboring spots. We then devise a grid of "principal
spots", which are evenly spaced spots throughout the input tissue which serve as anchor points for aggregating neighboring
spots. Each principal spot and its neighbors are aggregated into one metaspot, with at most seven spots merging into one
metaspot and at most two overlapping spots between metaspots. We implemented this procedure as part of the hdWGCNA
R package in the MetaspotsByGroups function. Similar to the MetacellsByGroups function, the user may specify
groups within the Seurat object to perform the aggregation, such that metacells would only be grouped within the same tissue
slice, anatomical region, or other annotation. For all downstream analysis with hdWGCNA, the metaspot expression dataset
can be used in place of the metacell expression matrix.

Computing co-expression networks. Following metacell or metaspot construction, hdWGCNA constructs co-expression
networks and identifies gene modules, building off of the WGCNA workflow (1, 66–69). The gene-gene adjacency matrix A
is computed by taking the pairwise correlation of genes in G in the metacell expression matrix M , or in a subset of M for a
specified cell population. Consider the gene expression vectors xi = Mi∗ and xj = Mj∗ for an arbitrary pair of genes (i, j)∈G,
we compute the signed correlation as:

ai,j = 1+ cor(xi,xj)
2 (2)

Note that ai,j is a linear transformation that retains the sign of the correlation while satisfying 0≤ ai,j ≤ 1. We define A as a
symmetric adjacency matrix of size Ng×Ng containing the signed correlations ai,j for all pairs (i, j) ∈G as in equation 2. In
order to emphasize strong correlations, we raise the elements of A to a power β, and we refer to this as soft power thresholding.

αi,j = (ai,j)β

α̃i,j = αi,j× sign(cor(xi,xj))
(3)

Now we have the gene-gene correlation raised to a power β, and an alternative metric α̃i,j which also retains the sign of the
correlation between these genes. The final co-expression network is then computed as a signed topological overlap matrix
(TOM). The TOM describes shared neighbors between the a pair of genes (i, j). We define the signed TOM as

TOMsigned
i,j =

|αi,j +
∑

u ̸=i,j α̃i,uα̃u,j |
min(ki,kj)+1−|αi,j |

(4)

where ki and kj represent the connectivity between genes i and j

ki =
∑
u ̸=i

|ãu,i| (5)

In the signed TOM, negative correlations serve to negatively reinforce the network connection, which is not the case in the
unsigned TOM.

TOMunsigned
i,j =

|αi,j |+
∑

u ̸=i,j |α̃i,uα̃u,j |
min(ki,kj)+1−|αi,j |

(6)

Genes are then grouped into modules based on the TOM network representation using the Dynamic Tree Cut algorithm (3),
such that co-expression modules consist of genes with high topological overlap. Dynamic Tree Cut hierarchically clusters
genes based on their dissimilarity in the TOM, denoted as DissTOM = 1−TOM, thereby yielding a mapping between module
assignments and gene names. The overall process transforming a metacell expression matrix M to a signed TOM co-expression
network is implemented as part of the hdWGCNA R package in the ConstructNetwork function. Here we described
the recommended workflow, using a signed adjacency matrix and a signed TOM, but ConstructNetwork can optionally
construct unsigned or signed hybrid networks as well.

Computing module eigengenes. Module eigengenes (MEs) are a convenient metric to summarize the gene expression of
a given co-expression module. While the co-expression network was computed using the metacell expression matrix M , we
compute MEs in the single-cell expression matrix X , thus yielding information about the activity of each module in each cell.
The expression matrix for the I-th module consisting of genes G(I) ⊂ G is X(I) = XG(I),∗. The ME for module I is then
computed by performing singular value decomposition (SVD), such that X(I) = UDV T . Prior to running SVD, X(I) must be
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scaled and centered, and we accomplish this using the Seurat function ScaleData. Importantly, ScaleData enables us to
optionally perform regression to diminish the effects of selected technical covariates prior to computing MEs. The first column
of V , containing the right-singular vectors V (I) = (v(I)

1 ,v
(I)
2 ,v

(I)
3 , ...), is the ME of module I .

ME(I) = v
(I)
1 (7)

While SVD or other dimensionality reductions on a single-cell gene expression matrix contains critical biological infor-
mation, technical artifacts are also present in these representations. There are many computational methods aiming to reduce
technical effects in a reduced dimensional space, and these methods are often referred to as "batch-correction" or "integration"
approaches (70). In particular, Harmony (71) is an algorithm well suited for correcting batch effects that may be present in a
dimensionality-reduced single-cell expression dataset (70), and here we propose applying Harmony to MEs to maximize the
biological information content of each ME. We implemented the ME computation algorithm, as defined in Algorithm 2, as part
of the hdWGCNA R package in the function ModuleEigengenes.

Algorithm 2 ModuleEigengenes

Require: X such that dim(X) = Ng,Nc ▷ normalized gene expression matrix of Ng genes and Nc cells
Require: modules ▷ the table containing mappings between genes and modules
Require: mods ▷ list of modules
Require: covariates ▷ covariates to regress
Require: batches ▷ batch identity to correct with Harmony, or null to ignore

ME← [∅]
for I in mods do

modules(I)← subset(modules, module == I)
G(I)← modules(I)[,gene]
X(I)←XG(I),∗
X̃(I)← ScaleData(X(I), covariates)
V (I)← SVD(X̃(I))
ME(I)← V

(I)
1

if batches ̸= NULL then
Ṽ (I)← Harmony(V (I), batches)
ME(I)← Ṽ

(I)
1

end if
ME← [ ME, ME(I)]

end for

Projecting co-expression modules in unseen data. In a typical hdWGCNA workflow, we perform metacell bagging, co-
expression network analysis, module identification, and ME computation using the same single-cell gene expression dataset,
starting from the expression matrix X . Given the module-gene assignment table derived from a reference dataset X , we can
run the ModuleEigengenes algorithm on a query dataset Y where the genes in Y must be contained in the set of genes
in X such that GY ⊆ GX . We implemented this process in the hdWGCNA R package as the ProjectModules function.
Importantly, we designed ProjectModules to be agnostic towards the data modality or species used in the reference and
query datasets, thereby allowing for a host of comparative analyses. ProjectModules can facilitate cross-species analysis
leveraging a table that maps gene symbols between two genomes. Modules can be projected into epigenomic data modalities
such as single-cell assay for transposase accessible chromatin with sequencing (scATAC-seq) provided a measure of gene
expression estimated from chromatin accessibility, such as Signac (52) gene activity or ArchR (72) gene scores. This approach
can also be used to project modules from bulk expression datasets into single-cell or spatial transcriptomics datasets.

Reprocessing published datasets. Table 1 details the different datasets used throughout this manuscript. We used several
published datasets generated by our own group (12, 23, 49), and sequencing data was not re-downloaded for these studies.
For all human snRNA-seq datasets, we applied a uniform processing pipeline to process each dataset starting from the raw
sequencing data and resulting in an anndata object (73) containing UMI counts, normalized gene expression, cluster identities,
and cell type annotations. Parameters used throughout this processing pipeline vary slightly between different datasets, and
all parameters are noted in the data processing scripts in our github repository. For each biological replicate, we used the kb
count function from kallisto | bustools (74) to psuedoalign raw sequencing reads to the reference transcriptome and quantify
gene expression attributed to each cell barcode. The human reference transcriptome (GRch38) was obtained from the 10× Ge-
nomics website (version 2020-A, July 2020), and was re-formatted for use with kallisto | bustools using the kb ref function.
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Study / Dataset Data source Species Tissue Technology Nreplicates Nbarcodes
Mathys et al. 2019 (10) syn18485175 human PFC 10× V2 snRNA-seq 48 48,905

Velmeshev et al. 2019 (9) PRJNA434002 human PFC 10× V2 snRNA-seq 54 121,451
Morabito et al. 2020 (49) authors human PFC 10× V2 snRNA-seq 5 35,771

Nagy et al. 2020 (78) GSE144136 human PFC 10× V2 snRNA-seq 34 83,849
Zhou et al. 2020 (11) syn21670836 human PFC 10× V2 snRNA-seq 32 82,366
Zhou et al. 2020 (11) syn21670836 mouse PFC 10× V2 snRNA-seq 6 38,034

Gerrits et al. 2021 (51) GSE148822 human OC 10× V2 snRNA-seq 18 203,932
Gerrits et al. 2021 (51) GSE148822 human OTC 10× V2 snRNA-seq 18 220,176
Joglekar et al. 2021 (8) authors mouse HC ScISOrSeq 1 6,832
Leng et al. 2021 (50) GSE147528 human EC 10× V2 snRNA-seq 10 44,465
Leng et al. 2021 (50) GSE147528 human SFG 10× V2 snRNA-seq 10 57,439

Morabito et al. 2021 (12) authors human PFC 10× V3 snRNA-seq 18 57,856
Morabito et al. 2021 (12) authors human PFC 10× snATAC-seq 20 132,623
Shabestari et al. 2022 (23) authors mouse brain ParseBio snRNA-seq 48 51,327
10× Genomics brain ST SeuratData mouse brain 10× Genomics Visium 2 6,049

ParseBio PBMCs custom human PBMCs ParseBio scRNA-seq 24 965,363

Table 1. Sequencing datasets used throughout this manuscript. Data was either obtained from the Sequence Read Archive (SRA), Synapse, a custom website (Parse
Biosciences), the SeuratData R package, or directly from the authors, as denoted in the Data source column. Tissue abbreviations are the following; PFC: prefrontal cortex;
EC: entorhinal cortex; SFG: superior frontal gyrus; HC: hippocampus; PBMCs: peripheral blood mononuclear cells.

For each of the UMI counts matrices, we used the remove-background function from cellbender (75) to simultaneously
identify which barcodes corresponded to cells and to remove counts attributed to ambient RNA. We then used scrublet (76) to
compute "doublet scores", the likelihood of each barcode mapping to more than one cell. Counts matrices from each biological
replicate in a given dataset are then merged into a single anndata object, and any relevant sample level meta-data (age, sex,
disease status) was stored in the adata.obs table. We performed a percentile filtering of cells that were outliers from each
dataset based on the number of UMI per cell the percentage of UMI attributed to mitochondrial genes per cell, and the doublet
score. Filtering based on these criteria was performed in each sample, as well as dataset-wide. After filtering, downstream
data processing steps were carried out with SCANPY (73). The UMI counts matrix was normalized with ln(CPM) using
the functions sc.pp.normalize_total and sc.pp.log1p. Highly variable genes were identified using the function
sc.pp.highly_variable_genes, and these genes are used as the features for downstream analysis steps such as prin-
cipal component analysis (PCA). The normalized expression matrix was then scaled to unit variance and centered at zero using
the function sc.pp.scale. PCA was performed on the scaled expression matrix using the function sc.tl.pca. Harmony
(71) was used to correct the PCA matrix for batch effects using the function sc.external.pp.harmony_integrate.
The harmonized PCA matrix was then used to construct a cell neighborhood graph using the function sc.pp.neighbors.
The cell neighborhood graph was then used to compute a two-dimensional representation of the data with uniform manifold
approximation and projection (19) using the function sc.tl.umap, and to group cells into clusters with Leiden clustering
(77) using the function sc.tl.leiden. We inspected the gene expression signatures in each Leiden cluster for a panel of
canonical cell-type marker genes in order to assign a cell-type label to each cluster, and to identify additional doublet clusters
that may have escaped the previous filtering steps. The distribution of quality control metrics was inspected in each cluster. We
filtered out cells belonging to clusters that displayed conflicting expression of cell-type marker genes, or were outliers in their
quality control metrics. After filtering these low-quality clusters, we ran UMAP and Leiden clustering again, resulting in the
final processed dataset.

Iterative network analysis of major cell types in the human cortex. We performed an iterative co-expression network
analysis of the major cell types (ASC, EX, INH, MG, ODC, OPC) in the human PFC snRNA-seq dataset from Zhou et al. (11),
only including samples from control brains (36,671 cells and 36,601 genes). We retained genes that were expressed in at least
5% of cells for downstream analysis. Metacells were computed separately for each major cell type and each sample using the
hdWGCNA function MetacellsByGroups, aggregating 25 cells per metacell. Further, we ran MetacellsByGroups
while varying the K parameter in order to asses the resulting metacell expression matrix sparsity. For each cell type, we
applied the following hdWGCNA commands with default arguments to perform network analysis: TestSoftPowers,
ConstructNetwork, ModuleEigengenes, ModuleConnectivity, and RunModuleUMAP. We performed module
preservation analysis (20) of the ODC co-expression modules in an external snRNA-seq dataset of the human PFC (12). Mod-
ules were projected from the reference to query dataset using the hdWGCNA function ProjectModules, and the module
preservation test was performed using ModulePreservation with 100 permutations.
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Comparison with alternative metacell approaches. For the purpose of co-expression network analysis, we compared our
metacell aggregation approach (Algorithm 1) with two alternative approaches, namely Metacell2 (15) and SEACells (17). We
ran the three metacell approaches using the recommended settings on the same dataset, and then ran hdWGCNA on each of
the resulting metacell expression matrices. We used a scRNA-seq of 6,800 CD34+ hematopoietic stem and progenitor stem
cells included with the SEACells package, and we used the cluster annotations from the original study. Notably, SEACells
and Metacell2 do not account for cell labels in their aggregation procedures, which may result in a number of metacells
containing transcriptomes from differently labeled cells. For the hdWGCNA metacell algorithm, we aggregated 50 cells per
metacell. For the three metacell expression matrices derived from the different algorithms, we performed co-expression net-
work analysis with the standard hdWGCNA pipeline by sequentially running the following functions with default parameters:
TestSoftPowers, ConstructNetwork, ModuleEigengenes, ModuleConnectivity, and RunModuleUMAP.
With the same cluster settings, Dynamic Tree Cut recovered a different number of co-expression modules for the three meth-
ods (hdWGCNA: 16 modules; MC2: 13 modules; SEACells: 20 modules). We performed pairwise comparisons between
the gene modules detected with each metacell approach using Fisher’s exact test to test module overlaps. Additionally, we
performed rank-rank hypergeometric overlap (79) (RRHO) tests using the RRHO function from the R package RRHO (version
1.13.0) to compare the kME ranking between modules across methods. To compare MEs and Seurat module scores, we ran the
AddModuleScore function, and computed Pearson correlations between each ME and each module score.

Application of hdWGCNA to a one million cell scRNA-seq dataset. We obtained a publicly available scRNA-seq dataset
from Parse Biosciences of 1M peripheral blood mononuclear cells (PBMCs) from 12 healthy donors and 12 Type-1 diabetic
donors generated using the Evercode Whole Transcriptome Mega protocol. This analysis was performed on a compute cluster
with 200 GB of memory and eight CPU cores. The UMI counts matrix and sample meta data was downloaded from Parse
Biosciences’ website. We processed the counts matrix using SCANPY using a similar pipeline as described in the Reprocessing
published dataset section. For quality control, we excluded cells with greater than 25% mitochondrial reads, greater than 5,000
genes, and greater than 25,000 counts. After dimensionality reduction with PCA, Harmony (71) batch correction, and Leiden
clustering (77) (resolution=1), we annotated cell populations using PBMC marker genes obtained from Azimuth (7). We
excluded clusters with conflicting cell-type markers as potential doublet populations, retaining a total of 965,363 cells and
26,862 genes for downstream analysis. The major cell compartments recovered in this analysis were similar to those reported
by Parse Biosciences in their analysis, including as T-cells, B-cells, monocytes, dendritic cells, basophils, and plasmablasts.
Following the SCANPY data processing, we wrote the individual components (counts matrix, cell meta-data, gene meta-data,
dimensionality reductions, etc.) to disk so they could be loaded into R and assembled into a Seurat object.

We performed co-expression network analysis iteratively for the plasmablast, T-cell, B-cell, monocyte, and dendritic cell
compartments using an hdWGCNA pipeline for each group (Fig. S4). Metacells were constructed separately for each sample
and each cell cluster with the hdWGCNA function MetacellsByGroups, aggregating 50 cells per metacell. The metacell
aggregation step had a runtime of 85 minutes and 59 seconds. For each cell population, we first subset the Seurat object for the
cell population of interest and then performed the standard hdWGCNA pipeline by sequentially running the following functions
with default parameters: TestSoftPowers, ConstructNetwork, ModuleEigengenes, ModuleConnectivity,
and RunModuleUMAP. We note that for the largest cell population (T-cells, 555,417 cells), the runtime for the network
construction step was 186 seconds.

Spatial co-expression network analysis in the mouse brain. We collected the publicly available 10× Genomics Vi-
sium mouse brain dataset using the SeuratData R package. This dataset consists of an anterior and a posterior slice from a
sagittal brain section, which we merged into a single Seurat object comprising 6,049 ST spots and 31,053 genes. We pro-
cessed this dataset using the standard Seurat pipeline by sequentially running the following commands: NormalizeData,
FindVariableFeatures, ScaleData, RunPCA, FindNeighbors, FindClusters, and RunUMAP. The top thirty
PCs were used for Louvain clustering (80) and UMAP. While ST spots were clustered based on transcriptomic information
alone, we were able to annotate them based on anatomical features.

Neighboring ST spots were aggregated into metaspots in the anterior and posterior slices using the hdWGCNA func-
tion MetaspotsByGroups. We retained genes expressed in 5% of spots for downstream analysis, totaling 12,355
genes. We tested for the optimal soft-power threshold β based on the the fit to a scale-free topology using the hd-
WGCNA function TestSoftPowers. The co-expression network was constructed using all ST spots spanning both the
anterior and posterior slices using the hdWGCNA function ConstructNetwork with the following parameters: net-
workType="signed", TOMType="signed", soft_power=5, deepSplit=4, detectCutHeight=0.995, minModuleSize=50, merge-
CutHeight=0.2. Module eigengenes and eigengene-based connectivities were computed using the ModuleEigengenes and
ModuleConnectivity functions respectively. This approach identified 12 spatial co-expression modules, and we visual-
ized the spatial distributions of these modules by plotting their MEs directly onto the biological coordinates for each spot. The
co-expression network was projected into two dimensions using UMAP with the hdWGCNA function RunModuleUMAP, and
we used the top five hub genes (ranked by kMEs) as the input features for UMAP. We used the R package enrichR (81) (ver-
sion 3.0) to perform enrichment analysis on the top 100 genes in each module ranked by kME using the following databases:
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GO_Biological_Process_2021, GO_Cellular_Component_2021, GO_Molecular_Function_2021, WikiPathway_2021_Mouse,
and KEGG_2021_Mouse. We assessed the overlap between genes from these spatial co-expression modules and differentially
expressed genes in each cluster from a recent snRNA-seq study of the whole mouse brain using Fisher’s exact test implemented
in the R package GeneOverlap (version 1.26.0). Finally, we performed a separate network analysis on a subset of the ST dataset
only containing the cortical layers 2-6, and we followed an identical hdWGCNA analysis pipeline to the full ST dataset for the
cortical analysis.

Isoform co-expression network analysis in the mouse hippocampus. We performed isoform co-expression network
analysis in radial glia lineage cells (radial glia, astrocytes, ependymal cells, and neural intermediate progenitor cells) from
mouse hippocampus ScISOrSeq dataset from Joglekar et al. (8) using the hdWGCNA R package. The gene-level counts
matrix for this dataset was obtained from GEO (GSE15845), and the isoform-level counts matrix was obtained directly from
the authors of the original study. We formatted this dataset as a Seurat object with an isoform-level expression assay and
a gene-level expression assay. The standard Seurat processing pipeline was used on the gene-level expression assay, where
we sequentially ran the functions NormalizeData, FindVariableFeatures, ScaleData, and RunPCA with default
parameters. The dataset was projected into two dimensions by running UMAP on the PCA matrix with 30 components using
the RunUMAP function. For all downstream purposes, the cell-type annotations from the original study were used.

Radial glia cells were selected for network analysis, and isoforms expressed in fewer than 1% of these cells were ex-
cluded, yielding a set of 2,190 cells and 10,375 isoforms from 4,770 genes. We constructed metacells separately for each
cell type on the isoform-level expression assay using the hdWGCNA function MetacellsByGroups with k = 30. We per-
formed a parameter sweep for the soft-power threshold β using the function TestSoftPowers. The isoform co-expression
network was constructed using the ConstructNetwork function with the following parameters: networkType="signed",
TOMType="signed", soft_power=5, deepSplit=4, detectCutHeight=0.995, minModuleSize=50, mergeCutHeight=0.5. This
approach identified 11 isoform co-expression modules. Isoform-level module eigenisoforms were computed using the
ModuleEigengenes function, and eigenisoform-based connectivity was computed using the ModuleConnectivity
function with default parameters. We computed a semi-supervised UMAP projection of the co-expression network using the
hdWGCNA function RunModuleUMAP, with the module labels and the top six hub isoforms (by kMEiso) per module as the
input features. We used the enrichR to identify enriched pathways in each module ranked by using the following databases:
GO_Biological_Process_2021, GO_Cellular_Component_2021, GO_Molecular_Function_2021, WikiPathway_2021_Mouse,
and KEGG_2021_Mouse.

To assess isoform co-expression network dynamics throughout the cellular trajectories within the radial glia lineage, we
performed pseudotime analysis using Monocle 3 (33) (version 1.0.0). We computed a UMAP of just radial glia lineage cells
using the Monocle 3 function run_umap. A trajectory graph was built on this UMAP representation using the function
learn_graph, and pseudotime was calculated with the function order_cells using the radial glia cells as the starting
point. We split the pseudotime trajectory into three lineages based on the distinct cell fates (astrocyte, neuronal, and ependymal).
We grouped cells into 50 evenly-sized bins throughout each trajectory, and we applied loess regression to the average module
eigenisoform of each module in these bins to inspect the dynamics of each module throughout development. We wrote a custom
script to generate a GTF of isoform models output from the ScISOrSeq pipeline. To visualize expressed isoforms, we plotted
isoforms from this GTF on the UCSC genome browser as well as in Swan (25).

Co-expression analysis of inhibitory neurons in autism spectrum disorder (ASD). We selected inhibitory neurons
from the Velmeshev et al. (9) human ASD snRNA-seq dataset for co-expression network analysis. Of the 121,451 cells in
this dataset, 20,249 were labeled as inhibitory neurons based on marker gene expression profiles. We retained 11,194 genes
which were expressed in at least 10% of cells from any cluster, and had non-zero variance in the inhibitory neuron population.
Metacell transcriptomic profiles were constructed separately for each of the 54 samples and each cell type using the hdWGCNA
function MetacellsByGroups, aggregating 50 cells into one metacell. We selected a soft-power threshold β = 9 based on
the parameter sweep performed with the TestSoftPowers function. The co-expression network was computed with the
ConstructNetwork function with the following parameters: networkType="signed", TOMType="signed", soft_power=9,
deepSplit=4, detectCutHeight=0.995, minModuleSize=50, mergeCutHeight=0.2. Module eigengenes were computed using
the ModuleEigengenes function, and we applied Harmony (71) to correct MEs based on sequencing batch. Eigengene-
based connectivity for each gene was computed using ModuleConnectivity. The co-expression network was embedded
in two dimensions using UMAP with the RunModuleUMAP function with the top five genes (ranked by kMEs) per mod-
ule as the input features. Distributions of MEs were compared between ASD and control samples for each inhibitory neu-
ron subpopulation using a two-sided Wilcoxon rank sum test with the R function wilcox.test. We used the enrichR
(81) to perform enrichment analysis on the top 100 genes in each module ranked by kME using the following databases:
GO_Biological_Process_2021, GO_Cellular_Component_2021, GO_Molecular_Function_2021, WikiPathway_2021_Human,
and KEGG_2021_Human. Furthermore, we computed the overlap between co-expression modules and ASD-associated genes
from the SFARI Gene database using the R package GeneOverlap , which calculates the overlap between sets of genes using
Fisher’s exact test.
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Consensus co-expression network analysis of microglia in Alzheimer’s disease (AD). We performed consensus co-
expression network analysis of microglia in Alzheimer’s disease using three published snRNA-seq datasets (10–12). The indi-
vidually processed datasets were merged into a single Seurat object comprising 189,127 nuclei, and the datasets were integrated
into a common dimensionally-reduced space using PCA and Harmony (71). We retained all nuclei labeled microglia for net-
work analysis based on expression of canonical marker genes such as CSF1R (9,904 nuclei), and genes expressed in at least 5%
of microglia from any of the three studies were retained (7,900 genes). Metacells were constructed in groups of cells based on
AD diagnosis status and study of origin, aggregating 25 cells per metacell. Within hdWGCNA, we used the SetMultiExpr
function to create a list of expression matrices containing the selected genes and metacells for the three studies. We performed
a separate parameter sweep for the three expression matrices using the hdWGCNA function TestSoftPowerConsensus,
ensuring that we used an appropriate β value for each dataset (Mathys et al.: β = 6, Zhou et al.: β = 8, Morabito & Miyoshi
et al: β = 6). The consensus co-expression network was contructed using the hdWGCNA function ConstructNetwork
using the consensus=TRUE option. Individual TOMs were computed for each dataset, and they were scaled based on the
80th percentile in order to alleviate different statistical properties specific to each dataset rather than the underlying biology. A
consensus TOM was computed by taking the element-wise minimum of the individual TOMs from each dataset. Therefore,
large topological overlap values between two genes, which indicate a strong co-expression relationship, are supported across all
three datasets in the consensus TOM. We performed hierarchical clustering on the consensus TOM, and we used the Dynamic
Tree Cut algorithm (3) was used to identify consensus co-expression modules based on the hierarchy. Module eigengenes were
computed using the ModuleEigengenes function, and we applied Harmony (71) to correct MEs based on the dataset of
origin. Eigengene-based connectivity for each gene was computed using ModuleConnectivity. We visualized the net-
work using UMAP with the top ten hub genes (ranked by kMEs) per module as the input features, annotating the hub genes and
known disease-associated microglia genes (43). We used the enrichR (81) to perform enrichment analysis on the top 100 genes
in each module ranked by kME using the following databases: GO_Biological_Process_2021, GO_Cellular_Component_2021,
GO_Molecular_Function_2021, WikiPathway_2021_Human, and KEGG_2021_Human.

We sought to model the transcriptional dynamics governing the shift between homeostatic and activated microglia in AD,
therefore we performed pseudotime analysis using Monocle 3 (33) to build a continuous trajectory of microglia cell states. A
trajectory graph was built on the microglia UMAP using the function learn_graph, and pseudotime was calculated with
the function order_cells. We oriented the start of pseudotime based on the expression of homeostatic microglia marker
genes, such as P2RY12, CX3CR1, and CSF1R. We grouped cells into 50 evenly-sized bins throughout each trajectory, and we
applied loess regression to the average module eigengene of each module in these bins to inspect the dynamics of each module
throughout the microglia trajectory.

To link the integrated microglia snRNA-seq dataset with polygenic risk of disease for individual cells, we used the scDRS
python package (version 1.0.0) (48). This pipeline takes 1) a set of putative disease genes derived from GWAS summary
statistics and 2) a scRNA-seq dataset as inputs, and outputs disease enrichment statistics for a given disease (raw and normalized
disease scores, cell-level scDRS p-value, and Z-scores converted from the p-values). GWAS summary statistics of 74 diseases
and complex traits supplied by scDRS were utilized as gene sets, among which a gene set by Jansen et al. (39) provided the
set of genes associated with AD. We then visualized the AD scDRS Z-scores in the integrated AD microglia trajectory, and we
correlated the scDRS score with the trajectory using a Pearson correlation.

We performed module preservation (20) analysis in a variety of external datasets from human and mouse (11, 12, 23, 49–
51) to test for the reproducibility of the consensus AD microglia modules in the microglia population from each dataset. We
used the hdWGCNA function ProjectModules to compute module eigengenes for the consensus AD microglia modules
for each query dataset. The module preservation test was performed using the hdWGCNA function ModulePreservation
with 100 permutations, and we reported the preservation Z-summary statistics in a heatmap. For the Morabito & Miyoshi et al.
snATAC-seq dataset, we used the gene activity (52) representation as a gene-level summary of chromatin accessibility in order
to assess the module preservation at the epigenomic level.

Analysis of bulk RNA-seq co-expression modules in single-cell data. We projected gene co-expression modules from
two bulk RNA-seq studies of AD (13, 49) into a published snRNA-seq study of AD to assess their expression patterns within
various cell populations. While both of these studies used the samples from the same bulk RNA-seq cohort, the set of modules
from Morabito et al. 2020 (49) was based on a consensus network analysis across six brain regions while the other set of mod-
ules from the AMP-AD study (13) were constructed separately for seven different brain regions. Module eigengenes were com-
puted for each of these bulk RNA-seq modules in the snRNA-seq dataset using the hdWGCNA function ProjectModules,
using Harmony to correct MEs based on sequencing batch. We visualized the MEs of the projected modules in the snRNA-seq
dataset using the Seurat function DotPlot.
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Fig. S1. Schematic of the hdWGCNA workflow. 1. Prior to analysis with the hdWGCNA R package, the input single-cell or spatial dataset must be fully processed. This
includes quality control, data normalization, feature selection, dimensionality reduction, batch correction (if needed), and clustering. These steps can be done using popular
packages such as Seurat (5–7) or SCANPY (73). Regardless of the pipeline used, the dataset must be formatted as a Seurat object prior to running hdWGCNA. 2. The
functions MetacellsByGroups and MetaspotsByGroups are used to aggregate transcriptomically similar cells into metacells and spatially proximal spots into
metaspots respectively. 3. hdWGCNA requires the user to explicitly specify the expression matrix that will be used for network analysis using the function SetDatExpr. For
consensus network analysis, a list of expression matrices for each dataset or condition is specified with SetMultiExpr. 4. Different values for the soft-power threshold β

are tested using the functions TestSoftPowers and TestSoftPowersConsensus. The gene-gene correlation adjacency matrix is computed and raised to a power β

as a soft threshold, and the degree distribution of this augmented is fit to a power law distribution to assess the scale-free topology. 5. Co-expression network computation
and gene module detection is performed in one step using the function ConstructNetwork. 6. Module eigengenes (MEs) are computed using the ModuleEigengene
function, optionally allowing for regression and harmonization of covariates such as sequencing batch. Eigengene-based connectivity (kME) is computed for each gene
using the ModuleConnectivity function.
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Fig. S2. Comparison of metacell algorithms for co-expression network analysis. Caption on the next page −→
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Fig. S2. Comparison of metacell algorithms for co-expression network analysis. a. UMAP plot of the 6,800 CD34+ hematopoietic stem and progenitor stem cells
scRNA-seq dataset (17) colored by annotations from the original study. b-d. hdWGCNA dendrograms for the co-expression networks constructed with the hdWGCNA (b),
MC2 (c), and SEACells (d) algorithms. Module assignments are shown below the dendrograms e-g. UMAP plots as in (a) colored by MEs for the co-expression modules
derived from the different metacell approaches. h-j. Module overlap comparisons between the different methods. Test was performed using Fisher’s exact test, and we
report the odds ratio and FDR corrected p-values. k-m. Rank-rank hypergeometric overlap (RRHO) (79) heatmaps comparing the ranks of kMEs for pairs of modules
derived from the expression matrices from the different metacell algorithms.
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Fig. S3. Correlation of module eigengenes and Seurat module scores. For each module in the human PFC snRNA-seq dataset (11), we computed Seurat module
scores using the AddModuleScore function, and correlated with module eigengenes (MEs). We visualized the results as scatter plots with linear regression lines (95%
confidence interval shown in grey) for ASC (a), OPC (b), MG (c), INH (d), ODC (e), and EX (f).
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Fig. S4. Iterative co-expression network analysis of major cell compartments in the Parse Biosciences 1M PBMC dataset. a. UMAP plot of 965,363 PBMCs from 12
healthy donors and 12 Type-1 diabetic donors profiled with the Parse Biosciences Evercode Whole Transcriptome Mega protocol. Cells are colored by cell-type annotations.
b,e,h,k,n. Individual UMAP plots computed for each cell compartment separately for each cell compartment. c,f,i,l,o. UMAP plots for each cell compartment colored by
module eigengenes (MEs). d,g,j,m,p UMAP plots of the co-expression networks for each cell compartment, colored by gene module assignment. Nodes represent genes
and edges represent co-expression links. Network edges were downsampled for visual clarity.

Morabito et al. | hdWGCNA bioRχiv | 25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.22.509094doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.22.509094
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. S5. Metaspot aggregation for co-expression network analysis in spatial transcriptomics. a. Schematic representation of the metaspot construction process. A
grid of evenly spaced principal spots are specified throughout the given input ST section. The expression values for each principal spot and its direct neighbors are merged
into a single metaspot expression profile. This procedure yields a metaspot expression matrix for the given input ST section. b. Expression matrix density (1 - sparsity) for
the ST and metaspot expression matrices in the anterior and posterior mouse brain samples. c. Density plot showing the distribution of pairwise Pearson correlations
between genes from the ST expression matrix and the metaspot expression matrix.
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Fig. S6. Mouse brain spatial transcriptomics co-expression network analysis. Caption on the next page −→
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Fig. S6. Mouse brain spatial transcriptomics co-expression network analysis. a. Hub gene networks for each spatial co-expression module. The top 25 hub genes
ranked by kME are visualized. Nodes represent genes, and edges represent co-expression links. b. Dendrogram showing the hierarchical clustering of genes into
co-expression modules based on the topological overlap matrix (TOM). c. Dot plot showing selected GO term enrichment results for each co-expression module. d.
Heatmap showing gene overlap tests (Fisher’s exact test) comparing the spatial co-expression modules to differentially expressed genes (DEGs) in each cluster from a
whole mouse brain snRNA-seq dataset (23).
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Fig. S7. Mouse brain spatial transcriptomics co-expression network in cortical layers 2-6. a. ST samples colored by module eigengenes (MEs) for the seven cortical
spatial co-expression modules. Grey color indicates a ME values less than zero. b. Hub gene networks for each cortical co-expression module. The top 25 hub genes
ranked by kME are visualized. Nodes represent genes, and edges represent co-expression links. c. Dot plot showing selected GO term enrichment results for each
co-expression module.
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Fig. S8. Isoform co-expression network analysis in the mouse hippocampus. a. UMAP plot of the radial glia lineage clusters from the mouse hippocampus ScISOrSeq
dataset (8). b. UMAP plots as in a. colored by MEiso for the eleven isoform co-expression modules. c. Hub isoform networks for each radial glia lineage co-expression
modules. The top 25 hub genes ranked by kMEiso are visualized. Nodes represent isoforms, and edges represent co-expression links. d. Dendrogram showing the
hierarchical clustering of isoforms into co-expression modules based on the topological overlap matrix (TOM).
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Fig. S9. Co-expression network analysis of inhibitory neurons in Autism spectrum disorder. a. Hub gene networks for each inhibitory neuron co-expression modules.
The top 25 hub genes ranked by kME are visualized. Nodes represent genes, and edges represent co-expression links. b. Dendrogram showing the hierarchical clustering
of genes into co-expression modules based on the topological overlap matrix (TOM). c. UMAP plot of the snRNA-seq dataset of human major depressive disorder (MDD)
(78). Cells are colored by cluster annotations. d. UMAP plots of the MDD dataset as in c. colored by the MEs projected from the ASD dataset. e. Module preservation
statistics for the ASD inhibitory neuron modules in the inhibitory neuron population from the MDD dataset. Z-summary preservation < 2 indicates no evidence of module
preservation, Z-summary preservation < 10 indicates moderate evidence of module preservation, and Z-summary preservation > 10 indicates high evidence of module
preservation
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Fig. S10. Consensus co-expression network analysis of microglia in Alzheimer’s disease. a. UMAP plot of the integrated dataset from three AD snRNA-seq studies
(10–12), colored by cell type assignment. b. Dendrogram showing the hierarchical clustering of genes into co-expression modules based on the consensus topological
overlap matrix (TOM) from the three snRNA-seq datasets. c. Hub gene networks for each microglia consensus co-expression modules. The top 25 hub genes ranked by
kME are visualized. Nodes represent genes, and edges represent co-expression links.
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