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MOTIVATION Single-cell and spatial transcriptomics assays are commonly used to profile the molecular
signatures of biological systems, yielding high-dimensional datasets that can be used to model gene regu-
lation across cell types, cell states, and spatial niches. Many statistical tools for high-dimensional transcrip-
tomics data analysis focus on individual features rather than the underlying network structure, ignoring po-
tential interactions between transcripts or genes. Here, we introduce hdWGCNA, a comprehensive
methodological framework for the inference, analysis, and interpretation of gene co-expression networks
in high-dimensional transcriptomics data. hdWGCNA is implemented as an open-source R package that ex-
tends the Seurat ecosystem of data analysis tools.

SUMMARY

Biological systems are immensely complex, organized into a multi-scale hierarchy of functional units based
on tightly regulated interactions between distinct molecules, cells, organs, and organisms. While experi-
mental methods enable transcriptome-wide measurements across millions of cells, popular bioinformatic
tools do not support systems-level analysis. Here we present hdWGCNA, a comprehensive framework for
analyzing co-expression networks in high-dimensional transcriptomics data such as single-cell and spatial
RNA sequencing (RNA-seq). hdWGCNA provides functions for network inference, gene module identifica-
tion, gene enrichment analysis, statistical tests, and data visualization. Beyond conventional single-cell
RNA-seq, hdWGCNA is capable of performing isoform-level network analysis using long-read single-cell
data. We showcase hdWGCNA using data from autism spectrum disorder and Alzheimer’s disease brain
samples, identifying disease-relevant co-expression network modules. hdWGCNA is directly compatible
with Seurat, a widely used R package for single-cell and spatial transcriptomics analysis, and we demon-

strate the scalability of hdWGCNA by analyzing a dataset containing nearly 1 million cells.

INTRODUCTION

The development and widespread adoption of single-cell and
spatial genomics approaches has led to routine generation of
high-dimensional datasets in a variety of biological systems.
These technologies are frequently used to study developmental
stages, evolutionary trajectories, disease states, drug perturba-
tions, and other experimental conditions. Despite the inherent
complexity and interconnectedness of biological systems,
studies leveraging single-cell and spatial genomics typically
analyze individual features (genes, isoforms, proteins, etc.) one
by one, greatly oversimplifying the underlying biology. These da-
tasets provide an opportunity for investigating and quantifying

the relationships between these features to further contextualize
their roles across biological conditions of interest.

Here we developed hdWGCNA, a framework for co-expres-
sion network analysis’ in single-cell and spatial transcriptomics
data. Co-expression networks are based on transformed pair-
wise correlations of input features, resulting in a quantitative
measure of relatedness between genes.' Hierarchical clus-
tering on the network structure allows us to uncover functional
modules of genes whose expression profiles are tightly inter-
twined,** which typically correspond to specific biological pro-
cesses and disease states. Considering that unique cell types
and cell states have distinct gene expression programs, we de-
signed hdWGCNA to facilitate multi-scale analysis of cellular and
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spatial hierarchies. hdWGCNA provides a rich suite of functions
for data analysis and visualization, providing biological context
for co-expression networks by leveraging a variety of biological
knowledge databases. To maximize usability among the geno-
mics community, the hdWGCNA R package extends the data
structures and functionality of the widely used Seurat pack-
age,””” and we developed an extensive documentation website
for hdWGCNA demonstrating its use on new datasets. Further,
we used hdWGCNA to analyze a single-cell RNA sequencing
(scRNA-seq) dataset consisting of 1 million cells, showcasing
the scalability of hdWGCNA in large datasets.

In this study, we applied hdWGCNA in a variety of high-dimen-
sional transcriptomics datasets from different technologies and
biological conditions. As acommon use case, we first performed
iterative network analysis of the major cell types in the human
prefrontal cortex (PFC), identifying shared and specific network
modules in each cell type. We constructed co-expression net-
works in anterior and posterior mouse brain sections profiled
with 10x Genomics Visium spatial transcriptomics (ST), and
found distinct spatial patterns of these gene expression pro-
grams. Using long-read scRNA-seq data from the mouse hippo-
campus,® we uncovered splicing isoform co-expression net-
works in the radial glia lineage involved in cell fate
specification. Network analysis of inhibitory neurons from pub-
lished single-nucleus RNA sequencing (snRNA-seq) in autism
spectrum disorder (ASD) donors® revealed modules disrupted
in ASD containing key genetic risk genes such as SCN2A,
TSC1, and SHANK2. We performed consensus co-expression
network analysis of microglia from three Alzheimer’s disease
(AD) snRNA-seq studies,'®'? yielding multiple gene modules
corresponding to disease-associated microglia and polygenic
risk of AD. Finally, we used hdWGCNA to project gene modules
from two bulk RNA-seq studies of AD patients into an snRNA-
seq dataset of the AD brain, showing that our approach allows
for interrogation of gene modules and networks that have been
previously identified.

RESULTS

Constructing co-expression networks from high-
dimensional transcriptomics data

Here we describe hdWGCNA, a comprehensive framework for
constructing and analyzing co-expression networks in high-
dimensional transcriptomic data (Figure 1A). Given a gene
expression dataset as input, co-expression network analysis
typically consists of the following analysis steps: computing pair-
wise correlations of input features, weighting correlations with a
soft-power threshold (8), computing the topological overlap be-
tween features, and unsupervised clustering via the Dynamic
Tree Cut algorithm® (Figure S1 and STAR Methods). The sparsity
and noise inherent in single-cell data can lead to spurious gene-
gene correlations, thereby complicating co-expression network
analysis. Additionally, the correlation structure of single-cell or
spatial transcriptomic data varies greatly for different subsets
(cell types, cell states, anatomical regions). A typical hdWGCNA
workflow in scRNA-seq data accounts for these considerations
by collapsing highly similar cells into “metacells” to reduce spar-
sity while retaining cellular heterogeneity and by allowing for a
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modular design to perform separate network analyses in speci-
fied cell populations.

Metacells are defined as small groups of transcriptomically
similar cells representing distinctive cell states. There are
several approaches to identify metacells from single-cell geno-
mics data."®'® We leverage a bootstrapped aggregation
(bagging) algorithm for constructing metacell transcriptomic
profiles from single-cell datasets by applying K-nearest neigh-
bors (KNN) to a dimensionality-reduced representation of the
input dataset (STAR Methods, Algorithm 1). This approach
can be performed for each biological replicate to ensure that
critical information about each sample (age, sex, disease sta-
tus, etc.) is retained for downstream analysis. We computed
gene-gene correlations in the normalized gene expression ma-
trix from the single-cell dataset and metacell expression
matrices while varying the number of cells to collapse into a
single metacell (the KNN K parameter). The distribution of these
gene-gene correlations displays a spike at zero for the single-
cell expression matrix, with flattened distributions corresp-
onding to more non-zero correlations in the metacell matrices,
indicating that metacell expression profiles are less prone to
noisy gene-gene correlations compared with the single-cell
matrix (Figure 1B) (STAR Methods). We note that sparsity
(defined in Equation 1) is greatly reduced in the metacell
matrices for each cell type compared with the single-cell
matrices, with over a 10-fold reduction in some cases (Fig-
ure 1C). We applied hdWGCNA to a dataset of CD34* hemato-
poietic stem and progenitor stem cells’'® using two additional
metacell approaches'*'® and found that all approaches were
suitable for downstream network analysis (Figure S2; Data
S1). Metacell algorithms strive to retain biologically meaningful
signals spanning a spectrum of cell states in a tissue of interest;
therefore, it is necessary to carefully apply these approaches to
avoid obscuring these cell states. For example, the hdWGCNA
metacell algorithm requires a dimensional reduction of the input
expression matrix, but these reductions often contain technical
artifacts. The choice of dimensionality reduction method and
handling of technical artifacts would then influence the effec-
tiveness of metacell construction. Further, the optimal number
of cells to merge together to form a single metacell may differ
across cell types and tissues, attempting to balance between
increasing information content of the aggregated group while
avoiding merging of dissimilar cells. Aside from metacell ap-
proaches, pseudo-bulk aggregation of all cells in a given pop-
ulation have yielded favorable results in benchmarks of differ-
ential gene expression tests,'” suggesting that, given a
sufficient sample size, pseudo-bulk expression profiles are
likely suitable for co-expression network analysis.

While co-expression modules consist of many genes, it is
convenient to summarize the expression of the entire module
into a single metric. Module eigengenes (MEs), defined as the
first principal component of the module’s gene expression ma-
trix (STAR Methods, Algorithm 2), describe the expression pat-
terns of entire co-expression modules. hdWGCNA computes
MEs using specific accommodations for high-dimensional
data, allowing for batch correction and regression of continuous
covariates (STAR Methods, Algorithm 2). Optionally, hdWGCNA
can use alternative gene scoring methods such as or UCell'® or
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Figure 1. Overview of the hdWGCNA workflow and application in the human prefrontal cortex

(A) Schematic overview of the standard hdWGCNA workflow on a scRNA-seq dataset. UMAP plot shows 36,671 cells from 11 cognitively normal donors in the
Zhou et al. human prefrontal cortex (PFC) dataset. ASC, astrocytes; EX, excitatory neurons; INH, inhibitory neurons; MG, microglia; ODC, oligodendrocytes; OPC,
oligodendrocyte progenitor cells.

(B) Density plot showing the distribution of pairwise Pearson correlations between genes from the single-cell (sc) expression matrix and metacell expression
matrices with varying values of the K-nearest neighbors parameter K.

(C) Expression matrix density (1, sparsity) for the sc, pseudo-bulk (pb), and metacell matrices with varying values of K in each cell type.

(D) Heatmap of scaled gene expression for the top five hub genes by kME in INH-M6, EX-M2, ODC-M3, OPC-M2, ASC-M18, and MG-M14.

(E) snRNA-seq UMAP colored by module eigengene (ME) for selected modules as in (D).

(F) UMAP plot of the ODC co-expression network. Each node represents a single gene, and edges represent co-expression links between genes and module hub
genes. Point size is scaled by kME. Nodes are colored by co-expression module assignment. The top two hub genes per module are labeled. Network edges were
downsampled for visual clarity.

(G) snRNA-seq UMAP as in (A) colored by MEs for the 10 ODC co-expression modules as in (F).

(H) Module preservation analysis of the ODC modules in the Morabito et al.’® human PFC dataset. The module’s size versus the preservation statistic (Z
preservation) is shown for each module. Z <5, not preserved; 10 >Z > 5, moderately preserved; Z > 10, highly preserved.

Seurat’s AddModuleScore function, and we show that these
scores are correlated with MEs (Figure S3).

We demonstrate hdWGCNA in single-cell transcriptomic data
through an iterative network analysis of six major cell types in the
Zhou et al. human PFC snRNA-seq dataset of 11 cognitively
normal donors (Figure 1A)."" We constructed metacells and per-
formed co-expression network analysis for each major cell type
in the human PFC dataset' " using the standard hdWGCNA work-
flow, yielding distinct network structures and sets of gene mod-
ules (Data S2 and S3). Networks were constructed using meta-
cell expression matrices for each cell type separately, but we
computed MEs for each module using the entire snRNA-seq da-
taset, allowing us to interrogate the cell-type specificity of these
modules’ expression programs across all cell types. This itera-
tive network analysis revealed 96 co-expression modules across
the six major cell types. Through differential module eigengene
(DME) analysis, we found shared and distinct module expression
patterns across different cell types (Data S2; STAR Methods),
and we highlight specific modules from each cell type (Figures
1D and 1E). Further, we performed a pairwise gene set overlap

analysis of the 96 co-expression modules, and, while we did
find that some modules had significant overlaps across the
different cell types, the gene sets comprising these modules
were overall quite distinct, with a maximum Jaccard index be-
tween two modules of 0.297 and a median of 0.005 (STAR
Methods and Figure S4). The expression of module hub genes,
which are highly connected members of the co-expression
network ranked by eigengene-based connectivity (KME), tend
to display cell-type-specific patterns, such as the myelination
genes CNP and PLP1 in oligodendrocyte (ODC) module ODC-
M3 (Figure 1D). However, some co-expression modules may
correspond to cellular processes common to multiple cell types,
in which case the hub genes may be widely expressed. We in-
spected the MEs of selected cell-type-specific modules and
found that the overall expression patterns were similar to that
of their constituent hub genes (Figures 1D and 1E).

We showcase some of the downstream functionalities of
hdWGCNA using the ODC co-expression network (Figures 1F-
1H). For network visualization, we used Uniform Manifold Approx-
imation and Projection (UMAP)'® to embed the co-expression
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Figure 2. Runtime, memory usage, and performance of hdWGCNA
(A and B) We ran the main co-expression network analysis functions of the hdWGCNA R package on 65,415 neuronal cells in a human brain dataset® from 54
samples, and tracked the runtime (A) and memory usage upper bound (B) for different-sized subsets of the data ranging from 1,000 through 50,000 cells.

(C) Violin plots showing distributions of EGAD?* neighbor-voting area under the receiver operating characteristic curve (AUC) scores in each of the cell-type-
specific co-expression networks from the human PFC dataset. "’
(D) Violin plots showing distributions of multifunctionality AUC scores in each of the cell-type-specific co-expression networks from the human PFC dataset. ASC,
astrocytes; EX, excitatory neurons; INH, inhibitory neurons; MG, microglia; ODC, oligodendrocytes; OPC, oligodendrocyte progenitor cells.

(E) Performance of the XGBoost regularized regression models used to predict gene expression based on the expression of the top 10 module hub genes for all 96
co-expression modules from the Zhou et al."" human PFC dataset. Violin plots showing the test set root-mean-square error (RMSE) comparing the predicted
expression with observed for each gene, split by each co-expression module. Modules are ordered within each cell type from lowest mean RMSE to highest.

network topological overlap matrix (TOM) into a two-dimensional
manifold, using the topological overlap of each gene with the top
hub genes from each module as input features (STAR Methods;
Figure 1F). We found that eight of the 10 ODC modules were
specifically expressed in ODC cells based on their MEs (Fig-
ure 1G; Wilcoxon rank-sum test Bonferroni-adjusted p <0.05).
Finally, we performed module preservation analysis® to test the
reproducibility of these modules in an independent dataset'”
and found that all of the ODC-specific modules were significantly
preserved (Z summary preservation > 5). In sum, these network
analyses in the human PFC dataset shows the core capabilities of
the hdWGCNA workflow (Figure S1). Finally, we performed a
similar iterative network analysis on a peripheral blood mononu-
clear cell (PBMC) scRNA-seq dataset of nearly 1M cells, high-
lighting the scalability of hdWGCNA in large datasets (Figure S5;
Data S1).

Runtime, memory usage, and evaluation of hdWGCNA

We measured the runtime and memory usage of hdWGCNA as a
function of the number of input cells. Using the 65,415 neuronal
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cells from the Velmeshev et al.® human PFC snRNA-seq dataset
(54 samples), we ran hdWGCNA on different-sized subsets
ranging from 1,000 to 50,000 cells to test the runtime and mem-
ory consumption of the main network analysis steps (Figures 2A
and 2B). We report the memory upper bound in gigabytes
measured throughout the duration of each function. The runtime
of the MetacellsByGroups function increased steadily with the
number of cells, but the memory usage plateaus. This function
attempts to construct a target number of metacells within each
biological replicate and each cell population, and the algorithm
terminates early if this target is reached, thus explaining the
plateau in the memory usage graph. While TestSoftPowers
generally had a low memory footprint, it was the slowest individ-
ual function based on these tests. Importantly, TestSoftPowers
can be sped up by using a subset of the data, or by testing fewer
soft-power thresholds than the default. The efficiency of
ConstructNetwork varies both with the number of input cells
and features, where this calculation will slow down as more cells
and features are included. ModuleEigengenes uses the implicitly
restarted Lanczos bidiagonalization algorithm (IRLBA)?" for fast
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singular value decomposition (SVD) of sparse matrices, and the
runtime and memory usage of this function both linearly increase
with the number of cells in the dataset. Optionally,
ModuleEigengenes can employ the harmony?? algorithm follo-
wing SVD, which increases runtime but not memory usage.
Further, the efficiency of this function varies with the number of
co-expression modules detected and with the number of fea-
tures in each modules. Finally, ModuleConnectivity computes
eigengene-based connectivity as product-moment correlation
coefficients between the sparse gene expression matrix and
the MEs matrix, which resulted in fast calculations with low
memory usage.

We next sought to evaluate the co-expression networks iden-
tified by hdWGCNA using a functional coherence analysis. We
used the EGAD neighbor-voting algorithm?®® to predict known
biological pathway associations of genes based on the co-
expression network structure using the cell-type-specific co-
expression networks from the Zhou et al."" human PFC dataset.
In principle, we expect that co-expressed genes are involved in
similar biological processes, and therefore co-expression
network structures should be predictive of biological pathway
membership. Briefly, EGAD performs a 3-fold cross-validation
classification by occluding the pathway labels of a subset of
genes and then attempting to predict the pathway membership
of those occluded genes based on their labeled neighbors in
the network. We used EGAD to test the functional coherence
of our hdWGCNA co-expression networks for a set of Gene
Ontology (GO) terms, reporting area under the receiver operating
characteristic curve (AUC) value for each term (Figure 2C). We
report a similar level of functional coherence in these co-expres-
sion networks to a previous study that evaluated co-expression
networks derived from scRNA-seq data with different measures
of gene-gene association.”* The inhibitory neuron network
performed the best for functional coherence with a median
neighbor-voting AUC of 0.592, while the lowest-performing
network was from the oligodendrocytes with a median AUC of
0.549. We tested whether there was a bias toward genes that
were multifunctional based on the frequency that they appeared
in the annotated set of GO terms, and we found that multifunc-
tional genes did not bias the co-expression functional coherence
results (Figure 2D).

In principle, genes within the same co-expression modules
derived from specific cell types should be functionally related
or co-regulated. The expression of module hub genes, which
exhibit the highest intramodular connectivity, may be predictive
of the expression of other module member genes if the network
is well defined and contains meaningful structures. For each of
the 96 cell-type PFC co-expression modules, we sought to pre-
dict the expression of each gene using the top 10 module hub
genes as the input features to a XGBoost®® regularized regres-
sion model. In this analysis, we performed 5-fold cross-valida-
tion, and we report the performance as root-mean-square error
(RMSE) of the test set averaged over each fold (Figure 2E).
Overall, we found that module hub gene expression was gener-
ally predictive of module member gene expression across all
modules in the six cell-type co-expression networks, where
the module with the best performance had an average test
set RMSE of 0.0159 and the module with the worst perfor-
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mance had an average test set RMSE of 0.209 (Figure 2E).
This analysis and our functional coherence analysis provide
support that hdWGCNA co-expression networks and gene
modules capture biologically relevant information in specific
cell types.

Spatial co-expression networks represent regional
expression patterns in the mouse brain

ST enables the investigation of biological patterns that might
otherwise be hidden in other -omics technologies, such as
scRNA-seq or bulk RNA-seq.?®?” We used hdWGCNA to identify
spatial co-expression network modules in the murine brain using
a publicly available Visium transcriptomics dataset from 10x Ge-
nomics (Figure 3A). This ST dataset consists of one posterior and
one anterior slice originating from a sagittal brain section from a
single male mouse at 8 weeks of age. Sequencing-based ST ap-
proaches such as Visium yield transcriptome-wide gene expres-
sion profiles localized to individual “spots” where a single spot
likely contains multiple cells, and this dataset is composed of
2,696 spots in the anterior slice and 3,353 spots in the posterior
slice. Data sparsity is also inherent to the current generation of
these technologies, therefore we propose a metaspot aggrega-
tion approach prior to network analysis (Figure S6). Evenly
spaced spots throughout the input ST slide are used as principal
spots, with at least one other spot in between two principal spots.
The transcriptomes of the principal spots and their direct neigh-
bors are aggregated into metaspot expression profiles, contain-
ing at most seven ST spots (Figure S6A). Similar to metacells in
scRNA-seq, the sparsity of the metaspot expression matrix
was reduced compared with the original ST matrix (Figure S6B),
and the distribution of gene-gene correlations in the metaspot
expression matrix was less concentrated at zero (Figure S6C).
hdWGCNA is capable of processing any number of ST samples
in the same co-expression network analysis by constructing
metaspots separately for each sample.

We applied hdWGCNA in the mouse brain Visium dataset,
identifying 12 spatial modules (SM1-12; Figure S7; Data S1),
and we embedded the co-expression network in two dimensions
using UMAP (Figure 3B). DME analysis showed that spatial co-
expression modules displayed distinct regional expression pro-
files based on their MEs (Figure 3C; Data S3), encompassing a
wide array of cellular processes such as the myelination module
SM1 in the white matter tracts, and synaptic transmission mod-
ules SM7, SM9, SM11, and SM12 (Figure S7C; Data S2). For
example, DME analysis showed that expression of SM4 was
localized to the ventricles and cortical layer 1 near the blood-
brain barrier (Figure 3C). Further, the hub genes of SM4 include
hemoglobin subunits (Hba-a1, Hba-a2, Hbb-bt), and we show
that SM4 was enriched for biological processes associated
with brain vasculature (Figures 3B and S7C). We compared
these gene modules with cluster marker genes from a whole-
mouse-brain snRNA-seq dataset’® and found significant corre-
spondences, such as the striatum module SM7 and medium
spiny neurons (Fisher's exact test false discovery rate [FDR]
<0.05; Figure S7D). Additionally, we performed network analysis
on a subset of this dataset containing cortical layers 2-6 (Fig-
ure S8), identifying additional fine-grained spatial co-expression
modules localized to specific cortical layers (Data S1 and S2).
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Figure 3. Spatial co-expression networks represent regional expression patterns in the mouse brain
(A) Visium spatial transcriptomics (ST) in anterior (left, 2,696 spots) and posterior (right, 3,353 spots) mouse brain sections, colored by Louvain clusters annotated

by anatomical regions.

(B) UMAP plot of the mouse brain ST co-expression network. Each node represents a single gene, and edges represent co-expression links between genes and
module hub genes. Point size is scaled by KME. Nodes are colored by co-expression module assignment. The top five hub genes per module are labeled. Network

edges were downsampled for visual clarity.

(C) ST samples colored by MEs for the 12 spatial co-expression modules. Gray color indicates an ME value less than zero.

Isoform-level co-expression networks reveal cell fate
decisions in the radial glia developmental lineage
Different isoforms of the same gene are often involved in distinct
biological processes.’® Conventional single-cell transcriptomics
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occurs at the isoform level.
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assays capture information at the gene level, thereby missing
much of the biological diversity and regulatory mechanisms that
Emerging long-read sequencing ap-
proaches enable us to profile cellular transcriptomes at isoform
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Figure 4. Isoform co-expression network analysis reveals fate-specific expression programs in the hippocampal radial glia lineage
(A) UMAP plot of cells from the mouse hippocampus SclSOrSeq dataset.® Major cell types are labeled and the cells used for co-expression network analysis are
colored. This dataset contains expression information for 96,093 isoforms and 31,053 genes in 6,832 cells from one mouse brain sample. ASC, astrocytes; CPX,

(legend continued on next page)
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resolution,®*'=** thus providing new opportunities to model the
relationships between isoforms using co-expression network
analysis.

We used hdWGCNA to perform isoform co-expression
network analysis in radial glia lineage cells from the mouse hip-
pocampus at postnatal day 7 (P7) profiled with single-cell iso-
form RNA sequencing (SclSOrSeq)® (Figure 4A; STAR Methods).
This dataset contains isoform-level and gene-level expression
data from 6,832 nuclei derived from a single mouse hippocam-
pus sample. Radial glia, which share transcriptomic similarities
with mature astrocytes, are progenitor cells that give rise to
numerous distinct cell fates, including neuronal cells, astrocytes,
oligodendrocytes, and ependymal cells.>***> To model this
developmental process, we applied Monocle3*¢ pseudotime to
2,190 radial glia lineage cells (Figure 4B). We identified three tra-
jectories corresponding to distinct cell fates, termed the ependy-
mal (EPD) trajectory, astrocyte (ASC) trajectory, and the neural
intermediate progenitor cell (NPC) trajectory.

Isoform co-expression network analysis revealed 11 modules in
the radial glia lineage (Figure 4C; Data S1). Of the genes retained
for network analysis, 61.5% had a single isoform, 18.2% had mul-
tiple isoforms that were all assigned to the same module, and
20.4% had multiple isoforms spread across several modules (Fig-
ure 4D). Thus, these network modules capture information about
the roles of different isoforms of the same gene in distinct biolog-
ical processes. We inspected module eigenisoform (MEiso) pat-
terns throughout the developmental lineage, thereby uncovering
isoform modules critical for cell fate decisions (Figure 4E; Data
S2 and S3). Increased expression of modules RGL-M1 and
RGL-M2, which were enriched cilium assembly genes (Figure 4F),
was associated with the transition from a radial glia to an ependy-
mal cell state. A steady expression level of module RGL-M5 (glial
development, astrocyte differentiation) was found in the transition
from radial glia to astrocytes, while a decreased expression of
RGL-M5 led to alternative fates. Four modules (RGL-M3, RGL-
M8, RGL-M9, and RGL-M11) displayed an increase in expression
in the neuronal trajectory, containing genes associated with
cellular processes such as non-canonical Wnt signaling, neuronal
synaptic plasticity, and RNA splicing (Figure 4F).

We inspected the isoforms of three selected genes that had
hub isoforms in different co-expression modules: Gfap, H313b,
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and Cd9 (Figures 4G-4l). Gfap encodes a key intermediate fila-
ment protein in astrocytes that is involved in astrocytic reactivity
during central nervous system (CNS) injuries or neurodegenera-
tion,*® and we found that modules RGL-M4 and RGL-M6 con-
tained hub isoforms of Gfap featuring alternative splicing, alter-
native transcription start site (TSS) usage, and alternative
transcription end site (TES) usage (Figure 4G). Different isoforms
of the histone H3.3 subunit gene H3f3b were hubs for modules
RGL-M1 and RGL-M11, which were associated with ependymal
and neuronal cell fates respectively, suggesting that alternative
TES usage in H3f3b plays a role in regulating epigenetic factors
in murine hippocampal development (Figure 4F). Cd9 encodes a
transmembrane protein and is a known glioblastoma bio-
marker,”® and we found subtle differences in the TSS between
hub isoforms in modules RGL-M6 and RGL-M9 that we show
as a splicing summary graph®® (Figure 41), supporting functional
changes mediated by small isoform differences.

Co-expression network analysis of inhibitory neurons in
ASD

Co-expression networks can be interrogated to further under-
stand the molecular phenotypes of complex polygenic diseases
in primary human tissue samples. We applied hdWGCNA to
20,249 inhibitory neurons (INHs) from an snRNA-seq dataset of
the human PFC in 22 ASD patients, 24 age-matched controls,
and eight epilepsy patients® (Figures 5A and S10; Data S1).
The INH network contained 14 modules, and we show hub genes
that have a known association with ASD in the SFARI database
on the co-expression UMAP (Figure 5B). The MEs showed that
some modules were primarily confined to a single INH cluster
(INH-M3, INH-M1) while others were spread across multiple
neuronal groups (Figure 5C). Furthermore, DME analysis re-
vealed significant differences between MEs in ASD and control
samples for all modules except INH-M4 in at least one INH sub-
population (Figure 5D; Data S3; Wilcoxon rank-sum test Bonfer-
roni-adjusted p <0.05). However, by focusing on the DME results
with an absolute average log, (fold change) > 0.5, we note that
many of the largest differences were found in the SST* inhibitory
neuron clusters. Furthermore, three co-expression modules
(INH-M11, INH-M13, and INH-M3) were significantly enriched
in ASD-associated genes from the SFARI database and the

choroid plexus epithelial cells; EPD, ependymal cells; EX, excitatory neurons; GRN, granule neurons; INH, inhibitory neurons; MAC, macrophages; NPC, neuronal
intermediate progenitor cells; MG, microglia; OPC, oligodendrocyte progenitor cells; RGL, radial glia; VASC, vasculature cells.

(B) UMAP pilot of the radial glia lineage, colored by Monocle 3°” pseudotime assignment. Top left, ependymal (EPD) trajectory; top right, astrocyte (ASC) tra-
jectory; bottom left, neuronal intermediate progenitor cell (NPC) trajectory.

(C) UMAP plot of the radial glia lineage isoform co-expression network. Each node represents a single isoform, and edges represent co-expression links between
isoforms and module hub isoforms. Point size is scaled by kMEiso. Nodes are colored by co-expression module assignment. Network edges were downsampled
for visual clarity.

(D) Donut chart showing the percentage of genes with one isoform, with multiple isoforms that are all assigned to the same module, and with multiple isoforms that
are spread across more than one module.

(E) Module eigenisoforms (MEiso) as a function of pseudotime for each co-expression module. For each module, a separate locally estimated scatterplot
smoothing (LOESS) regression line is shown for each developmental trajectory.

(F) Dot plot showing selected GO term enrichment results for each co-expression module.

(G) Gene models for selected isoforms of Gfap, colored by co-expression module assignment.

(H) Gene models for selected isoforms of H3f3b, colored by co-expression module assignment.

(I) Top: gene models for selected isoforms of Cd9, colored by co-expression module assignment. Bottom: Swan>® graphical representation of Cd9 alternative
splicing isoforms. Splice sites and transcript start/end sites are represented as nodes; introns and exons are represented as connections between nodes. These
two isoforms are distinguished by alternative TSS usage. Gene models from the GENCODE VM23 comprehensive transcript set are shown below transcripts in
panels (G)—(l).
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Figure 5. Co-expression network analysis of inhibitory neurons in Autism spectrum disorder
(A) UMAP plot of 121,451 nuclei from the cortex of 22 ASD donors, 24 controls, and eight epilepsy donors profiled with snRNA-seq. Inhibitory neuron subtypes are
highlighted. ASC, astrocytes; EX, excitatory neurons; INH, inhibitory neurons; MG, microglia; ODC, oligodendrocytes; OPC, oligodendrocyte progenitor cells.

(legend continued on next page)
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latest genome-wide association study (GWAS) of ASD*" (Fig-
ure 5E), but we note that all of these modules contained several
ASD-associated SFARI genes.

INH-M11 was enriched for genes associated with synaptic
transmission, ion transport, glutamate receptor signaling, and
nervous system development (Figure 5F; Data S2), and this mod-
ule was downregulated in ASD for five of the six INH subtypes
(Figure 5D). Similarly, INH-M13 was associated with RNA pro-
cessing (Figure 5F) and was downregulated in ASD in all INH sub-
types except PVALB+ neurons (Figure 5D). One of the INH-M13
hub genes is CHD2, whose de novo variants have been identified
in individuals with ASD.***®> CHD2 is part of the CHD family of
chromatin-modifying proteins and can alter gene expression by
modification of chromatin structure. Similarly, rare loss-of-func-
tion mutations have been reported in the SCN2A gene, a hub
gene of the INH-M11 module.”* We also find enrichment of
several ASD-associated genes such as TSC7 (INH-M8),
SMARCA4 (INH-M8), SHANK2 (INH-M4), and CPEB4 (INH-M1),
highlighting that these modules are functional and provide new
insights into the role of inhibitory neurons in ASD. Finally, we
tested for the preservation of these modules in 19,425 inhibitory
neurons from an snRNA-seq dataset of the PFC from donors
with major depressive disorder (MDD) and controls*® (34 sam-
ples), and we found substantial evidence of preservation across
all modules except INH-M1 (Figures S10C-S10E).

Consensus network analysis of microglia in AD

Microglia, the resident immune cells of the brain, are implicated
in the pathology and genetic risk of several CNS diseases,
including AD.*®~*° Transcriptomic and epigenomic studies in hu-
man tissue and AD mouse models have identified multiple cell
states of microglia, representing a spectrum between homeo-
static and disease-associated microglia (DAMs).'>*%%" Our
previous study defined a set of transcription factors, genes,
and cis-regulatory elements involved in the shift between ho-
meostatic and DAM cell states in human AD, identifying shared
and distinct signatures compared with the DAM signature from
5xFAD mice.'? Here we sought to expand on previous work by
providing a systems-level analysis of gene expression
throughout the spectrum of microglia cell states.

We modeled the cell-state continuum between homeostatic
and DAM-like microglia by employing a pseudotime analysis of
microglia from three human AD snRNA-seq datasets'®'?
(Figures 6A, 6B, and S11). Next, we performed consensus co-
expression network analysis using microglia integrated from
three human AD snRNA-seq datasets,’®'? identifying four
consensus modules (Figure 6C; Data S1). Consensus network
analysis is an approach that performs network analysis sepa-
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rately for each dataset, followed by a procedure to retain struc-
tures common across the individual networks, and thus it is well
suited for analyzing microglia co-expression from these different
sources (STAR Methods).

Classical markers of homeostatic microglia, such as CSF1R,
CX3CR1, and P2RY12, were members of MG-M2, while known
DAM genes, including APOE, TYROBP, and B2M, were mem-
bers of MG-M1. GO term enrichment analysis associated MG-
M2 with homeostatic microglia functions such as cell migration,
synapse organization, and response to colony-stimulating fac-
tor, contrasting disease-related processes enriched in MG-M1
including amyloid fibril formation, microglial activation, mainte-
nance of blood-brain barrier, and cytokine production (Figure 6D;
Data S2). Together, this suggests that MG-M1 comprises the
gene network underlying DAM activation in AD, while MG-M2
represents the network of homeostatic microglia genes. The
MEs for MG-M1 and MG-M2 display opposing patterns thro-
ughout the microglia pseudotime trajectory, contextualizing
this trajectory as the transcriptional shift from homeostatic mi-
croglia (start) to a DAM-like cell state (end) (Figures 6E and 6F).
Furthermore, DME analysis revealed significant changes in these
modules between AD and control brains in evenly spaced win-
dows throughout the microglia trajectory (Figure 6G; Wilcoxon
rank-sum test Bonferroni-adjusted p <0.05; Data S3). Co-
expression networks behave as functional biological units;
therefore, we reason that the hub genes and other members of
MG-M1 represent candidates for an expanded set of human
DAM genes including ACTB, TPT1, and EEF1A1.

Aside from modules MG-M1 and MG-M2, which contained
well-known microglia gene signatures, we also identified mod-
ules MG-M3 and MG-M4 containing genes associated with
key microglial processes such as axon guidance, phagocytosis,
and myeloid cell differentiation (Figures 6C and 6D). CD163, a
hub gene of MG-M4, is known to be involved in the breakdown
of the blood-brain barrier.>*>* The trajectory of MG-M4, contain-
ing CD163 as a hub gene, was consistent with that of DAM-like
module MG-M1, and was enriched for processes including
phagocytosis, myeloid cell differentiation, and neutrophil activa-
tion (Figure 6D); therefore, it is possible that MG-M4 represents
an alternative microglial activation module.>® We performed sin-
gle-cell polygenic risk enrichment for AD risk in the microglia
trajectory,*®°? and identified a significant increase throughout
the trajectory, revealing an enrichment of AD genetic risk sin-
gle-nucleotide polymorphisms (SNPs) in DAMs (Figure 6H;
STAR Methods; Data S3). We show that expression of these
modules was significantly correlated with AD genetic risk (Pear-
son correlation p <0.05), with the strongest correlation in alterna-
tive activation module MG-M4 (Figure 6l).

(B) Gene co-expression network derived from inhibitory neurons, represented as a two-dimensional UMAP embedding of the TOM. Nodes represent genes,
colored by module assignment. Module hub genes with prior evidence of ASD association from SFARI are labeled. Edges represent co-expression relationships
between genes and module hub genes. Network edges were downsampled for visual clarity.

(C) Gene overlap analysis comparing ASD-associated genes from SFARI and INH co-expression modules, using Fisher’s exact test. x indicates that the overlap

was not significant (FDR > 0.05).

(D) snRNA-seq UMAP plots as in (A) colored by MEs for INH co-expression modules.
(E) Violin plots showing MEs in each INH cluster. Two-sided Wilcoxon test was used to compare ASD versus control samples. Nuclei from epilepsy donors were
excluded in this comparison. Not significant (ns), p > 0.05; *p< 0.05; **p < 0.01; **p < 0.001; ***p < 0.0001.

(F) Selected GO enrichment results for each co-expression module.
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To ensure that these microglial modules were reproducible
across other datasets and in mouse models of AD, we performed
module preservation analysis®® (STAR Methods; Figure 6J). We
projected the microglial consensus modules into a dataset of
the PFC in aged human samples,®® the superior frontal gyrus
(SFG) and entorhinal cortex (EC) in AD samples,®” the occipital
cortex (OC) and the occipitotemporal cortex (OTC) in human
AD samples,®® the PFC from 5xFAD mice,'" and whole-brain
samples from 5xFAD mice®® (Figure 6H). Additionally, we pro-
jected these modules into an snATAC-seq dataset of the PFC
in human AD, '? using gene activity®® as a proxy for gene expres-
sion from chromatin accessibility data. These module preserva-
tion tests showed the microglia consensus modules were
broadly preserved and reproducible across brain regions and
in mouse models of AD, providing further support that this
network is relevant in AD biology and microglial activation.

Projecting network modules from bulk RNA-seq cohorts
into relevant single-cell datasets

hdWGCNA allows for interrogating co-expression modules in-
ferred from a given reference dataset in a query dataset. Mod-
ules can be projected across datasets by computing MEs in
the query dataset, and preservation of the network structure
can be assessed via statistical testing.’® For example, modules
can be projected between different species to link transcrip-
tomic changes between mouse models and human disease pa-
tients, or modules can be projected across data modalities from
single-cell to spatial transcriptomics to provide regional context
to cellular niches.

To date, it remains cost-prohibitive for most researchers to
perform high-dimensional -omics studies of large patient co-
horts, but there are numerous large-scale disease-relevant
bulk RNA-seq datasets containing thousands of samples from
consortia such as the Encyclopedia of DNA Elements
(ENCODE),?° the Genotype-Tissue Expression (GTEx) project,®’
and The Cancer Genome Atlas (TCGA).°> By projecting co-
expression modules derived from bulk RNA-seq patient cohorts
into single-cell datasets, we can layer disease-related informa-
tion onto the single-cell dataset and attribute cell-state-specific

Cell Reports Methods

expression patterns to the bulk RNA-seq data. We demonstrate
projecting modules in this manner using co-expression modules
from two bulk RNA-seq studies of AD°®%° as the references and
a human AD snRNA-seq dataset'® (57,950 nuclei from AD 11
samples and seven control samples of the PFC) as the query.
These studies both used AD samples and controls from the
same patient cohorts (Religious Orders Study and Memory and
Aging Project, Mayo Clinic, Mount Sinai School of Medi-
cine),®*~®® but they took unique approaches for co-expression
network analysis. The AMP-AD study from Wan et al.®® per-
formed network analysis separately from each brain region,
while, in our previous study,® we performed consensus network
analysis across the different brain regions. We projected these
modules into a snRNA-seq dataset of AD and control samples
from the PFC (Figure 7A), and we found distinct cell-type-spe-
cific expression patterns based on their MEs (Figures 7B and
7C). This analysis demonstrates hdWGCNA'’s ability to transfer
co-expression information across datasets to uncover otherwise
unseen biological insights.

DISCUSSION

Classical bioinformatic approaches for transcriptomics analysis
such as differential gene expression are useful for finding indi-
vidual genes that are altered in a particular disease or condition
of interest, but they do not provide information about the
broader context of these genes in specific pathways or regula-
tory regimes. For example, biological processes such as devel-
opment or regeneration require coordination of distinct sets of
genes in certain cell types with spatial specificity. Therefore, to
understand these complex processes, we must look beyond in-
dividual genes. We developed hdWGCNA to provide a succinct
methodology for investigating systems-level changes in the
transcriptome in single-cell or ST datasets. We designed
hdWGCNA to be highly modular, allowing for multi-scale ana-
lyses of different cellular or spatial hierarchies in a technol-
ogy-agnostic manner.

In this study, we demonstrated that hdWGCNA is compatible
with single-cell and ST datasets and can be easily adapted

Figure 6. Consensus network analysis of microglia in AD

(A) Left: table showing the number of samples and the number of microglia nuclei from published AD snRNA-seq datasets used for co-expression network
analysis. Right: integrated UMAP plot of nuclei from three snRNA-seq datasets.

(B) UMAP plot of microglia, colored by Monocle 3° pseudotime assignment.

(C) UMAP plot of the microglia co-expression network. Each node represents a single gene, and edges represent co-expression links between genes and module
hub genes. Point size is scaled by kME. Nodes are colored by co-expression module assignment. The top 10 hub genes per module are labeled, as well as
additional genes of interest. Network edges were downsampled for visual clarity.

(D) Selected Gene Ontology (GO) terms enriched in co-expression modules. Bar plots show the log-scaled enrichment of each term.

(E) MEs as a function of pseudotime; points are averaged MEs in 50 pseudotime bins of equal size. Line represents LOESS regression with a 95% confidence
interval.

(F) Microglia UMAP colored by ME.

(G) Differential module eigengene (DME) results in 10 pseudotime bins of equal size. For each pseudotime bin, we performed DME analysis between cells from AD
(positive fold change) and control samples. X symbol indicates that the test did not reach significance (Wilcoxon rank-sum test Bonferroni-adjusted p
value > 0.05).

(H) Top: microglia UMAP colored by AD single-cell disease relevance score (scDRS)°? Z score. Bottom: scDRS Z score as a function of pseudotime, points are
averaged scDRS Z scores in 50 pseudotime bins of equal size. Line represents linear regression with a 95% confidence interval.

() Heatmap of Pearson correlations of MEs and scDRS Z scores, split by cells from AD and control samples.

(J) Abbreviations denote the following brain regions: SFG, superior frontal gyrus; EC, entorhinal cortex; OC, occipital cortex; OTC, occipitotemporal cortex.
**Highly preserved (Z > 10); *moderately preserved (10> Z > 5); x, not preserved (Z <5).
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Figure 7. Projecting bulk RNA-seq co-expression modules into a single-cell dataset
(A) UMAP plot of 57,950 nuclei from an snRNA-seq dataset of the human PFC from AD (N = 11) and control (N = 7) PFC samples. '? Cells are colored by major cell

type assignment.

(B) Multi-region consensus co-expression modules from Morabito et al.°® bulk RNA-seq analysis projected into the snRNA-seq dataset as in (A).
(C) Co-expression modules from the AMP-AD bulk RNA-seq dataset®® projected into the snRNA-seq dataset as in (A). CBE, cerebellum; DLPFC, dorsolateral
PFC; FP, frontal pole; IFG, inferior frontal gyrus; PHG, parahippocampal gyrus; STG, superior temporal gyrus; TCX, temporal cortex; ASC, astrocytes; EX,
excitatory neurons; INH, inhibitory neurons; MG, microglia; ODC, oligodendrocytes; OPC, oligodendrocyte progenitor cells; VASC, vascular cells.

for novel transcriptomics approaches such as SclSOrSeq.
Co-expression networks have been successful for analyzing
bulk proteomics datasets in human disease samples,®”"°® and
we expect that hdWGCNA could be swiftly adapted for sin-
gle-cell and spatial proteomics datasets as the technology ma-
tures and becomes more widely available.®® hdWGCNA in-
cludes built-in functions to leverage external biological
knowledge sources to provide insight for co-expression net-
works, for example by comparing gene modules with functional
gene sets such as disease-associated genes from GWAS
expression quantitative trait loci (eQTLs), or transcription factor
target genes. Unlike other network analysis pipelines such as
single-cell regulatory network inference and clustering
(SCENIC)"° or CellChat,”’ hdWGCNA is a purely unsupervised
approach and does not require prior knowledge or databases
in the inference procedure. The co-expression information
computed by hdWGCNA can be easily retrieved from the
Seurat object to facilitate custom downstream analyses beyond
the hdWGCNA package. hdWGCNA allows for comparisons
between experimental groups via DME testing and module
preservation analysis, which allowed us to identity inhibitory
neuron modules that were dysregulated in ASD and enriched
for ASD genetic risk genes, and microglial modules that were
dysregulated in AD and enriched for DAM genes. Our network
analyses of the ASD and AD datasets shows that hdWGCNA is
capable of uncovering expanded disease-relevant gene sets
via the interaction partners of known disease-associated genes
such as the ASD SFARI genes or the AD DAM genes. We
showed that the co-expression networks inferred by
hdWGCNA were highly reproducible in unseen datasets, indi-
cating that this is a robust methodology that reflects the under-

lying biology of the system of interest rather than picking up on
technical artifacts. Further, hdWGCNA sheds new light on pre-
viously identified co-expression networks and gene modules by
allowing modules to be projected from a reference dataset to a
query dataset. The hdWGCNA R package directly extends the
familiar Seurat pipeline and the SeuratObject data structure,
enabling researchers to rapidly incorporate network analysis
into their own workflows, going beyond cell clustering and
differential gene expression analysis toward systems-level
insights.

Limitations of the study

Transcriptomic measurements of single cells are generally noisy,
imposing challenges and limitations in the analysis of these data-
sets. Technical noise may arise from dropout events or from
various steps in the experimental protocols, potentially making
downstream data analysis and interpretation more difficult.
hdWGCNA explicitly tries to handle the issues of technical drop-
outs and data sparsity by constructing networks in metacell or
metaspot transcriptomic profiles rather than directly using the
single-cell data. Furthermore, we show that module preservation
statistical testing can assess the reproducibility of a co-expres-
sion network in external validation datasets, giving additional
confidence in the results from hdWGCNA.

STARXMETHODS

Detailed methods are provided in the online version of this paper
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Requests for further information should be directed to the lead contact, Vivek Swarup (vswarup@uci.edu).

Materials availability

This study did not generate new unique reagents.
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Data and code availability
o All of the sequencing data used in this paper were obtained from publicly available sources, and are listed in the key resources
table.
e The hdWGCNA R package has been deposited at Zenodo (see key resources table). The R package code and full tutorials are
available at https://swaruplab.bio.uci.edu/hdWGCNA. The data processing and analysis code has been deposited at Zenodo
(see key resources table) and is available on GitHub at this repository: https://github.com/smorabit/hdWGCNA_paper.
® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Bootstrapped aggregation of single cell transcriptomes to form metacells

Single-cell gene expression datasets typically contain many more zero valued entries than non-zero valued entries, meaning that
these datasets are sparse. We formally define the sparsity of a gene expression matrix in Equation 1. Given an un-normalized counts
matrix X with genes and N; cells, sparsity is the sum of all zero valued elements.

Ny N 1 X, =0
il f:1{0 else

Ny X N (Equation 1)

sparsity =

Complementing sparsity, the density of a single gene expression matrix is the sum of all non-zero valued elements divided by the
total number of matrix elements, such that density = 1 — sparsity. A matrix is considered sparse if sparsity >0.5. Conventional
single-cell gene expression assays yield sparse gene expression matrices. In general, correlations of sparse vectors may lead to
downstream conclusions that are not robust or reproducible. Thus, as part of the hdWGCNA workflow, we propose a bootstrapped
aggregation (bagging) algorithm to construct a gene expression matrix M with considerably reduced sparsity prior to performing co-
expression network analysis. Zero valued entries in a gene expression matrix have both biological and technical origins,”® and it is
important to prioritize preserving relevant biological signals while reducing technical noise. For example, a biological zero may be
attributed to a gene that is only expressed in a given cell population, whereas a technical zero may arise from low sequencing depth.

We define the set of unique cell barcodes C and the set of unique genes G such that ||C|| = N. and ||G|| = Ng. Transcriptomically
similar cells are identified in a dimensionally-reduced representation D of the gene expression matrix X using the k-nearest neighbors
(KNN) algorithm,”® yielding N, sets of k cells. Inherently, there is overlap between these N, sets of k neighboring cells, and we include
a parameter m to control for the maximum allowable overlap. Cells are uniformly randomly sampled from C, and gene expression
signatures from X are aggregated (sum or average) with their k nearest neighbors. A cell is skipped if its neighbors have too much
overlap with the set of neighbors from previously selected cells, in order to reduce redundancy in the downstream metacell

Algorithm 1. ConstructMetacells

Require: X such that dim(X) = Ng, N > gene expression matrix of Ny genes and N, cells
Require: D such that dim(D) = c,d > dimensional reduction of X, with N, cells and d dimensions
Require: C > the set of unique cell barcodes

Require: k > 2

Require:m >0

Require: t > 1

K—KNN(D, k) > K is a matrix of N, rows and k columns with the k nearest neighbors of each cell
S« [ b list containing barcodes of cells selected for aggregation, initialized as empty
i<0

while i <N and ||S|| <t do

je—i+1

c<«ceprC > c is randomly sampled from C

No —max(||Ke. UKj.||Vj € S) > the maximum number of overlapping neighbors between
¢ and barcodes in

S

if.

N, <m then

S«+—[S,c]

end if.

C<C\S

end while.

J—[Ks. Vs € S] > subset of K with the selected cells S

M35, s, (Xis wheres = Jy.)]. > final metacell expression matrix
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expression matrix. The cell sampling loop converges when there are no more cells that satisfy the m, or when the number of target
metacells t has been reached, yielding a metacell gene expression matrix M. Sparsity of the input and output matrices X and M are
computed to check that sparsity is reduced throughout this process. This metacell bagging algorithm is implemented as part of the
hdWGCNA R package in the ConstructMetacells function, and the pseudocode for this algorithm is defined in Algorithm 1. We denote
a vector containing the elements of the i-th row of a matrix as M;, and a vector containing the elements of the i-th column as M.;.

Aggregation of neighboring spatial transcriptomic spots to form metaspots

Sequencing-based ST approaches such as the 10x Genomics Visium platform also yield sparse transcriptomic profiles, thus intro-
ducing the same potential pitfalls as single-cell data for co-expression network analysis. To alleviate these issues, we sought to
develop a data aggregation approach similar to our metacell algorithm. This approach leverages spatial coordinates rather than
the dimensionality-reduced representation (Figure S6). For each ST spot, we obtain a list of physically neighboring spots. We
then devise a grid of ”principal spots”, which are evenly spaced spots throughout the input tissue which serve as anchor points
for aggregating neighboring spots. Each principal spot and its neighbors are aggregated into one metaspot, with at most seven spots
merging into one metaspot and at most two overlapping spots between metaspots. We implemented this procedure as part of the
hdWGCNA R package in the MetaspotsByGroups function. Similar to the MetacellsByGroups function, the user may specify groups
within the Seurat object to perform the aggregation, such that metacells would only be grouped within the same tissue slice, anatom-
ical region, or other annotation. For all downstream analysis with hdWGCNA, the metaspot expression dataset can be used in place
of the metacell expression matrix.

Computing co-expression networks

Following metacell or metaspot construction, hdWGCNA constructs co-expression networks and identifies gene modules, building
off of the WGCNA workflow."*"":"8 The gene-gene adjacency matrix A is computed by taking the pairwise correlation of genes in G in
the metacell expression matrix M, or in a subset of M for a specified cell population. Consider the gene expression vectors x; = M,
and x; = M, for an arbitrary pair of genes (i,j) € G, we compute the signed correlation as:

1+cor(x;, x;)
=
Note that a;; is a linear transformation that retains the sign of the correlation while satisfying 0 < a;; < 1. We define A as a symmetric

adjacency matrix of size Ny XN, containing the signed correlations a;; for all pairs (i,j) € G as in Equation 2. In order to emphasize
strong correlations, we raise the elements of A to a power (3, and we refer to this as soft power thresholding.

(Equation 2)

= (@)
. i = (@) (Equation 3)
Qjj = Qjj X SIgn(COI’(X,',X/‘))
Now we have the gene-gene correlation raised to a power 8, and an alternative metric &;; which also retains the sign of the cor-
relation between these genes. The final co-expression network is then computed as a signed topological overlap matrix (TOM).
The TOM describes shared neighbors between the a pair of genes (i,j). We define the signed TOM as

)ar‘ﬁzu#ﬂhuaw

TOM.sivgned —
g min(k,‘,kj)+1 — ‘0{,‘_]|

(Equation 4)

where k; and k; represent the connectivity between genes j and j

ki = Z|§u.f| (Equation 5)

u#i
In the signed TOM, negative correlations serve to negatively reinforce the network connection, which is not the case in the unsigned
TOM.
ot [+3 o1 B |

min(k,-, k/)+1 — |0£;_/'|

TOM; S = (Equation 6)

Genes are then grouped into modules based on the TOM network representation using the Dynamic Tree Cut algorithm,® such that
co-expression modules consist of genes with high topological overlap. Dynamic Tree Cut hierarchically clusters genes based on their
dissimilarity in the TOM, denoted as DissTOM = 1 — TOM, thereby yielding a mapping between module assignments and gene
names. The overall process transforming a metacell expression matrix M to a signed TOM co-expression network is implemented
as part of the hdWGCNA R package in the ConstructNetwork function. Here we described the recommended workflow, using a
signed adjacency matrix and a signed TOM, but ConstructNetwork can optionally construct unsigned or signed hybrid networks
as well.
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Computing module eigengenes

Module eigengenes (MEs) are a convenient metric to summarize the gene expression of a given co-expression module. While the co-
expression network was computed using the metacell expression matrix M, we compute MEs in the single-cell expression matrix X,
thus yielding information about the activity of each module in each cell. The expression matrix for the /-th module consisting of genes
GV cGis X" = Xgu . The ME for module / is then computed by performing singular value decomposition (SVD), such that X!) =

UDVT . Prior to running SVD, X!) must be scaled and centered, and we accomplish this using the Seurat function ScaleData. Impor-
tantly, ScaleData enables us to optionally perform regression to diminish the effects of selected technical covariates prior to

computing MEs. The first column of V, containing the right-singular vectors V() = (vﬁ'>,vg),vg>7 ...), is the ME of module /.
ME? = v (Equation 7)

While SVD or other dimensionality reductions on a single-cell gene expression matrix contains critical biological information, tech-
nical artifacts are also present in these representations. There are many computational methods aiming to reduce technical effects in
a reduced dimensional space, and these methods are often referred to as “batch-correction” or “integration” approaches.”® In
particular, Harmony?? is an algorithm well suited for correcting batch effects that may be present in a dimensionality-reduced sin-
gle-cell expression dataset,”® and here we propose applying Harmony to MEs to maximize the biological information content of
each ME. We implemented the ME computation algorithm, as defined in Algorithm 2, as part of the hdWGCNA R package in the func-
tion ModuleEigengenes.

Algorithm 2. ModuleEigengenes

Require: X such that dim(X) = Ng, N. > normalized gene expression matrix of Ny genes and N, cells
Require: modules > the table containing mappings between genes and modules.
Require: mods > list of modules.

Require: covariates > covariates to regress.

Require: batches > batch identity to correct with Harmony, or null to ignore.

ME <[]

for | in mods do

modules ) — subset(modules, module = =

G < modules *) [,gene]

XU) <—XG(/)‘,f

X" — ScaleData(X?), covariates)

VO« svD (X"

ME O v

if batches #NULL then

V" — Harmony(V"), batches)

ME O — )

end if.

ME « [ ME, ME (]

end for.

Projecting co-expression modules in unseen data

In a typical hdWGCNA workflow, we perform metacell bagging, co-expression network analysis, module identification, and ME
computation using the same single-cell gene expression dataset, starting from the expression matrix X. Given the module-gene
assignment table derived from a reference dataset X, we can run the ModuleEigengenes algorithm on a query dataset Y where
the genes in Y must be contained in the set of genes in X such that Gy = Gx. We implemented this process in the hdWGCNA R pack-
age as the ProjectModules function. Importantly, we designed ProjectModules to be agnostic towards the data modality or species
used in the reference and query datasets, thereby allowing for a host of comparative analyses. ProjectModules can facilitate cross-
species analysis leveraging a table that maps gene symbols between two genomes. Modules can be projected into epigenomic data
modalities such as single-cell assay for transposase accessible chromatin with sequencing (scATAC-seq) provided a measure of
gene expression estimated from chromatin accessibility, such as Signac®® gene activity or ArchR®® gene scores. This approach
can also be used to project modules from bulk expression datasets into single-cell or spatial transcriptomics datasets.

Implementation of the hdWGCNA R package

hdWGCNA greatly extends upon scWGCNA, 2 our previous method for co-expression network analysis in single-cell transcriptomics
data. scWGCNA was originally used to identify co-expression networks using bulk and single-cell RNA-seq together,' and in
another study we showed that sScWGCNA was suitable for network analysis using scRNA-seq alone.?® Contrasting the hdWGCNA
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package, the implementation of scWGCNA was an R package containing a single function for metacell construction, and a single
tutorial to cover the basics of network analysis using the WGCNA package' with the metacell matrix. We implemented hdWGCNA
as an open-source object-oriented R package that leverages the widely used SeuratObject data structure. The hdWGCNA R pack-
age includes all necessary functions for network inference, data visualization, statistical testing, and downstream analysis such as
pathway enrichment. Further, hdWGCNA includes functions to extract the network data from the SeuratObject to easily facilitate
custom analysis with external Bioconductor or R packages. In order for hdWGCNA to be widely useful across the genomics com-
munity, we developed a detailed documentation website containing tutorials for network analysis in single-cell and spatial transcrip-
tomics data, as well as tutorials for advanced analysis like consensus network analysis and network preservation testing. Unlike
scWGCNA, the metacell construction algorithm (Algorithm 1) in hdWGCNA includes new parameters to avoid redundant metacells,
the module eigengene algorithm in hdWGCNA (Algorithm 2) accounts for batch effects and additional covariates in the input dataset,
and hdWGCNA contains functions to handle spatial transcriptomics datasets. Several key steps in co-expression network analysis,
like calculating module eigengenes and eigengene-based connectivity, have been re-implemented to operate on sparse matrices,
greatly decreasing runtime and memory usage. hdWGNCA is completely technology agnostic, and can be adapted to handle
high dimensional counts matrices from any single-cell or spatial transcriptomics platform. Additionally, hdWGCNA includes a novel
approach for visualizing genes and the underlying network in a two-dimensional manifold of co-expression space using UMAP."'® As
shown throughout this manuscript, hdWGCNA includes functions for projecting co-expression networks into a variety of external da-
tasets. The widespread adoption of single-cell genomics has led to many biologists running their own computational analysis, and we
designed the hdWGCNA R package with these individuals in mind through our various step-by-step tutorials and detailed
documentation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Reprocessing published datasets

The key resources table details the different datasets used throughout this manuscript. We used several published datasets gener-
ated by our own group,'%?%°® and sequencing data was not re-downloaded for these studies. For all human snRNA-seq datasets, we
applied a uniform processing pipeline to process each dataset starting from the raw sequencing data and resulting in an anndata
object’? containing UMI counts, normalized gene expression, cluster identities, and cell type annotations. Parameters used
throughout this processing pipeline vary slightly between different datasets, and all parameters are noted in the data processing
scripts in our github repository. For each biological replicate, we used the kb count function from kallisto | bustools®' to psuedoalign
raw sequencing reads to the reference transcriptome and quantify gene expression attributed to each cell barcode. The human refer-
ence transcriptome (GRch38) was obtained from the 10x Genomics website (version 2020-A, July 2020), and was re-formatted for
use with kallisto | bustools using the kb ref function. For each of the UMI counts matrices, we used the remove-background function
from cellbender’* to simultaneously identify which barcodes corresponded to cells and to remove counts attributed to ambient RNA.
We then used scrublet’® to compute “doublet scores”, the likelihood of each barcode mapping to more than one cell. Counts
matrices from each biological replicate in a given dataset are then merged into a single anndata object, and any relevant sample level
meta-data (age, sex, disease status) was stored in the adata.obs table. We performed a percentile filtering of cells that were outliers
from each dataset based on the number of UMI per cell the percentage of UMI attributed to mitochondrial genes per cell, and the
doublet score. Filtering based on these criteria was performed in each sample, as well as dataset-wide. After filtering, downstream
data processing steps were carried out with SCANPY.”? The UMI counts matrix was normalized with In(CPM) using the functions
sc.pp.normalize_total and sc.pp.log1p. Highly variable genes were identified using the function sc.pp.highly_variable_genes, and
these genes are used as the features for downstream analysis steps such as principal component analysis (PCA). The normalized
expression matrix was then scaled to unit variance and centered at zero using the function sc.pp.scale. PCA was performed on
the scaled expression matrix using the function sc.tl.pca. Harmony®? was used to correct the PCA matrix for batch effects using
the function sc.external.pp.harmony_integrate. The harmonized PCA matrix was then used to construct a cell neighborhood graph
using the function sc.pp.neighbors. The cell neighborhood graph was then used to compute a two-dimensional representation of the
data with uniform manifold approximation and projection'® using the function sc.tl.umap, and to group cells into clusters with Leiden
clustering® using the function sc.tl.leiden. We inspected the gene expression signatures in each Leiden cluster for a panel of canon-
ical cell-type marker genes in order to assign a cell-type label to each cluster, and to identify additional doublet clusters that may have
escaped the previous filtering steps. The distribution of quality control metrics was inspected in each cluster. We filtered out cells
belonging to clusters that displayed conflicting expression of cell-type marker genes, or were outliers in their quality control metrics.
After filtering these low-quality clusters, we ran UMAP and Leiden clustering again, resulting in the final processed dataset. We used a
custom script to convert the datasets from anndata to SeuratObject by saving the individual components (counts matrix, cell meta-
data, gene meta-data, dimensionality reductions, etc.) in Python and then loading them back into R to create a SeuratObject.

Iterative network analysis of major cell types in the human cortex

We performed an iterative co-expression network analysis of the major cell types (ASC, EX, INH, MG, ODC, OPC) in the human PFC
snRNA-seq dataset from Zhou et al.,"’ only including samples from control brains (36,671 cells and 36,601 genes). We retained
genes that were expressed in at least 5% of cells for downstream analysis. Metacells were computed separately for each major
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cell type and each sample using the hdWGCNA function MetacellsByGroups, aggregating 25 cells per metacell. Further, we ran
MetacellsByGroups while varying the K parameter in order to asses the resulting metacell expression matrix sparsity. For each
cell type, we applied the following hdWGCNA commands with default arguments to perform network analysis: TestSoftPowers,
ConstructNetwork, ModuleEigengenes, ModuleConnectivity, and RunModuleUMAP. We performed module preservation analysis®°
of the ODC co-expression modules in an external snRNA-seq dataset of the human PFC."? Modules were projected from the refer-
ence to query dataset using the hdWGCNA function ProjectModules, and the module preservation test was performed using
ModulePreservation with 100 permutations.

Comparison of hdWGCNA with alternative metacell approaches

For the purpose of co-expression network analysis, we compared our metacell aggregation approach (Algorithm 1) with two alter-
native approaches, namely Metacell2'* and SEACells.'® We ran the three metacell approaches using the recommended settings on
the same dataset, and then ran hdWGCNA on each of the resulting metacell expression matrices. We used a scRNA-seq of 6,800
CD34* hematopoietic stem and progenitor stem cells included with the SEACells package, and we used the cluster annotations
from the original study. Notably, SEACells and Metacell2 do not account for cell labels in their aggregation procedures, which
may result in a number of metacells containing transcriptomes from differently labeled cells. For the hdWGCNA metacell algorithm,
we aggregated 50 cells per metacell. For the three metacell expression matrices derived from the different algorithms, we performed
co-expression network analysis with the standard hdWGCNA pipeline by sequentially running the following functions with default
parameters: TestSoftPowers, ConstructNetwork, ModuleEigengenes, ModuleConnectivity, and RunModuleUMAP. With the same
cluster settings, Dynamic Tree Cut recovered a different number of co-expression modules for the three methods (hdWGCNA: 16
modules; MC2: 13 modules; SEACells: 20 modules). We performed pairwise comparisons between the gene modules detected
with each metacell approach using Fisher’s exact test to test module overlaps. Additionally, we performed rank-rank hypergeometric
overlap®® (RRHO) tests using the RRHO function from the R package RRHO (version 1.13.0) to compare the kME ranking between
modules across methods. To compare MEs and Seurat module scores, we ran the AddModuleScore function, and computed Pear-
son correlations between each ME and each module score.

Application of hdWGCNA to a one million cell scRNA-seq dataset

We obtained a publicly available scRNA-seq dataset from Parse Biosciences of 1M peripheral blood mononuclear cells (PBMCs)
from twelve healthy donors and twelve Type-1 diabetic donors generated using the Evercode Whole Transcriptome Mega protocol.
This analysis was performed on a compute cluster with 200 GB of memory and eight CPU cores. The UMI counts matrix and sample
meta data was downloaded from Parse Biosciences’ Website. We processed the counts matrix using SCANPY using a similar pipe-
line as described in the reprocessing published dataset section. For quality control, we excluded cells with greater than 25% mito-
chondrial reads, greater than 5,000 genes, and greater than 25,000 counts. After dimensionality reduction with PCA, Harmony??
batch correction, and Leiden clustering® (resolution = 1), we annotated cell populations using PBMC marker genes obtained
from Azimuth.” We excluded clusters with conflicting cell-type markers as potential doublet populations, retaining a total of
965,363 cells and 26,862 genes for downstream analysis. The major cell compartments recovered in this analysis were similar to
those reported by Parse Biosciences in their analysis, including as T-cells, B-cells, monocytes, dendritic cells, basophils, and plas-
mablasts. Following the SCANPY data processing, we wrote the individual components (counts matrix, cell meta-data, gene meta-
data, dimensionality reductions, etc.) to disk so they could be loaded into R and assembled into a Seurat object.

We performed co-expression network analysis iteratively for the plasmablast, T-cell, B-cell, monocyte, and dendritic cell compart-
ments using an hdWGCNA pipeline for each group (Figure S5). Metacells were constructed separately for each sample and each cell
cluster with the hdWGCNA function MetacellsByGroups, aggregating 50 cells per metacell. The metacell aggregation step had a run-
time of 85 min and 59 s. For each cell population, we first subset the Seurat object for the cell population of interest and then per-
formed the standard hdWGCNA pipeline by sequentially running the following functions with default parameters: TestSoftPowers,
ConstructNetwork, ModuleEigengenes, ModuleConnectivity, and RunModuleUMAP. We note that for the largest cell population
(T-cells, 555,417 cells), the runtime for the network construction step was 186 s.

Runtime and memory usage of hdWGCNA

We tested the runtime and memory usage of the primary co-expression network analysis functions in hdWGCNA using the Velme-
shev et al. 2019° dataset. We selected the neuronal cell population from the dataset for network analysis, and downsampled the data-
set at different sizes ranging from 1,000 to 50,000 cells to test the runtime and memory usage as a function of the number of cells in
the input dataset. The following functions were tested: SetupForWGCNA, MetacellsByGroups, TestSoftPowers, ModuleEigengenes,
and ModuleConnectivity. We tested ModuleEigengenes with and without Harmony correction. All of these tests were done using
eight parallel threads, and hdWGCNA can be sped up further by increasing the number of parallel threads. Importantly, the number
of input genes and other network analysis parameters also have an effect on runtime and memory usage.

Evaluating performance of hdWGCNA co-expression networks

We tested the functional coherence of hdWGCNA co-expression networks using the Extending 'Guilt-by-Association’ by Degree
(EGAD)?® algorithm. Connected genes in biological networks are potentially involved in the same processes, and EGAD evaluates
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this network property given a set of gene-process annotations. We performed functional coherence testing with the EGAD R package
(version 1.18.0) using the six cell-type-specific co-expression networks from the Zhou et al. 2020'" human PFC dataset. We down-
loaded a table of gene ontology associations for each gene from ensembl biomart, and formatted this table using the EGAD function
make_annotations. We then ran the functional coherence test with EGAD using the function run_GBA, using the TOM as the input
network, and we report the distributions of area under the receiver operating characteristic curve (AUC) values for each tested bio-
logical process in the six co-expression networks.

We used the xgboost R package® (version 1.7.3.1) to perform XGBoost regularized regression analysis to predict a given gene’s
expression based on the expression of the top ten module hub genes for the module each gene was assigned to. This analysis was
done using the six cell-type-specific co-expression networks described in the iterative network analysis of major cell types in the
human cortex section. We performed 5-fold cross validation, and measured the performance of the model as a test set root-
mean-square error (RMSE) averaged across the 5-folds. We ran XGBoost for 100 iterations for each individual test, with a maximum
tree depth of 3 and regularization alpha of 0.5.

Spatial co-expression network analysis in the mouse brain

We collected the publicly available 10x Genomics Visium mouse brain dataset using the SeuratData R package. This dataset con-
sists of an anterior and a posterior slice from a sagittal brain section, which we merged into a single Seurat object comprising 6,049
ST spots and 31,053 genes. We processed this dataset using the standard Seurat pipeline by sequentially running the following com-
mands: NormalizeData, FindVariableFeatures, ScaleData, RunPCA, FindNeighbors, FindClusters, and RunUMAP. The top thirty PCs
were used for Louvain clustering®* and UMAP. While ST spots were clustered based on transcriptomic information alone, we were
able to annotate them based on anatomical features.

Neighboring ST spots were aggregated into metaspots in the anterior and posterior slices using the hdWGCNA function
MetaspotsByGroups. We retained genes expressed in 5% of spots for downstream analysis, totaling 12,355 genes. We tested for
the optimal soft-power threshold g based on the the fit to a scale-free topology using the hdWGCNA function TestSoftPowers.
The co-expression network was constructed using all ST spots spanning both the anterior and posterior slices using the hdWGCNA
function ConstructNetwork with the following parameters: networkType = “signed”, TOMType = “signed”, soft_power = 5, deep-
Split = 4, detectCutHeight = 0.995, minModuleSize = 50, mergeCutHeight = 0.2. Module eigengenes and eigengene-based con-
nectivities were computed using the ModuleEigengenes and ModuleConnectivity functions respectively. This approach identified
12 spatial co-expression modules, and we visualized the spatial distributions of these modules by plotting their MEs directly onto
the biological coordinates for each spot. The co-expression network was projected into two dimensions using UMAP with the
hdWGCNA function RunModuleUMAP, and we used the top five hub genes (ranked by kMEs) as the input features for UMAP.
We used the R package enrichR® (version 3.0) to perform enrichment analysis on the top 100 genes in each module ranked by
kME using the following databases: GO_Biological_Process_2021, GO_Cellular_Component_2021, GO_Molecular_Function_2021,
WikiPathway_2021_Mouse, and KEGG_2021_Mouse. We assessed the overlap between genes from these spatial co-expression
modules and differentially expressed genes in each cluster from a recent snRNA-seq study of the whole mouse brain using Fisher’s
exact test implemented in the R package GeneOverlap (version 1.26.0). Finally, we performed a separate network analysis on a sub-
set of the ST dataset only containing the cortical layers 2-6, and we followed an identical hdWGCNA analysis pipeline to the full ST
dataset for the cortical analysis.

Isoform co-expression network analysis in the mouse hippocampus
We performed isoform co-expression network analysis in radial glia lineage cells (radial glia, astrocytes, ependymal cells, and neural
intermediate progenitor cells) from mouse hippocampus SclSOrSeq dataset from Joglekar et al.® using the hdWGCNA R package.
The gene-level counts matrix for this dataset was obtained from the Gene Expression Omnibus database (GEO: GSE15845), and the
isoform-level counts matrix was obtained directly from the authors of the original study. We formatted this dataset as a Seurat object
with an isoform-level expression assay and a gene-level expression assay. The standard Seurat processing pipeline was used on the
gene-level expression assay, where we sequentially ran the functions NormalizeData, FindVariableFeatures, ScaleData, and
RunPCA with default parameters. The dataset was projected into two dimensions by running UMAP on the PCA matrix with 30 com-
ponents using the RunUMAP function. For all downstream purposes, the cell-type annotations from the original study were used.
Radial glia cells were selected for network analysis, and isoforms expressed in fewer than 1% of these cells were excluded, yielding
a set of 2,190 cells and 10,375 isoforms from 4,770 genes. We constructed metacells separately for each cell type on the isoform-
level expression assay using the hdWGCNA function MetacellsByGroups with k = 30. We performed a parameter sweep for the
soft-power threshold § using the function TestSoftPowers. The isoform co-expression network was constructed using the
ConstructNetwork function with the following parameters: networkType = “signed”, TOMType = “signed”, soft_power = 5, deep-
Split = 4, detectCutHeight = 0.995, minModuleSize = 50, mergeCutHeight = 0.5. This approach identified 11 isoform co-expression
modules. Isoform-level module eigenisoforms were computed using the ModuleEigengenes function, and eigenisoform-based con-
nectivity was computed using the ModuleConnectivity function with default parameters. We computed a semi-supervised UMAP
projection of the co-expression network using the hdWGCNA function RunModuleUMAP, with the module labels and the top six
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hub isoforms (by kMEiso) per module as the input features. We used the enrichR to identify enriched pathways in each module ranked
by using the following databases: GO_Biological_Process_2021, GO_Cellular_Component_2021, GO_Molecular_Function_2021,
WikiPathway_2021_Mouse, and KEGG_2021_Mouse.

To assess isoform co-expression network dynamics throughout the cellular trajectories within the radial glia lineage, we performed
pseudotime analysis using Monocle 3¢ (version 1.0.0). We computed a UMAP of just radial glia lineage cells using the Monocle 3
function run_umap. A trajectory graph was built on this UMAP representation using the function learn_graph, and pseudotime
was calculated with the function order_cells using the radial glia cells as the starting point. We split the pseudotime trajectory into
three lineages based on the distinct cell fates (astrocyte, neuronal, and ependymal). We grouped cells into 50 evenly-sized bins
throughout each trajectory, and we applied loess regression to the average module eigenisoform of each module in these bins to
inspect the dynamics of each module throughout development. We wrote a custom script to generate a GTF of isoform models
output from the ScISOrSeq pipeline. To visualize expressed isoforms, we plotted isoforms from this GTF on the UCSC genome
browser as well as in Swan.®®

Co-expression analysis network of inhibitory neurons in autism spectrum disorder

We selected inhibitory neurons from the Velmeshev et al.® human autism spectrum disorder (ASD) snRNA-seq dataset for co-expres-
sion network analysis. Of the 121,451 cells in this dataset, 20,249 were labeled as inhibitory neurons based on marker gene expres-
sion profiles. We retained 11,194 genes which were expressed in at least 10% of cells from any cluster, and had non-zero variance in
the inhibitory neuron population. Metacell transcriptomic profiles were constructed separately for each of the 54 samples and each
cell type using the hdWGCNA function MetacellsByGroups, aggregating 50 cells into one metacell. We selected a soft-power
threshold 8 = 9 based on the parameter sweep performed with the TestSoftPowers function. The co-expression network was
computed with the ConstructNetwork function with the following parameters: networkType = “signed”, TOMType = “signed”, soft_
power = 9, deepSplit = 4, detectCutHeight = 0.995, minModuleSize = 50, mergeCutHeight = 0.2. Module eigengenes were computed
using the ModuleEigengenes function, and we applied Harmony?? to correct MEs based on sequencing batch. Eigengene-based
connectivity for each gene was computed using ModuleConnectivity. The co-expression network was embedded in two dimensions
using UMAP with the RunModuleUMAP function with the top five genes (ranked by KMEs) per module as the input features. Distri-
butions of MEs were compared between ASD and control samples for each inhibitory neuron subpopulation using a two-sided Wil-
coxon rank-sum test with the R function wilcox.test. We used the enrichR®® to perform enrichment analysis on the top 100 genes in
each module ranked by KME using the following databases: GO_Biological_Process_2021, GO_Cellular_Component_2021, GO_
Molecular_Function_2021, WikiPathway_2021_Human, and KEGG_2021_Human. Furthermore, we computed the overlap between
co-expression modules and ASD-associated genes from the SFARI Gene database using the R package GeneOverlap, which cal-
culates the overlap between sets of genes using Fisher’s exact test.

Consensus co-expression network analysis of microglia in Alzheimer’s disease

We performed consensus co-expression network analysis of microglia in Alzheimer’s disease (AD) using three published snRNA-seq
datasets.'%'? The individually processed datasets were merged into a single Seurat object comprising 189,127 nuclei, and the data-
sets were integrated into a common dimensionally-reduced space using PCA and Harmony.?* We retained all nuclei labeled micro-
glia for network analysis based on expression of canonical marker genes such as CSF1R (9,904 nuclei), and genes expressed in at
least 5% of microglia from any of the three studies were retained (7,900 genes). Metacells were constructed in groups of cells based
on AD diagnosis status and study of origin, aggregating 25 cells per metacell. Within hdWGCNA, we used the SetMultiExpr function
to create a list of expression matrices containing the selected genes and metacells for the three studies. We performed a separate
parameter sweep for the three expression matrices using the hdWGCNA function TestSoftPowerConsensus, ensuring that we used
an appropriate 8 value for each dataset (Mathys etal.: 3 = 6, Zhouetal.: 8 = 8, Morabito & Miyoshietal.: 3 = 6). The consensus co-
expression network was contructed using the hdWGCNA function ConstructNetwork using the consensus = TRUE option. Individual
TOMs were computed for each dataset, and they were scaled based on the 80th percentile in order to alleviate different statistical
properties specific to each dataset rather than the underlying biology. A consensus TOM was computed by taking the element-wise
minimum of the individual TOMs from each dataset. Therefore, large topological overlap values between two genes, which indicate a
strong co-expression relationship, are supported across all three datasets in the consensus TOM. We performed hierarchical clus-
tering on the consensus TOM, and we used the Dynamic Tree Cut algorithm® was used to identify consensus co-expression modules
based on the hierarchy. Module eigengenes were computed using the ModuleEigengenes function, and we applied Harmony®* to
correct MEs based on the dataset of origin. Eigengene-based connectivity for each gene was computed using
ModuleConnectivity. We visualized the network using UMAP with the top ten hub genes (ranked by KMEs) per module as the input
features, annotating the hub genes and known disease-associated microglia genes.’® We used the enrichR®° to perform enrichment
analysis on the top 100 genes in each module ranked by kME using the following databases: GO_Biological_Process_2021, GO_
Cellular_Component_2021, GO_Molecular_Function_2021, WikiPathway_2021_Human, and KEGG_2021_Human.

We sought to model the transcriptional dynamics governing the shift between homeostatic and activated microglia in AD, therefore
we performed pseudotime analysis using Monocle 3°° to build a continuous trajectory of microglia cell states. A trajectory graph was
built on the microglia UMAP using the function learn_graph, and pseudotime was calculated with the function order_cells. We ori-
ented the start of pseudotime based on the expression of homeostatic microglia marker genes, such as P2RY12, CX3CR1, and
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CSF1R. We grouped cells into 50 evenly-sized bins throughout each trajectory, and we applied loess regression to the average mod-
ule eigengene of each module in these bins to inspect the dynamics of each module throughout the microglia trajectory.

To link the integrated microglia snRNA-seq dataset with polygenic risk of disease for individual cells, we used the scDRS python
package (version 1.0.0).° This pipeline takes 1) a set of putative disease genes derived from GWAS summary statistics and 2) a
scRNA-seq dataset as inputs, and outputs disease enrichment statistics for a given disease (raw and normalized disease scores,
cell-level scDRS p value, and Z-scores converted from the p values). GWAS summary statistics of 74 diseases and complex traits
supplied by scDRS were utilized as gene sets, among which a gene set by Jansen et al.° provided the set of genes associated with
AD. We then visualized the AD scDRS Z-scores in the integrated AD microglia trajectory, and we correlated the scDRS score with the
trajectory using a Pearson correlation.

We performed module preservation®® analysis in a variety of external datasets from human and mouse''+'??%:55758 to test for the
reproducibility of the consensus AD microglia modules in the microglia population from each dataset. We used the hdWGCNA func-
tion ProjectModules to compute module eigengenes for the consensus AD microglia modules for each query dataset. The module
preservation test was performed using the hdWGCNA function ModulePreservation with 100 permutations, and we reported the
preservation Z-summary statistics in a heatmap. For the Morabito & Miyoshi et al. snATAC-seq dataset, we used the gene activity®®
representation as a gene-level summary of chromatin accessibility in order to assess the module preservation at the epigenomic
level.

Analysis of bulk RNA-seq co-expression modules in single-cell data

We projected gene co-expression modules from two bulk RNA-seq studies of AD**°® into a published snRNA-seq study of AD to
assess their expression patterns within various cell populations. While both of these studies used the samples from the same
bulk RNA-seq cohort, the set of modules from Morabito et al. 2020°° was based on a consensus network analysis across six brain
regions while the other set of modules from the AMP-AD study®® were constructed separately for seven different brain regions. Mod-
ule eigengenes were computed for each of these bulk RNA-seq modules in the snRNA-seq dataset using the hdWGCNA function
ProjectModules, using Harmony to correct MEs based on sequencing batch. We visualized the MEs of the projected modules in
the snRNA-seq dataset using the Seurat function DotPlot.
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Figure S1. Schematic of the hdWGCNA workflow, related to Figure 1. 1. Prior to analysis with the hdWGCNA R package, the input single-cell or spatial dataset must be
fully processed. This includes quality control, data normalization, feature selection, dimensionality reduction, batch correction (if needed), and clustering. These steps can
be done using popular packages such as Seurat "= or SCANPY *. Regardless of the pipeline used, the dataset must be formatted as a Seurat object prior to running
hdWGCNA. 2. The functions MetacellsByGroups and MetaspotsByGroups are used to aggregate transcriptomically similar cells into metacells and spatially
proximal spots into metaspots respectively. 3. hdWGCNA requires the user to explicitly specify the expression matrix that will be used for network analysis using the function
SetDatExpr. For consensus network analysis, a list of expression matrices for each dataset or condition is specified with SetMultiExpr. 4. Different values for the
soft-power threshold 3 are tested using the functions TestSoftPowers and Test SoftPowersConsensus. The gene-gene correlation adjacency matrix is computed
and raised to a power 3 as a soft threshold, and the degree distribution of this augmented is fit to a power law distribution to assess the scale-free topology. 5.
Co-expression network computation and gene module detection is performed in one step using the function Const ructNetwork. 6. Module eigengenes (MEs) are
computed using the ModuleEigengene function, optionally allowing for regression and harmonization of covariates such as sequencing batch. Eigengene-based
connectivity (KME) is computed for each gene using the ModuleConnectivity function.
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Figure S2. Comparison of metacell algorithms for co-expression network analysis, related to Figure 1. A. UMAP plot of the 6,800 CD34+ hematopoietic stem and
progenitor stem cells scRNA-seq dataset® colored by annotations from the original study. B-D. hdWGCNA dendrograms for the co-expression networks constructed with the
hdWGCNA (B), MC2 (C), and SEACells (D) algorithms. Module assignments are shown below the dendrograms E-G. UMAP plots as in (A) colored by MEs for the
co-expression modules derived from the different metacell approaches. H-J. Module overlap comparisons between the different methods. Test was performed using Fisher's
exact test, and we report the odds ratio and FDR corrected p-values. K-M. Rank-rank hypergeometric overlap (RRHO) ® heatmaps comparing the ranks of kMEs for pairs of
modules derived from the expression matrices from the different metacell algorithms.
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Module eigengene (ME)

Figure S3. Correlation of module eigengenes and Seurat module scores, related to Figure 1. For each module in the human prefrontal cortex (PFC) snRNA-seq
dataset”, we computed Seurat module scores using the AddModuleScore function, and correlated with module eigengenes (MEs). We visualized the results as scatter plots
with linear regression lines (95% confidence interval shown in grey) for ASC (A), OPC (B), MG (C), INH (D), ODC (E), and EX (F).
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Figure S4. Module overlap analysis of cell-type-specific human PFC co-expression modules, related to Figure 1. We used Fisher’s exact test to perform pairwise
comparisons of gene sets from the 96 cell-type-specific co-expression modules from the Zhou et al. 2019 human prefrontal cortex (PFC) dataset’. We report the results of
these module overlap tests using the Jaccard index in the upper triangle of the heatmap, and the odds ratio in the lower triangle. The diagonal of the heatmap represents the
module overlapping with itself.
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Figure S5. Iterative co-expression network analysis of major cell compartments in the Parse Biosciences 1M PBMC dataset, related to Figure 1. A. UMAP plot of
965,363 PBMCs from 12 healthy donors and 12 Type-1 diabetic donors profiled with the Parse Biosciences Evercode Whole Transcriptome Mega protocol. Cells are colored
by cell-type annotations. B,E,H,K,N. Individual UMAP plots computed for each cell compartment separately for each cell compartment. C,F,l,L,0. UMAP plots for each cell
compartment colored by module eigengenes (MEs). D,G,J,M,P UMAP plots of the co-expression networks for each cell compartment, colored by gene module assignment.
Nodes represent genes and edges represent co-expression links. Network edges were downsampled for visual clarity.
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Figure S6. Metaspot aggregation for co-expression network analysis in spatial transcriptomics, related to Figure 3. A. Schematic representation of the metaspot
construction process. A grid of evenly spaced principal spots are specified throughout the given input ST section. The expression values for each principal spot and its direct
neighbors are merged into a single metaspot expression profile. This procedure yields a metaspot expression matrix for the given input ST section. B. Expression matrix
density (1 - sparsity) for the ST and metaspot expression matrices in the anterior and posterior mouse brain samples. C. Density plot showing the distribution of pairwise
Pearson correlations between genes from the ST expression matrix and the metaspot expression matrix.
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Figure S7. Mouse brain spatial transcriptomics co-expression network analysis, related to Figure 3. Caption on the next page — A. Hub gene networks for each
spatial co-expression module. The top 25 hub genes ranked by kME are visualized. Nodes represent genes, and edges represent co-expression links. B. Dendrogram
showing the hierarchical clustering of genes into co-expression modules based on the topological overlap matrix (TOM). C. Dot plot showing selected GO term enrichment
results for each co-expression module. D. Heatmap showing gene overlap tests (Fisher’s exact test) comparing the spatial co-expression modules to differentially expressed
genes (DEGs) in each cluster from a whole mouse brain snRNA-seq dataset®.
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Figure S8. Mouse brain spatial transcriptomics co-expression network in cortical layers 2-6, related to Figure 3. A. ST samples colored by module eigengenes
(MEs) for the seven cortical spatial co-expression modules. Grey color indicates a ME values less than zero. B. Hub gene networks for each cortical co-expression module.
The top 25 hub genes ranked by kME are visualized. Nodes represent genes, and edges represent co-expression links. C. Dot plot showing selected GO term enrichment

results for each co-expression module.
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Figure S9. Isoform co-expression network analysis in the mouse hippocampus, related to Figure 4. A. UMAP plot of the radial glia lineage clusters from the mouse
hippocampus SclSOrSeq dataset®. Cell type abbreviations are the following: ASC: astrocytes; EPD: ependymal cells; NPC: neuronal intermediate progenitor cells; RGL:
radial glia. B. UMAP plots as in a. colored by MEiso for the eleven isoform co-expression modules. C. Hub isoform networks for each radial glia lineage co-expression
modules. The top 25 hub genes ranked by kMEiso are visualized. Nodes represent isoforms, and edges represent co-expression links. D. Dendrogram showing the
hierarchical clustering of isoforms into co-expression modules based on the topological overlap matrix (TOM).
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Figure S10. Co-expression network analysis of inhibitory neurons in Autism spectrum disorder, related to Figure 5. A. Hub gene networks for each inhibitory
neuron co-expression modules. The top 25 hub genes ranked by KME are visualized. Nodes represent genes, and edges represent co-expression links. B. Dendrogram
showing the hierarchical clustering of genes into co-expression modules based on the topological overlap matrix (TOM). C. UMAP plot of the snRNA-seq dataset of human
major depressive disorder (MDD) '°. Cells are colored by cluster annotations. Cell type abbreviations are the following: ASC: astrocytes; EX: excitatory neurons; INH:
inhibitory neurons; MG: microglia; ODC: oligodendrocytes; OPC: oligodendrocyte progenitor cells; VASC: vascular cells. D. UMAP plots of the MDD dataset as in C. colored
by the MEs projected from the ASD dataset. E. Module preservation statistics for the ASD inhibitory neuron modules in the inhibitory neuron population from the MDD
dataset. Z-summary preservation < 2 indicates no evidence of module preservation, Z-summary preservation < 10 indicates moderate evidence of module preservation,
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Figure S11. Consensus co-expression network analysis of microglia in Alzheimer’s disease, related to Figure 6. A. UMAP plot of the integrated dataset from three
AD snRNA-seq studies "*'""'2, colored by cell type assignment. Cell type abbreviations are the following: ASC: astrocytes; EX: excitatory neurons; INH: inhibitory neurons;
MG: microglia; ODC: oligodendrocytes; OPC: oligodendrocyte progenitor cells; VASC: vascular cells. B. Dendrogram showing the hierarchical clustering of genes into
co-expression modules based on the consensus topological overlap matrix (TOM) from the three snRNA-seq datasets. C. Hub gene networks for each microglia consensus
co-expression modules. The top 25 hub genes ranked by kME are visualized. Nodes represent genes, and edges represent co-expression links.
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