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The human brain is composed of multiple heterogeneous 
subsets of cells; both neuronal and nonneuronal cells work 
in concert to perform simple and higher-order tasks. Recent 

studies have provided more precise molecular characterization 
and identification of neuronal and nonneuronal cell populations 
in the cognitively normal brain1–4. However, our understand-
ing of heterogeneous cell populations within the diseased brain is 
still largely limited, hindering our understanding of the biological 
processes underlying disease. Neurodegenerative disorders, such 
as AD, are marked with massive neuronal loss, accompanied by 
gliosis, and the role of specific neuronal and glial cell populations 
in AD pathophysiology remains unclear. Several single-cell and 
single-nucleus RNA-sequencing (snRNA-seq) studies have been 
performed on both mouse and human tissue to study AD, reveal-
ing cell-type-specific transcriptional changes5–9, but the regulators 
of these disease-associated cell subtypes have yet to be defined.

Moreover, a slew of genetic studies has been performed on 
AD, identifying multiple associated genetic risk variants10–16. 
Genome-wide association studies (GWAS) of complex diseases 
such as AD show that a substantial proportion of genetic risk from 
common variants partitions to distal regulatory elements, which are 
often cell-type-specific regions in disease-relevant tissues. While 
much work has gone into intersecting GWAS signals with func-
tional genomics assays, including bulk-tissue RNA-seq and assay for 
transposase-accessible chromatin with high-throughput sequenc-
ing (ATAC-seq)17, the resolution of such studies is noticeably lim-
ited by cell-type heterogeneity. A prerequisite for linking GWAS hits 
to cell types is a map that links distal regulatory elements with their 
target genes.

ATAC-seq profiles the open-chromatin regions within a tis-
sue and has recently been adapted for single-cell resolution18. 
To date, single-cell chromatin accessibility techniques, such as 
single-nucleus ATAC-seq (snATAC-seq) have been seldom used 
in primary samples of diseased tissues, with only two published 
studies of single-cell chromatin accessibility in the cognitively nor-
mal human brain19,20. Therefore, we performed snATAC-seq and 
snRNA-seq in the same AD postmortem human brain tissue sam-
ples to define AD-associated gene-regulatory programs at the epig-
enomic and transcriptomic levels, providing a powerful lens into 
the cellular heterogeneity of the brain and allowing us to unravel 
new biological pathways underlying neurodegeneration in specific 
cell populations.

Here, we present a multi-omic analysis of 191,890 nuclei from 
postmortem human brain tissue of AD and cognitively healthy 
controls at the single-nucleus resolution, in which we directly inte-
grated snRNA-seq and snATAC-seq datasets, thus providing a more 
complete understanding of the molecular changes in AD. We iden-
tified cell-type-specific candidate cis-regulatory elements (cCREs) 
based on chromatin accessibility and found disease-associated 
cell-subpopulation-specific transcriptomic changes. We identified 
transcription factors (TFs) that may regulate AD gene expression 
changes. Further, we applied pseudotime trajectory analysis on our 
integrated dataset to extensively characterize disease-associated 
glial cell states at the epigenomic and transcriptomic levels, expand-
ing on previous work exploring gene expression in diverse glial sub-
types. We integrated fine-mapped GWAS signals at selected AD risk 
loci with our snATAC-seq data to link AD risk signals to the specific 
cell types in which they are accessible and defined the cis-regulatory 
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chromatin accessibility networks at these loci. Moreover, as network 
analysis has been effective at clarifying disease transcriptomic sig-
natures in tissue-level RNA-seq data, we designed a coexpression 
network analysis pipeline, integrating single-cell and bulk-tissue 
RNA-seq datasets, that robustly identified AD-associated coexpres-
sion networks within each cell type. Altogether, we have clarified 
the gene-regulatory landscape of AD, highlighting the role of glia in 
AD pathophysiology and identifying several genes, namely SREBF1 
in oligodendrocytes, for further study in the context of AD. Finally, 
we provide an online interface for exploration of these datasets 
(https://swaruplab.bio.uci.edu/singlenucleiAD).

Results
Multi-omic analysis of the human prefrontal cortex. We per-
formed both snATAC-seq (10x Genomics; n = 12 late-stage AD; 
n = 8 control) and snRNA-seq (10x Genomics v3; n = 11 late-stage 
AD; n = 7 control) on nuclei isolated from the prefrontal cor-
tex (PFC) using postmortem human tissue from individuals with 
late-stage AD and age-matched cognitively healthy controls (74–90+  
years old; Fig. 1a). We defined late-stage AD and controls based 
on both Braak and plaque staging (Supplementary Tables 1 and 
2). We specifically aimed to generate both transcriptomic and epi-
genetic data from the same tissue sample (aliquots of samples from 
the same dissection; Methods) to minimize differences in cell-type 
composition between the two methods, thus allowing for meaning-
ful downstream integrated analysis. After quality-control filtering, 
we retained a total of 130,418 nuclei for snATAC-seq and 61,472 
nuclei for snRNA-seq (Supplementary Figs. 1 and 2, Supplementary 
Table 3 and Supplementary Note). To ensure the rigor of our study, 
we applied batch correction methods to the data from both assays, 
as library preparation limitations required multiple batches. For 
snATAC-seq, we used mutual nearest neighbors (MNN)21 to cor-
rect the latent semantic indexing reduced chromatin accessibility 
matrix, and for snRNA-seq, we used integrative non-negative matrix 
factorization (iNMF)22 to reduce dimensionality while simultane-
ously eliminating batch effects (Methods, Extended Data Fig. 1 and 
Supplementary Note). We applied uniform manifold approxima-
tion and projection (UMAP)23 dimensionality reduction and Leiden 
clustering24 to the batch-corrected epigenomic and transcriptomic 
datasets, identifying distinct cell-type clusters in snATAC-seq (35) 
and snRNA-seq (34; Fig. 1b,c). With snATAC-seq, we profiled all 
major cell types of the brain—excitatory neurons (24,076 nuclei; 
EX.a–e), inhibitory neurons (9,644 nuclei; INH.a–d), astrocytes 
(15,399 nuclei; ASC.a–f), microglia (12,232 nuclei; MG.a–e), 
oligodendrocytes (62,253 nuclei; ODC.a–m) and oligodendro-
cyte progenitor cells (4,869 nuclei; OPC.a)—annotated based on 
chromatin accessibility at the promoter regions of known marker 
genes (Fig. 1d and Extended Data Fig. 2). We used chromVAR25 
to compute TF motif variability in single nuclei by estimating the 
enrichment of TF binding motifs in accessible chromatin regions 
(Methods) and examined the enrichment of TF motifs by cell 
type with respect to diagnosis, identifying several TF motifs with 
increased enrichment with disease in astrocytes, excitatory neurons 
and microglia (Supplementary Fig. 3 and Supplementary Data 1). 
Moreover, we performed TF footprinting analysis to further clarify 
cell-type-specific TF regulation, highlighting the SOX9 TF footprint 
in oligodendrocytes. Interestingly, we noticed TF motif enrichment 
of oligodendrocyte-related TFs in excitatory neurons. Likewise, we 
detected similar cell types using snRNA-seq—excitatory neurons 
(6,369 nuclei; EX1–5), inhibitory neurons (5,962 nuclei; INH1–4), 
astrocytes (4,756 nuclei; ASC1–4), microglia (4,126 nuclei; MG1–3),  
oligodendrocytes (37,052 nuclei; ODC1–13) and oligodendrocyte 
progenitor cells (2,740 nuclei; OPC1–2)—classified by the gene 
expression of cell-type markers (Fig. 1e). In both assays, oligoden-
drocytes were the most commonly profiled cell type (Supplementary 
Fig. 3). Additionally, while many differentially expressed genes 

(DEGs) in each major cell type agreed with previous literature, we 
also found cluster-specific genes previously established as neuronal 
or glial subtype markers, such as LINC00507 for L2–3 excitatory 
neurons (EX1)4, SV2C for L3 interneurons (INH4)1 and CX3CR1 
for homeostatic microglia (MG2)26 (Supplementary Fig. 3 and 4 and 
Supplementary Data 1).

Because the epigenomic landscape is deeply intertwined 
with downstream gene expression signatures, we integrated our 
snATAC-seq and snRNA-seq datasets using Seurat’s integration plat-
form27,28 (Methods, Fig. 1f, Extended Data Fig. 3 and Supplementary 
Fig. 3). Cell types that were independently classified using chroma-
tin data or transcriptome data overwhelmingly grouped together 
in the integrated UMAP space (Fig. 1g and Supplementary Fig. 3). 
Using the same biological samples in snATAC-seq and snRNA-seq 
resulted in a high degree of overlap between nuclei from these two 
data modalities in the jointly constructed space. Additionally, we 
confirmed cell-type identities by gene activity and gene expres-
sion in a panel of canonical cell-type marker genes (Supplementary 
Fig. 3) and used Seurat’s label-transfer algorithm to verify cell-type 
annotations in the snATAC-seq dataset using the snRNA-seq data-
set as a reference (Supplementary Fig. 5).

Multi-omic characterization of cellular heterogeneity in 
Alzheimer’s disease. In both snATAC-seq and snRNA-seq, we 
discovered multiple neuronal and glial subpopulations, and we 
annotated the subpopulations from snRNA-seq based on previ-
ously identified marker genes1,4 (Fig. 2, Supplementary Figs. 6 and 
7 and Supplementary Note). For our snATAC-seq clusters, we used 
Seurat’s label-transfer algorithm to calculate cluster prediction 
scores allowing for supervised annotation of our cell clusters, in 
which we mapped EX.a to EX1 and ASC.b to ASC2, for example 
(Supplementary Figs. 6 and 7). We examined the composition of 
each cluster in the context of disease and found several that were 
significantly overrepresented or underrepresented in late-stage AD 
compared to control samples, in both data modalities (Fig. 2d–g 
and Methods). ASC3 (GFAPhigh/CHI3L+) significantly increased 
in proportion with disease (bootstrapped cluster proportion 
analysis using a two-sided Wilcoxon rank-sum test, false discov-
ery rate (FDR) = 8.63 × 10−5), whereas ASC4 (GFAPlow/WIF1+/A
DAMTS17+) significantly decreased (FDR = 4.68 × 10−7), consis-
tent with a recent snRNA-seq study of the 5XFAD mouse model 
of AD29. We also found that the proportions of MG.a. and MG.b 
were increased in late-stage AD (FDR = 9.82 × 10−7 and 8.88 × 10−10, 
respectively), both of which mapped to the activated snRNA-seq 
cluster MG1 (SPP1high/CD163+), which was also increased with dis-
ease (FDR = 6.32 × 10−7). Additionally, we found that immune oligo-
dendrocyte cluster ODC13 was significantly increased in late-stage 
AD (FDR = 1.62 × 10−4).

Further, we identified both differentially accessible chromatin 
regions and DEGs in late-stage AD for each cell cluster and found 
high cluster specificity for Gene Ontology (GO) term enrichment 
of distal and proximal differentially accessible chromatin regions, 
as well as DEGs (Supplementary Figs. 7–9, Supplementary Data 1–6  
and Supplementary Note). For example, we identified NEAT1 as 
upregulated in astrocytes and oligodendrocytes, in agreement 
with previous findings in the entorhinal cortex7, and we confirmed 
AD upregulation of NEAT1 with in situ hybridization (Extended 
Data Fig. 4). Altogether, we found cluster-specific epigenetic and 
transcriptomic changes in late-stage AD, which may underlie the 
dysregulation of distinct biological pathways in different cell sub-
populations in neurodegeneration.

Cell-type-specific cis-gene regulation in late-stage Alzheimer’s 
disease. Based on our experimental design using both snATAC-seq 
and snRNA-seq in the same samples, we reasoned that we could iden-
tify the target genes of cCREs in specific cell populations (Extended 
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Data Fig. 5a and Methods). To this end, we sought to elucidate the 
cis-regulatory architecture of the PFC in late-stage AD by construct-
ing cis co-accessibility networks30 (CCANs) separately for late-stage 
AD and control samples in each cell type (Methods). To identify 
target genes of cCREs, we focused on the subset of co-accessible 
peaks where one of the peaks lies in a promoter element, yielding a 

set of cCREs and candidate target genes. For this set of co-accessible 
links, we correlated the expression of the candidate target gene to 
the chromatin accessibility of the cCRE, strengthening the evidence 
of a potential regulatory relationship beyond co-accessibility alone. 
Finally, we used NMF to analyze and cluster these gene-linked 
cCREs (gl-cCREs) based on their chromatin accessibility in each cell 
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Fig. 1 | Single-nucleus ATAC-seq and single-nucleus RNA-seq for the study of cellular diversity in the diseased brain. a, Schematic representation of 
the samples used in this study, sequencing experiments and downstream bioinformatic analyses, created with BioRender.com. b,c, UMAP visualizations 
where dots correspond to individual nuclei for 130,418 nuclei profiled with snATAC-seq (b) and 61,472 nuclei profiled with snRNA-seq (c), colored by 
Leiden cluster assignment and cell type. ASC, astrocytes; EX, excitatory neurons; INH, inhibitory neurons; MG, microglia; ODC, oligodendrocytes; OPC, 
oligodendrocyte progenitor cells; PER/END, pericytes/endothelial cells. d, Pseudo-bulk chromatin accessibility profiles for each cell type at canonical 
cell-type marker genes. For each gene, 1 kb upstream and downstream are shown. The promoter/transcription start site (TSS) is highlighted in gray with 
gene model and chromosome position shown below. Chromosome coordinates are: GFAP chr17: 44904008–44919937; SLC17A7 chr19: 49428401–
49445360; GAD2 chr10: 26213307–26305558; CSF1R chr5: 150052291–150116372; MBP chr18: 76977827–77136683; PDGFRA chr4: 54226097–
54299247. e, Row-normalized single-nucleus gene expression heatmap of cell-type marker genes. f, UMAP plot of 186,167 nuclei from a jointly learned 
subspace of snATAC-seq and snRNA-seq, colored by cell-type assignment. g, Integrated UMAP as in f, colored by originating dataset. Smaller gray dots 
represent nuclei from the other data modality. A consistent coloring scheme for each cell type and cluster is used throughout the paper.
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cluster. In sum, this approach results in a set of candidate enhancer 
elements (gl-cCREs) grouped into functional modules, as well as a 
set of cCRE-linked genes, for each major cell type in late-stage AD 
and control samples.

In total, using this approach, we identified 56,552 gl-cCREs and 
11,440 cCRE-linked genes, with a median of 4 cCREs linked to 
each of these genes (Fig. 3a and Supplementary Tables 4 and 5). By 
examining the overlap between sets of cCRE-linked genes identified 
in each cell type, we observed a substantial number of genes with 
linked cCREs that were shared across multiple cell types, in addition 
to those that are cell-type specific (Fig. 3b). For several cell types, we 
found a significant overlap between the set of cCRE-linked genes 
and cell-type marker DEGs, as well as genes that are upregulated 
in AD within that cell type, highlighting a critical role of cCREs 
in disease-related gene expression changes (Fig. 3c). We also inves-
tigated the chromatin accessibility in each snATAC-seq cluster 
for these gl-cCREs and noted a high degree of cell-type and clus-
ter specificity (Fig. 3d). The majority of the gl-cCREs mapped to 

intronic regions (58.35%; Fig. 3e). Moreover, by inspecting the NMF 
coefficient matrix (H), we were able to identify which cluster or cell 
type each NMF module corresponds to, and we annotated several 
modules that are specific to control or late-stage AD nuclei within a 
given cluster (Fig. 3f,g and Supplementary Note). Additionally, we 
found that some of the cCRE target genes that are common to more 
than one cell type are regulated by different cCREs in each cell type.

Cell-type-specific transcription factors in late-stage Alzheimer’s 
disease. To complement our analysis of cis-regulatory elements, 
we sought to identify cell-type-specific trans-regulatory elements 
in late-stage AD. TFs tightly control cell fate in neurodevelopment 
and have been implicated in neurodegenerative processes. We 
examined the regulatory role of microglial TF SPI1 (also known as 
PU.1) and nuclear respiratory factor 1 (NRF1) in oligodendrocytes  
(Fig. 4a–f, Supplementary Fig. 10 and Supplementary Note). SPI1 
motif variability in our snATAC-seq microglia clusters was sig-
nificantly increased in only upregulated clusters MG.a and MG.b, 
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Fig. 2 | Epigenetically and transcriptionally distinct cell subpopulations in human AD prefrontal cortex. a,b, Hierarchically clustered heatmaps of 
row-normalized gene expression in snRNA-seq OPC and oligodendrocyte clusters (a) and gene activity in snATAC-seq OPC and oligodendrocyte clusters 
(b) for the top 25 upregulated DEGs (sorted by average log fold change) identified in each oligodendrocyte subpopulation. c, Pseudo-bulk chromatin 
accessibility coverage profiles for OPC (progenitor), intermediate oligodendrocyte and mature oligodendrocyte snATAC-seq clusters; assignments as in  
b. Promoter/TSS regions highlighted in gray with gene model and chromosome position shown below. Chromosome coordinates are: VCAN chr5: 
83468465–83583303; ITPR2 chr12: 26335515–26836198; CD74 chr5: 150400637–150415929; APOLD1 chr12: 12722917–12830975; OPALIN chr10: 
96342216–96362365; CNP chr17: 41963741–41978731; MOG chr6: 29653981–29673372. d,e, snATAC-seq (d) and snRNA-seq (e) UMAPs as in Fig. 1, 
where nuclei are colored by AD diagnosis. Clusters annotated by cell type. f,g, Box-and-whisker plots showing the proportion of nuclei mapping to each 
cluster for each sample, split by control and late-stage AD samples for snATAC-seq (f) and snRNA-seq (g) clusters, with measures of significance from 
bootstrapped cluster composition analysis (Wilcoxon test, Methods; *** FDR ≤ 0.001, ** FDR ≤ 0.01, * 0.01 < FDR ≤ 0.05) and n as per Supplementary 
Tables 7–9. For box-and-whisker plots, the box boundaries and line correspond to the interquartile range (IQR) and median, respectively. Whiskers extend 
to the lowest or highest data points that are no further than 1.5 times the IQR from the box boundaries.

Nature Genetics | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


ArticlesNATuRE GEnETicS

but SPI1’s targets were significantly downregulated in only MG1 
(Fig. 4a,b and Supplementary Fig. 10). We also identified NRF1 
as dysregulated in select oligodendrocyte clusters (Fig. 4d–f and 
Supplementary Fig. 10). These results indicate that SPI1 acts as a 
transcriptional repressor in late-stage AD, providing insight into 
how SPI1 contributes to AD pathophysiology. Additionally, NRF1 
has previously been associated with mitochondrial function31, and 
impaired mitochondrial function, mediated by NRF1 dysregulation, 
may contribute to neuronal dysfunction in late-stage AD through 
the disruption of myelination. TF analyses in neuronal popula-
tions and Fos-related antigen 2 (FOSL2) in astrocytes are shown in 
Extended Data Fig. 4 and Supplementary Fig. 10.

To gain further insight into TF-mediated gene regulation in 
late-stage AD, we constructed cell-type-specific TF regulatory 
networks. For a given TF, we identified candidate target genes as 

those whose promoters or linked cCREs are accessible and con-
tain the TF’s binding motif in the cell type of interest, and we 
repeated this for several select TFs, generating microglia-specific 
and oligodendrocyte-specific TF regulatory networks (Fig. 4g,h, 
Extended Data Fig. 5b and Supplementary Note). Within these 
networks, we identified multiple AD DEGs, in addition to genes 
located at known AD GWAS loci, regulated by SPI1 in microglia 
and NRF1 in oligodendrocytes.

Integrated trajectory analysis of disease-associated glia. To further 
uncover molecular mechanisms driving glial heterogeneity in AD, we 
performed pseudotime trajectory analysis using Monocle3 (refs. 32–34) 
on the integrated snATAC-seq and snRNA-seq data in oligodendro-
cytes, microglia and astrocytes (Supplementary Note). Multi-omic 
trajectory analysis allows us to investigate the dynamics of gene 
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expression, chromatin accessibility and TF motif variability through-
out a continuum of cell-state transitions. We modeled gene expression 
and chromatin accessibility dynamics using a recurrent variational 
autoencoder (RVAE)35. Briefly, a RVAE is an encoder–decoder neural 
network framework that uses long short-term memory units to effec-
tively model temporal biological data, yielding a two-dimensional 

(2D) latent representation of the input features, as well as a de-noised 
reconstructed version of the original input (Supplementary Note). For 
each cell type, we identified genes that were differentially expressed 
along the trajectory (t-DEGs; Supplementary Data 7) and used these 
genes as features to train the RVAE until the loss function converged 
(Supplementary Note and Extended Data Fig. 6).
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Oligodendrocyte trajectory reveals SREBF1 dysregulation. We 
constructed an integrated oligodendrocyte trajectory using 58,221 
nuclei from snATAC-seq and 36,773 nuclei from snRNA-seq 
(Fig. 5a), noting that the proportion of nuclei from late-stage 
AD samples appeared to increase along the trajectory (Fig. 5b; 
Pearson correlation R = 0.32, P value = 0.022). To clarify the func-
tional state of oligodendrocytes associated with late-stage AD, 
we examined the gene expression signatures36,37 of newly formed 
oligodendrocytes (NF-ODCs), myelin-forming oligodendrocytes 
(MF-ODCs) and mature oligodendrocytes (mature ODCs; Fig. 5c; 
see Supplementary Note for gene signature lists). Interestingly, we 
found that the mature ODC gene expression signature increased 
at the end of the trajectory, whereas the MF-ODC gene signature 
decreased. In addition, the NF-ODC gene signature decreased 
throughout the trajectory, altogether suggesting that the oligo-
dendrocyte pseudotime trajectory recapitulates oligodendrocyte 
maturation. Chromatin accessibility of 9,231 oligodendrocyte 
gl-cCREs and gene expression of 1,563 oligodendrocyte t-DEGs 
reconstructed with a RVAE showcases the vast amount of chro-
matin remodeling and transcriptional reprogramming that may 
underlie oligodendrocyte maturation (Fig. 5d).

Additionally, the latent feature space (Z) learned by the RVAE 
provides further biological insight into the pseudotime trajec-
tory and gene regulation in disease (Fig. 5e). Here, each dot rep-
resents a single feature (gene or chromatin region), and they are 
organized in 2D space based on their pseudotemporal dynamics 
learned by the RVAE. We ranked each feature based on the point 
in the trajectory that it reached 75% of its maximum value, which 
we termed as the feature’s ‘trajectory rank’. We then correlated the 

reconstructed feature trajectories, as in Fig. 5d, to the proportion 
of late-stage AD nuclei, as in Fig. 5b, to see which features con-
sistently changed with AD. For both genes (t-DEGs) and chro-
matin regions (gl-cCREs), the latent space clearly groups features 
together that are positively or negatively correlated with the pro-
portion of late-stage AD nuclei and groups features together with 
similar trajectory ranks, demonstrating the power of this RVAE 
model for the analysis and interpretation of multi-omic pseudo-
temporal dynamics.

We showcase two key TFs in oligodendrocytes: NRF1 and ste-
rol regulatory element binding transcription factor 1 (SREBF1). 
SREBF1 is critical in regulating the expression of genes involved 
in cholesterol and fatty acid homeostasis38, and it is proposed 
that Aβ inhibits SREBF1 activation39. We found that NRF1 motif 
variability is upregulated in oligodendrocytes in late-stage AD 
(Bonferroni-adjusted P value = 5.13 × 10−20; Fig. 4d), and SREBF1 
motif variability is downregulated with disease in oligodendro-
cytes (Bonferroni-adjusted P value = 2.67 × 10−191; Extended Data 
Fig. 4). We correlated TF motif variability trajectories (Extended 
Data Fig. 6) with the reconstructed t-DEG expression trajectories 
and visualized the correlation between the TF and each gene within 
the 2D latent space, identifying candidate target genes activated or 
repressed by TF binding events (positive or negative trajectory cor-
relation, respectively; Fig. 5f and Supplementary Note). We found 
that NRF1 was negatively correlated with target genes at the end 
of the trajectory, while SREBF1 was positively correlated with tar-
get genes at both the beginning and the end of the trajectory, indi-
cating that SREBF1 acts as a transcriptional activator throughout  
the trajectory.
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Microglia trajectory to define disease-associated microglia. 
Using the same analytical approach as that used for our oligoden-
drocyte trajectory analysis, we constructed an integrated microglia 
trajectory using 10,768 nuclei from snATAC-seq and 4,119 nuclei 
from snRNA-seq (Fig. 6a). The proportion of nuclei from late-stage 
AD samples significantly increased throughout the microglia tra-
jectory (Fig. 6b; Pearson correlation R = 0.53, P value = 6.9 × 10−5). 
We next sought to investigate gene signatures of disease-associated 

microglia (DAM), which were introduced in a single-cell transcrip-
tomic study40 of 5XFAD mice and are highly debated in the field 
of AD genomics. DAM are described as AD-associated phagocytic 
microglia that are sequentially activated in TREM2-independent 
and TREM2-dependent stages (stage 1 and stage 2, respectively). We 
found that the integrated microglia trajectory follows a decrease in 
the homeostatic signature, an increase in the stage 1 DAM signature 
and a distinct global depletion of the stage 2 TREM2-dependent 
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DAM signature (Fig. 6c; see Supplementary Note for gene signa-
ture lists), suggesting that this microglia trajectory describes the 
transcriptional and epigenetic changes during the transition from a 
homeostatic to disease-associated cell state.

To further dissect the microglia trajectory, we modeled the chro-
matin accessibility and gene expression dynamics of 9,163 microg-
lia gl-cCREs and 2,138 microglia t-DEGs, respectively, using RVAE 
(Fig. 6d,e). We highlight two ETS family TFs, SPI1 and ETS vari-
ant 5 (ETV5), both of which showed upregulated motif variability 
in late-stage AD (Bonferroni-adjusted P values 1.19 × 10−20 and 
6.68 × 10−19, respectively), and their candidate target genes along the 
trajectory (Fig. 6f and Supplementary Note). We observed that the 
SPI1 motif trajectory was negatively correlated with genes at the end 
of the trajectory, supporting our previous findings that SPI1 acts as 
a repressor in late-stage AD.

Disease-associated astrocytes in human Alzheimer’s disease. We 
also constructed an integrated astrocyte trajectory using 12,112 
nuclei from snATAC-seq and 4,704 nuclei from snRNA-seq (Fig. 6g),  
and we again found that the proportion of late-stage AD nuclei 
significantly increased throughout the trajectory (Fig. 6h; Pearson 
correlation R = 0.57, P value = 1.9 × 10−5). In a similar fashion to 
our analysis of the DAM signature in the microglia trajectory, we 
investigated the gene signature of disease-associated astrocytes 
(DAAs), described in a recent snRNA-seq study of the hippocampus 
in 5XFAD mice29 as an AD-specific GFAPhigh astrocyte subpopula-
tion that is distinct from another GFAPhigh astrocyte subpopulation 
found in aged wild-type and 5XFAD mice (GFAP-high). Based on 
DAA gene signature analysis, we reasoned that this trajectory fol-
lows a trend from a GFAP-low state to GFAP-high and DAA-like 
states (Fig. 6i; see Supplementary Note for gene signature lists).

RVAE modeling of 12,487 astrocyte gl-cCREs and 1,797 astro-
cyte t-DEGs revealed rich gene-regulatory dynamics across the 
trajectory (Fig. 6j,k). We investigated the relationship between 
astrocyte t-DEGs and two TFs: CCCTC-binding factor (CTCF) and 
FOSL2, whose motif variability we have found to be downregulated 
and upregulated in late-stage AD, respectively (Bonferroni-adjusted 
P values 6.45 × 10−17 and 5.65 × 10−99, respectively). CTCF is known 
as a master chromatin regulator41,42, and we observed that the CTCF 
motif variability trajectory was anti-correlated with the DAA and 
GFAP-high signatures (end of the trajectory; Extended Data Fig. 6)  
and positively correlated with t-DEGs in the GFAP-low phase of 
the trajectory (Fig. 6l). Alternatively, we found a positive correla-
tion between the motif variability trajectory of FOSL2 with the 
GFAP-high and DAA gene signatures and a positive correlation 
with genes at the end of the trajectory (Fig. 6l and Supplementary 
Note). These findings suggest that FOSL2 may be an activator of the 
DAA signature, whereas CTCF may promote a more homeostatic 
or non-diseased astrocyte state. By relating gene expression with TF 
motif enrichment, TF binding site accessibility and using the tem-
poral information learned by the RVAE, we begin to unravel the role 
of TFs in regulating cell states, such as DAAs.

Cell-type-specific cis-regulation at Alzheimer’s disease genetic 
risk loci. To further our understanding of AD genetic risk sig-
nals, we performed cell-type-specific linkage-disequilibrium score 
regression43 (LDSC) analysis in our snATAC-seq clusters using 
GWAS summary statistics in AD10,11 and other relevant traits44–50 
(Methods, Supplementary Table 6 and Supplementary Note). 
Microglia clusters MG.b and MG.c showed a significant enrich-
ment (FDR < 0.05) for AD GWAS SNPs from the study by Kunkle 
et al., and all five microglia clusters showed a significant enrich-
ment (MG.a and MG.e FDR < 0.005; MG.b, MG.c and MG.d 
FDR < 0.0005) for GWAS SNPs from the study by Jansen et al., 
which included familial AD-by-proxy samples in addition to data 
from patients with AD (Fig. 7a). The results of this GWAS herita-
bility analysis supports previous findings in non-diseased humans20 
and mice51 snATAC-seq data. We further investigated AD risk sig-
nals in microglia using gchromVAR52 to compute the enrichment 
of fine-mapped AD-associated polymorphisms from Jansen et al. 
along the microglia pseudotime trajectory and observed a signifi-
cant increase (Pearson correlation, P value = 0.0048; Methods and  
Fig. 7b,c) in the gchromVAR deviation score in distal peaks through-
out the microglia trajectory, in stark contrast with a significant 
decrease in the deviation score for the analogous gene-proximal 
peak analysis (Pearson correlation, P value = 0.0053), highlight-
ing AD-associated SNPs at distal enhancers in DAM. By overlay-
ing the co-accessibility map with chromatin accessibility signal and 
GWAS statistics along the genomic axis, we unraveled the poten-
tial cis-regulatory relationships disrupted by causal disease vari-
ants in GWAS genes, such as BIN1, ADAM10, APOE and SLC24A4  
(Fig. 7d–i). We found that the APOE locus, which harbors the main 
determinants of AD heritability and is one of the best studied AD 
risk loci, has cis-regulatory chromatin networks altered in disease in 
microglia and astrocytes, highlighting cCREs that are prime candi-
dates for further study using genome-editing technologies.

Single-cell coexpression networks using scWGNCA. To recon-
textualize snRNA-seq data in a systems-level framework, we 
sought to develop a gene coexpression network analysis approach 
for single-cell data based on weighted gene coexpression analy-
sis (WGCNA)53,54, a powerful analytical approach for identifying 
disease-associated gene modules55,56 originally designed for bulk 
gene expression data. Our revised approach uses aggregated expres-
sion profiles in place of potentially sparse single cells, where ‘meta-
cells’ are constructed from specific cell populations by computing the 
mean expression from 50 neighboring cells using k-nearest neigh-
bors (Methods, Extended Data Fig. 7 and Supplementary Note). We 
reprocessed published AD snRNA-seq data from Mathys et al.5 and 
used iNMF to integrate these with our snRNA-seq data (Methods 
and Extended Data Fig. 8). Additionally, we performed bulk 
RNA-seq in early-stage and late-stage AD samples, as well as patho-
logical controls, and curated additional AD bulk-tissue RNA-seq 
samples from the Religious Orders Study and Memory and Aging 
Project (ROSMAP) study57. Finally, we used consensus WGCNA58, 

Fig. 7 | Cell-type-specific regulatory landscapes of GWAS loci in the AD brain. a, Heatmap showing LDSC enrichment of GWAS traits and disorders 
in snATAC-seq clusters. P values were derived from LDSC enrichment tests, and FDR-corrected P values are overlaid on the heatmap (*FDR < 0.05, 
**FDR < 0.005, ***FDR < 0.0005). PSP, progressive supranuclear palsy; MS, multiple sclerosis; IBD, inflammatory bowel disease; FTD, frontotemporal 
dementia. b,c, Scatterplots showing gchromVAR enrichments along the microglia pseudotime trajectory in distal peaks (b) and gene-proximal peaks 
(c) averaged for nuclei in each of the 50 trajectory bins. The black line shows a linear regression, and the gray outline represents the 95% CI. Pearson 
correlation coefficients and P values are shown. d–i, Cis-regulatory architecture at the following GWAS loci and cell types: BIN1 (d) and ADAM10 (e) in 
oligodendrocytes; BIN1 (f) and APOE (g) in microglia; SLC24A4 (h) and APOE (i) in astrocytes. Co-accessible links for late-stage AD and control samples 
are shown separately, with the line height and opacity corresponding to the co-accessibility score; links with a score below the gray dashed line were 
removed for visualization purposes. Genomic coverage plots for AD and control samples are shown separately. AD GWAS statistics from Jansen et al. for 
SNPs at each locus are shown. Lead SNPs are shown as diamonds, and SNPs in 99% credible set are shown as triangles. Chromosome ideogram indicates 
genomic coordinates in a 500-kb radius centered at each GWAS gene. Chromosome coordinates are: BIN1 chr2: 127047027–127110355; ADAM10 chr15: 
58587807–58752978; APOE chr19: 44902754–44910393; SLC24A4 chr14: 92319581–92502483.
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a meta-analytical approach, to jointly form coexpression networks 
in metacells constructed from the integrated snRNA-seq dataset 
and bulk-tissue RNA-seq data of the human PFC from two distinct 

cohorts. We call this approach single-nucleus consensus WGCNA 
(scWGCNA; Extended Data Figs. 1, 7, 9 and 10 and Supplementary 
Data 7), performed iteratively for each cell type, where each edge 
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in a coexpressed module is supported by both bulk-tissue RNA-seq 
data (this study and ROSMAP57) and aggregated snRNA-seq data 
(this study and Mathys et al.).

We specifically highlight our scWGCNA analysis for oligoden-
drocytes; we found four coexpression modules significantly corre-
lated with AD diagnosis—OM1, OM2, OM4 and OM5 (Fig. 8a,b  
and Supplementary Data 7). For example, hub genes of the 
AD-downregulated module OM1 encoded ribosomal subunits 
(RPS15A, RPL30 and RPL23A, for example), consistent with its 

enrichment of GO terms related to protein synthesis and sorting 
(Supplementary Fig. 11). OM2 gene members MAG, CNP and PLP1 
are known to be involved in myelination, and unsurprisingly, we 
found OM2 downregulated with disease.

Additionally, we examined the downstream regulatory targets of 
SREBF1 in the context of coexpression networks (Methods). Notably, 
we found that three of the oligodendrocyte modules were signifi-
cantly enriched for targets of SREBF1, indicating the importance of 
SREBF1 in regulating gene expression in these modules (Fig. 8c). 
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Using multi-scale data from bulk-tissue RNA-seq, high-throughput 
proteomics59 and SREBF1 chromatin immunoprecipitation (ChIP) 
with sequencing (ChIP–seq; ENCODE), we defined a protein–pro-
tein interaction (PPI) network of SREBF1 target genes (Extended 
Data Fig. 7). Additionally, we found module eigengene expression 
of SREBF1 targets downregulated in early-stage and late-stage AD 
samples at the level of proteins59 and RNA (Fig. 8d), corroborated 
by downregulation of SREBF1 motif variability in snATAC-seq 
data (Extended Data Fig. 4). We also validated the downregula-
tion of SREBF1 in late-stage AD through RNA in situ hybridiza-
tion and immunohistochemistry and found a decrease in ACSL4 
expression, one of SREBF1’s targets identified in ENCODE ChIP–
seq data, in late-stage AD (Fig. 8e–g and Extended Data Fig. 7). 
Overall, our coexpression network analysis approach facilitates 
the identification of cell-type-specific disease biology, and we have 
highlighted TF SREBF1, largely unstudied in the context of AD, in 
oligodendrocytes to demonstrate our approach’s ability to yield new  
disease insights.

Discussion
Our integrated multi-omic analysis of late-stage AD pro-
vides a unique lens into the continuum of cellular heteroge-
neity underlying disease pathogenesis. Pinpointing causal 
mechanisms of complex diseases requires a rigorous understand-
ing of cell-population-specific gene-regulatory systems at both the 
epigenomic and transcriptomic levels. While single-cell chromatin 
accessibility can provide important insights into disease, it is a chal-
lenging data modality to work with due to its inherent sparsity. We 
circumvented the issue of sparsity by integrating single-nucleus 
open-chromatin and single-nucleus transcriptomes from the same 
samples, in addition to using aggregation methods for pseudo-bulk 
accessibility profiling and co-accessibility analysis. Taking these 
considerations into account, our multi-omic analysis enabled us to 
analyze cell-type-specific epigenomic dysregulation in neurodegen-
eration and expands on previous work to decipher the transcrip-
tomes of single nuclei in human AD.

A major contribution of our study is that we identified cell- 
type-specific gl-cCREs, which may mediate gene-regulatory changes 
in late-stage AD, along with TFs that may bind to these gl-cCREs 
within the given cell type. While cCREs can be identified with 
epigenetic data alone, our analysis is substantiated by integrating 
single-nucleus transcriptomic data, as we link the gene expression of 
candidate target genes with cCRE chromatin accessibility. Previous 
studies of AD have not explored cis-gene regulation at a cell-type 
or cell-subpopulation level. We have highlighted both cis-gene and 
trans-gene regulation disrupted in late-stage AD, providing poten-
tial targets for further study into AD, such as NRF1 in oligodendro-
cytes and FOSL2 in astrocytes and their corresponding gl-cCREs. 
Further, we examined cis-regulatory interactions in our multi-omic 
dataset to elucidate cell-type and disease-specific patterns of genes 
implicated in inherited AD risk by GWAS, which are of particular 
interest as candidate therapeutic targets. For a subset of AD GWAS 
loci, we compared cis-regulatory networks between AD and control 
cell populations to identify interactions that are uniquely found in 
disease. Thus, this study serves as a resource for the broader AD 
community to explore cell-type and cell-state-specific regulatory 
landscapes of genes and genomic regions that may be of particular 
interest, such as AD GWAS loci.

Moreover, independent and joint analyses of the transcriptome 
and chromatin profiles of oligodendrocytes revealed disrupted gene 
regulation and biological pathways in AD (Supplementary Note). 
We described a multi-omic oligodendrocyte trajectory and evalu-
ated gene expression signatures in the transition from newly formed 
to mature oligodendrocytes, observing that the trajectory seemed 
to follow oligodendrocyte maturation. Notably, we analyzed the 
trajectory dynamics of SREBF1, a TF involved in the regulation of 

cholesterol and lipid metabolism that has been shown to be involved 
in Aβ-related processes39. We found that SREBF1 motif variability 
was decreased in late-stage AD, indicating that fewer SREBF1 bind-
ing sites are accessible in disease, and SREBF1 gene expression is 
also downregulated in AD oligodendrocytes. Trajectory analysis 
revealed that SREBF1 motif variability is positively correlated with 
t-DEGs throughout the trajectory, suggesting that it acts as a tran-
scriptional activator in oligodendrocytes.

Coexpression network analysis methods like WGCNA have 
been widely used for discovery of disease-associated gene mod-
ules in bulk gene expression data60,61; however, these approaches 
are rarely used in single-cell transcriptomics, with some excep-
tions62 due to challenges in network construction from noisy data. 
Here we introduced scWGCNA, a method for interrogation of 
cell-population-specific coexpression networks that leverages aggre-
gated metacells to combat the sparsity of single-cell gene expres-
sion. Using scWGCNA, we found gene coexpression networks in 
human AD by jointly analyzing our snRNA-seq and bulk RNA-seq 
data with additional snRNA-seq and bulk RNA-seq samples from 
the ROSMAP cohort5,57. This meta-analytical approach ensured the 
robustness of our network analysis and allowed us to evaluate the 
resulting gene modules in early-stage AD (Supplementary Note). 
Notably, scWGCNA identified three oligodendrocyte modules that 
were enriched for target genes of SREBF1 and showed that the gene 
and protein expression of these targets were decreased in late-stage 
AD. With our coexpression and trajectory analysis of SREBF1 in oli-
godendrocytes, SREBF1 is clearly a gene to prioritize for follow-up 
studies as a candidate target for AD therapeutics, demonstrating the 
utility of our approach in identifying new gene targets for disease.

While the causative molecular mechanisms of sporadic AD 
remain unknown, our work offers new insights that assist in unrav-
eling the nature of gene regulation in AD, especially regarding 
genomic loci with well-described heritable disease risk. Additional 
work is needed to spatially resolve the complexity of gene expres-
sion and epigenomics in AD and neurodegeneration in general. The 
data presented here are a valuable resource for understanding regu-
latory relationships in the diseased brain, and our analysis frame-
work serves as a blueprint for making discoveries in complex traits 
using single-cell multi-omic data. Finally, our intuitive web portal 
for exploring single nuclei in the human brain allows for the acces-
sibility of our results to anyone with an internet-equipped device.
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Methods
Human samples. Human PFC brain samples were obtained from the University of 
California Irvine Institute for Memory Impairments and Neurological Disorders 
(UCI MIND) Alzheimer’s Disease Research Center (ADRC) tissue repository 
and under UCI’s Institutional Review Board. Postmortem human brain tissue 
from the ROSMAP study was obtained under the Institutional Review Board of 
Rush University Medical Center. Informed consent was obtained for all human 
participants. Samples were dissected, homogenized on a dry-ice pre-chilled 
isolating platform and aliquoted for snRNA-seq and snATAC-seq. For details on 
the human samples used in this study (AD, n = 6 males and 6 females; controls, 
n = 5 males and 3 females; all 74–90+ years old), please see Supplementary Tables 1  
and 2. ROSMAP RNA-seq data and details can be found on https://www.synapse.
org/ under synapse ID syn3219045.

Bulk RNA-seq. Total RNA was isolated from human PFC using Mini Nucleospin 
RNA kit (740955.250, Takara Bio). RNA integrity was assessed using a 2100 
Bioanalyzer (Agilent). Total RNA was quantified using Qubit RNA HS assay kit 
(Q32852, Invitrogen). Around 500 ng total RNA was used to prepare the cDNA 
library using SMARTer Stranded Total RNA Sample Prep kit-HI Mammalian 
(634874, Takara Bio). cDNA library concentration was calculated using Qubit 
dsDNA HS assay kit (Q32851, Invitrogen). Library quality was assessed using 
either high-sensitivity DNA assay kit (5067-4626) on a 2100 Bioanalyzer or D5000 
HS kit (5067-5589 and 5067-5588) on a 4200 Tapestation (Agilent). Libraries were 
multiplexed with 96 and 95 samples in two lanes on an Illumina NovaSeq S4 for 
100-bp paired-end reads.

Single-nucleus RNA-seq. Single-nucleus suspensions were isolated from 
~50 mg frozen human PFC. Samples were homogenized in Nuclei EZ Lysis 
buffer (NUC101-1KT, Sigma-Aldrich) and incubated for 5 min. Samples were 
passed through a 70-μm filter and incubated in additional lysis buffer for 5 min 
and centrifuged at 500g for 5 min at 4 °C before two washes in Nuclei Wash and 
Resuspension buffer (1× PBS, 1% BSA and 0.2 U μl−1 RNase inhibitor). Nuclei 
were FACS sorted with DAPI (NucBlue Fixed Cell ReadyProbe Reagent, R37606, 
Thermo Fisher) before running on the 10x Chromium Single Cell 3′ v3 platform. 
cDNA library quantification and quality were assessed as per bulk RNA-seq. 
Libraries were sequenced using the Illumina NovaSeq 6000 S4 platform at the  
New York Genome Center, using 100-bp paired-end sequencing.

Single-nucleus ATAC-seq. Single-nucleus suspensions were isolated from ~50 mg 
frozen human PFC according to the 10x Genomics Nuclei Isolation from Mouse 
Brain Tissue protocol (CG000212, Rev A) with an additional sucrose purification 
step. Before resuspending our nuclei in Diluted Nuclei Buffer, we removed cellular 
debris by preparing a sucrose gradient (Nuclei PURE Prep Nuclei Isolation Kit, 
NUC201-1KT, Sigma). Nuclei were spun at 13,000g for 45 min at 4 °C and then 
washed once and filtered before running on the 10x Chromium Single Cell ATAC 
platform. Library quantification and quality checking were performed according to 
the manufacturer’s recommendations. Libraries were sequenced using the Illumina 
NovaSeq 6000 S4 platform at the UCI Genomics core facility, using 100-bp 
paired-end sequencing.

RNAscope (FISH). Fresh-frozen human postmortem tissue was sectioned at 
20 µm on a cryostat at −20 °C. Slides were stored in airtight containers at −80 °C 
until use. Immediately after removing from −80 °C, slides were dried for 20 min 
at room temperature and then fixed in 4% paraformaldehyde/PBS for 15 min at 
4 °C. Slides were then washed in RNase-free PBS for 5 min at room temperature 
three times. For single-labeling experiments, slides were incubated in PBS with 
an LED light for 96 h at 4 °C to quench autofluorescence63, and for dual-labeling 
experiments, autofluorescence was quenched with TrueBlack (Biotium) for 30 s 
before coverslipping. Slides were processed following the RNAscope Multiplex 
Fluorescent Reagent Kit v2 Assay (ACD) instructions for fresh-frozen tissue, 
except protease IV incubation was performed for 15 min. Probes used were NEAT1 
(411531), PLP1 (499271), CNP (509131-C2), SREBF1 (469871), ACSL4 (408301), 
MOG (543181-C2) and AQP4 (482441-C2). Fluorophores used were TSA Plus 
Cy5 (1:200 dilution; Perkin Elmer) and Opal 570 (1:200 dilution, Perkin Elmer) 
to avoid autofluorescence. Images were taken on a ZEISS Axio Scan.Z1 at ×20 
magnification. Four regions per section were analyzed using QuPath. We used a 
trained object classifier to identify MOG+ or AQP4+ nuclei, except for ASCL4/
MOG dual staining, which required manual assignment of MOG+ nuclei due to 
high background. Subcellular detection was used to count RNA punctae. We used 
a linear mixed-effects model to account for random effects (age and sex) and fixed 
effects (multiple regions from the same individual).

Immunofluorescence. Fixed and cryoprotected human postmortem tissue was 
sectioned at 40 μm using a cryotome (Leica). For 6E10, Iba-1, MAP2 and GFAP, 
brain sections were treated with 90% formic acid for 4 min. For PDGFRA and 
Olig2, sections in sodium citrate buffer were heated at 80 °C in a bead bath for 
30 min. Sections were then washed before blocking (PBS with 5% goat or donkey 
normal serum, respective to the antibodies, and 0.2% Triton X-100) for 1 h at room 
temperature. Primary antibodies were incubated at 4 °C overnight (6E10, 1:1,000 

dilution, 803001, BioLegend; Iba-1, 1:1,000 dilution, 019-19741, Wako; MAP2, 
1:500 dilution, ab32454, Abcam; GFAP, 1:500 dilution, G3893, Sigma; PDGFRA, 
1:50 dilution, AF-307, R&D Systems; Olig2, 1:200 dilution, ab109186, Abcam). 
Secondary antibodies (goat anti-mouse 555, A-21422; goat anti-rabbit 488, A11034; 
goat anti-rabbit 488, A11034; goat anti-mouse 555, A-21422; donkey anti-goat 488, 
A-11055; donkey anti-rabbit 555, A31572; all from Thermo Fisher) were diluted 
(1:200) and incubated for 1 h. Slides were treated with 0.3% Sudan Black in 70% 
ethanol for 4 min to reduce autofluorescence and imaged on a confocal microscope 
(Leica). Images from three randomly selected areas were used for volume analysis 
of amyloid plaques using IMARIS. We used linear mixed-effects model as 
previously stated.

Annotation of major cell types. Major cell-type annotations were assigned to 
UMAP partitions and initial clusters in snATAC-seq and snRNA-seq datasets, 
respectively, through manual inspection of canonical marker gene signals. 
‘Pseudo-bulk’ chromatin accessibility coverage profiles of gene-body and 
upstream promoter regions were visualized using the Signac64 (v0.2.0) function 
CoveragePlot, while gene expression signals were visualized using Seurat27,28 
(v3.1.2). snRNA-seq cell-type assignments were further validated by integration 
with the Mathys et al.5 dataset.

Integrated analysis of snRNA-seq and snATAC-seq data. A unified dataset of 
both chromatin accessibility and gene expression was constructed using Seurat’s 
integration framework. Canonical correlation analysis was used to generate a 
shared dimensionality reduction of the ‘query’ snATAC-seq gene activity and 
the ‘reference’ snRNA-seq gene expression. MNNs were then identified in this 
shared space, effectively identifying pairs of corresponding cells that anchor the 
two datasets together. To confirm major cell-type annotations in snATAC-seq 
cell populations, we used Seurat’s label-transfer algorithm, which leverages these 
anchors to predict cell types in snATAC-seq data, with cell-type annotations 
in snRNA-seq cells as the reference and chromatin accessibility with latent 
semantic indexing reduction as the weights. We achieved a maximum prediction 
score ≥ 0.5 in 94% of cells, demonstrating high correspondence between the two 
data modalities. Next, we used these shared anchors to impute gene expression 
signals in snATAC-seq data. Following imputation, we merged gene expression 
in cells from the snRNA-seq dataset with snATAC-seq cells that had a maximum 
prediction score ≥ 0.5. The merged dataset was then centered, dimensionally 
reduced with principal-component analysis using 30 dimensions, batch corrected 
with MNNs (monocle3, v0.2.0) and embedded with UMAP. Clusters and UMAP 
partitions were identified using Leiden clustering (monocle3). We visualized 
correspondence of major cell types from their dataset of origin to their joint 
UMAP partitions using ggalluvial (v0.11.1).

Cell-type-specific dimensionality reduction and cluster analysis. Cell-type- 
specific analyses were performed for snATAC-seq and snRNA-seq by subsetting 
each major cell type from the fully processed dataset followed by re-embedding 
with UMAP. Subpopulations of each cell type used for all downstream analysis 
were then identified using Leiden clustering (monocle3). Clusters smaller than 
100 cells were removed as outliers. We then used the addReproduciblePeakSet 
function from the R package ArchR (v1.0.0)65 with default parameters to call 
accessible chromatin peaks using MACS2 (v2.2.7.1) in each cell-type subcluster. 
For snRNA-seq and snATAC-seq clusters, we performed a bootstrapped cluster 
composition analysis to robustly assess the composition of each cluster with respect 
to AD diagnosis. Over 25 iterations, 20% of cells were sampled from the whole 
dataset, and the proportion of cells from AD or control samples was computed 
for each cluster. A two-sided Wilcoxon rank-sum test was used to compare the 
proportion of AD and control samples in each cluster using the wilcox.test R 
(v3.6.1) function with default parameters and Benjamini–Hochberg correction for 
multiple testing.

Annotation of cell subpopulations. snRNA-seq subpopulations for astrocytes, 
microglia, neurons and oligodendrocyte progenitors were annotated in a 
similar way to the major cell types, using canonical marker gene signals as well 
as DEGs. snATAC-seq subpopulations for astrocytes, microglia, neurons and 
oligodendrocyte progenitors were annotated using Seurat label-transfer prediction 
scores with the snRNA-seq clusters as a reference annotation. We annotated the 
snRNA-seq oligodendrocytes by hierarchically clustering oligodendrocyte and 
oligodendrocyte progenitor clusters based on the gene expression matrix of the top 
25 DEGs (by average log fold change) from each oligodendrocyte subpopulation, 
grouping oligodendrocytes into major lineage classes such as progenitor, 
intermediate and mature. We used the same approach to annotate the snATAC-seq 
oligodendrocytes, hierarchically clustering the gene activity matrix using the same 
DEGs. The R package ComplexHeatmap (v2.7.6.1010)66 was used for hierarchical 
clustering and visualization of these gene expression and gene activity matrices.

Single-nucleus transcription factor binding motif analysis. Single-nucleus 
TF motif enrichment was computed for a set of 452 TFs from the JASPAR 
2018 database67 using the Signac wrapper for chromVAR (v1.12.0)25. The motif 
accessibility matrix was first computed, describing the number of peaks that 
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contain each TF motif for all cells. chromVAR then uses this motif accessibility 
matrix to compute deviation z-scores for each motif by comparing the number of 
peaks containing the motif to the expected number of fragments in a background 
set that accounts for confounding technical factors such as GC content bias, PCR 
amplification and variable Tn5 tagmentation. To further analyze specific TFs of 
interest, we used the getFootprints function in ArchR to perform TF footprinting 
analysis in pseudo-bulk aggregates of single nuclei in the same cluster or cell type, 
splitting nuclei from control or late-stage AD samples where appropriate.

Chromatin cis co-accessibility network analysis. The correlation structure of 
chromatin accessibility data was analyzed using the R package cicero30 (v1.3.4.7). 
Briefly, cicero quantifies ‘co-accessibility’ between pairs of genomic regions in a 
population of cells by correlating accessibility signals aggregated from several cells 
at a time, penalizing for the distance between regions using a graphical LASSO 
with a maximum interaction constraint of 500 kb. Importantly, before correlation 
and regularization, a bootstrap approach was used to generate metacells by 
aggregating 50 cells at a time using k-nearest neighbors, circumventing the sparsity 
of single-cell chromatin data. Finally, CCANs were identified through community 
detection. We applied this procedure in each major cell type as well as splitting 
each cell type into control and AD cells for CCAN analysis.

Analysis of gene-linked candidate cis-regulatory elements. We sought to 
further contextualize co-accessible chromatin regions by linking them to likely 
target genes using an accessibility–expression correlation strategy stratified by 
major cell type and disease status of each sample. First, we identified pairs of 
co-accessible peaks where one of the peaks overlaps a gene’s promoter, which 
serves as a candidate target gene for that particular cCRE. We then computed 
the Pearson correlation between the expression of the candidate target gene 
from snRNA-seq with the chromatin accessibility of the linked cCRE from 
snATAC-seq, where expression and accessibility values have been averaged for 
all cells within a given cell population. This correlation analysis was performed 
iteratively across all promoter-cCRE co-accessible links identified separately 
in each major cell with regard to AD diagnosis status. Retaining links with the 
Pearson correlation coefficient in the 95th percentile and a P value ≤ 0.01, we 
defined gl-cCREs as genomic regions with a significant correlation to at least 
one target gene, and we defined cCRE-linked genes as genes with a significant 
correlation to at least one cCRE. We used NMF (v0.23.0) as implemented in 
the R NMF package68 using k = 30 matrix factors on the gl-cCRE accessibility 
matrix averaged by each snATAC-seq cluster split by cells from control and AD 
samples, yielding 30 gl-cCRE modules. The NMF basis matrix (W) was used 
to assign each gl-cCRE to its top associated module, and the NMF coefficient 
matrix (H) was used to determine which cell cluster that each module was most 
associated to. To identify biological processes associated with these gl-cCRE 
modules, we used the enrichR69,70 (v 3.0) package to query enriched GO 
terms for the set of target genes in each gl-cCRE module in the GO Biological 
Processes 2018, GO Cellular Component 2018 and GO Molecular Function  
2018 databases.

TF regulatory network construction. Using snATAC-seq and snRNA-seq data 
in one cell type, we identified candidate TF regulatory target genes and used this 
information to construct cell-type-specific TF regulatory networks. We used the 
same set of TF binding motifs as those used in our single-cell TF motif enrichment 
analysis (JASPAR 2018 motifs). For a given TF, we defined candidate target genes 
as those with an accessible promoter containing the TF binding motif, or an 
accessible gl-cCRE linked to the target gene’s promoter, allowing us to distinguish 
between TFs that regulate genes through promoter or enhancer binding events. We 
used this information to construct a directed TF regulatory network using the R 
package igraph (v1.2.6), where each vertex represents a TF or target gene, and each 
edge represents a promoter or linked-cCRE binding event, overlaying additional 
information onto the network such as DEG or AD GWAS gene status.

Estimating GWAS enrichment using cluster-specific accessible chromatin 
regions. To estimate heritability of a variety of complex traits, we used LDSC 
(v1.0.1)43. GWAS summary statistics were input to LDSC, which then computes 
the enrichment of heritability for an annotated set of SNPs conditioned on a 
baseline model to account for genomic features that influence heritability, and 
jointly modeling multiple annotations together. Sets of cluster-specific peaks were 
constructed by extending peaks upstream and downstream by 2,000 bp, identifying 
peaks that are accessible in 1% of all cells within each cluster and removing all 
peaks that are accessible in more than one other cell type. Cluster-specific peaks 
were formatted for LDSC using the make_annotation.py script, and LD scores were 
computed for each set using the ldsc.py script. Publicly available GWAS summary 
statistics were collected for AD10,11, schizophrenia46, frontotemporal dementia44, 
progressive supranuclear palsy45, multiple sclerosis47, inflammatory bowel disease48, 
height49 and cholesterol50. Next, summary statistics were converted to hg38 
coordinates using the UCSC liftover tool (v377) and formatted for LDSC using 
the munge_sumstats Python script. We followed the recommended guidelines for 
cell-type-specific partitioned heritability analysis, using HapMap3 SNPs and their 
provided hg38 baseline model (v2.2). The ldsc.py script was then used to compute 

cluster-specific enrichments of GWAS heritability, with Benjamini–Hochberg 
multiple-testing correction applied to enrichment P values.

Single-nucleus consensus weighted gene coexpression network analysis. We  
developed a coexpression network analysis approach to analyze single-cell 
data by integrating snRNA-seq and bulk-tissue RNA-seq datasets and called 
this approach single-nucleus consensus weighted gene coexpression network 
analysis (scWGCNA). scWGCNA is based on WGCNA, implemented using the 
WGCNA R package (v1.69)53,54. For scWGCNA, we used multiple transcriptomic 
datasets comprising our snRNA-seq data, snRNA-seq data from Mathys et al., 
bulk-tissue RNA-seq data from our UCI cohort and bulk-tissue RNA-seq data 
from the ROSMAP cohort57. First, we integrated our snRNA-seq dataset and 
the snRNA-seq dataset from Mathys et al. using the iNMF approach, and then 
constructed metacells in a fashion similar to that used in our CCAN analysis of 
chromatin accessibility data, in which we applied a bootstrapped aggregation 
process to single-nucleus transcriptomes. During metacell computation, we only 
pooled cells within the same cell type, and within the same AD diagnosis stage, to 
retain these metadata for scWGCNA. We then used a signed consensus WGCNA 
approach58 within a given cell type, by calculating component-wise values for 
topological overlap for each dataset. First, bi-weighted mid-correlations were 
calculated for all pairs of genes, and then a signed similarity matrix was created. In 
the signed network, the similarity between genes reflects the sign of the correlation 
of their expression profiles. The signed similarity matrix was then raised to power 
β, varying between cell types, to emphasize strong correlations and reduce the 
emphasis of weak correlations on an exponential scale. The resulting adjacency 
matrix was then transformed into a topological overlap matrix. Modules were 
defined using specific module-cutting parameters, including a minimum module 
size of 100 genes, a deepSplit score of 4 and a threshold of correlation of 0.2. 
Modules with a correlation of greater than 0.8 were merged together. We used the 
first principal component of the module, called the module eigengene, to correlate 
with diagnosis and other variables. Hub genes were defined using intra-modular 
connectivity (kME) parameters of the WGCNA package. Gene-set enrichment 
analysis was done using EnrichR.

Analysis of regulatory targets of SREBP. We downloaded a dataset of ENCODE 
ChIP–seq validated TF target genes from EnrichR, containing regulatory targets 
of SREBP. Fisher’s enrichment tests were performed with the R function fisher.
test to test whether oligodendrocyte modules were significantly overrepresented 
with SREBP target genes, inferring which modules are regulated by SREBP. 
Module eigengenes were computed for the set of SREBP target genes, and the RNA 
expression as well as protein expression data from Inweb71 and Biogrid72 was also 
used to analyze SREBP targets during AD progression. A PPI network of SREBP 
target genes was constructed using SREBF1 ChIP–seq data from ENCODE and 
visualized using the STRING database73, restricting the edges to known PPIs. In 
addition to bulk RNA-seq data, we used a proteomics dataset from our group’s 
previous study59 of 685 samples representing AD, asymptomatic AD and controls 
from the human PFC to interrogate the levels of SREBF1 target genes and target 
proteins in AD.

Statistics. All statistical methods and tests used in this paper are described in the 
figure legends, Methods, Supplementary Note or main text as appropriate.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All the multi-omics raw and processed data are available at https://www.synapse.
org/#!Synapse:syn22079621/. Raw sequencing data have been deposited into the 
National Center for Biotechnology Information Gene Expression Omnibus under 
accession number GSE174367. Additionally, these data can be accessed through 
our web app at http://swaruplab.bio.uci.edu/singlenucleiAD. Source data are 
provided with this paper.

Code availability
The custom code used for this paper is available on GitHub74 (https://
doi.org/10.5281/zenodo.4681643) at https://github.com/swaruplab/
Single-nuclei-epigenomic-and-transcriptomic-landscape-in-Alzheimer-disease/.
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Extended Data Fig. 1 | Batch correction of snATAC-seq, snRNA-seq, and merged datasets. a, snRNA-seq UMAPs before (left) and after iNMF batch 
correction (right), colored by sequencing batch. b, snATAC-seq UMAPs before (left) and after MNN batch correction (right), colored by sequencing batch. 
c, Dot plot of iNMF metagene expression in each snRNA-seq cluster. d, snRNA-seq UMAPs colored by metagene expression of selected iNMF metagenes. 
e, Dot plots showing the iNMF loading for the top 30 genes for the same metagenes in d.
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Extended Data Fig. 2 | Cell-type immunostaining and in situ hybridization. a–d, Representative immunofluorescence images from postmortem human 
brain tissue from control and late-stage AD cases for Iba-1 (a), GFAP (b) MAP2 (c), and 6E10 (d). e, Quantification of 6E10-positive amyloid plaques. n = 3 
cognitively healthy controls, 3 late-stage AD. Data is presented as the average of three different sections per sample. Linear mixed-effects model  
**** p < 0.0001. Box boundaries and line correspond to the interquartile range (IQR) and median respectively. Whiskers extend to the lowest or highest 
data points that are no further than 1.5 times the IQR from the box boundaries. f, Representative immunofluorescence images from postmortem human 
brain tissue from control and late-stage AD cases for OLIG2 with PDGFRA co-labeling. g, h, Representative RNAscope images from postmortem human 
brain tissue from control and late-stage AD cases for CNP (g) and PLP1 (h) with DAPI counterstain.
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Extended Data Fig. 3 | Comparison of gene expression and gene activity. a, Scatter plot comparing average gene activity from snATAC-seq and average 
gene expression from snRNA-seq by each major cell-type, with accompanying Pearson correlation statistics and linear regression lines. b, Donut chart 
showing the percent of genes with high chromatin accessibility and low gene expression in grey for each major cell-type. High chromatin accessibility was 
defined as genes in the top 20% of gene activity, while low gene expression was defined as genes in the bottom 20% of gene expression. Percent of all 
other genes are colored by the cell-type.
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Extended Data Fig. 4 | NEAT1 validation and neuronal TFs. a, b, Representative RNAscope images from postmortem human brain tissue for 
NEAT1 and AQP4 staining (a) and NEAT1 and MOG staining (b) with DAPI nuclear counterstain. c, Boxplots showing quantification of NEAT1 
puncta per AQP4 + astrocyte as in a. n = 4 cognitively healthy controls, 5 late-stage AD. d, Boxplots showing quantification of NEAT1 puncta per 
MOG + oligodendrocyte as in b. n = 4 cognitively healthy controls, 4 late-stage AD. Data is represented as the mean of four equally sized regions per 
sample. Linear mixed-effects model e, Tn5 bias subtracted TF footprinting for JUN by snATAC-seq neuron cluster (top) and by AD diagnosis (bottom), 
with TF binding motif logo above and Tn5 bias insertions below. f, Left: Co-embedding UMAP colored by JUN motif variability (top) and JUN target gene 
score (bottom). Right: Violin plots of JUN motif variability (top) and JUN target gene score (bottom) in excitatory neuron clusters, split by diagnosis. 
Wilcoxon test (ns: p > 0.05, *: p < = 0.05, **: p < = 0.01, ***: p < = 0.001, ****: p < = 0.0001). g, Tn5 bias subtracted TF footprinting for EGR1 by 
snATAC-seq neuron cluster (top) and by AD diagnosis (bottom), as in e. h, Left: Co-embedding UMAP colored by EGR1 motif variability (top) and EGR1 
target gene score (bottom). Right: Violin plots of EGR1 motif variability (top) and EGR1 target gene score (bottom) in excitatory neuron clusters, split by 
diagnosis, as in f. i, Violin plots of SREBF1 motif variability in oligodendrocyte snATAC-seq clusters, as in f. j, Violin plots of SREBF1 gene expression in 
oligodendrocyte snRNA-seq clusters, as in i. For boxplots, box boundaries and line correspond to the interquartile range (IQR) and median respectively. 
Whiskers extend to the lowest or highest data points that are no further than 1.5 times the IQR from the box boundaries.
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Extended Data Fig. 5 | Schematics of analyses. a, Schematic diagram linking cCREs to target genes and downstream analysis. First, we identify 
co-accessible chromatin peaks in each cell-type for control and late-stage AD. Second, we identify pairs of co-accessible peaks where one peak overlaps 
a gene promoter and correlate the expression of that gene with the chromatin accessibility of the other peak. Third, NMF is used to group gl-cCREs 
into functional modules. b, Schematic of construction of TF regulatory networks for each cell-type. c, Schematic representation of scWGCNA analysis, 
including iNMF integration with the Mathys et al. 2019 dataset, metacell aggregation, construction of co-expression networks, and downstream analysis of 
gene modules.

Nature Genetics | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


Articles NATuRE GEnETicS

Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Pseudotime trajectory analysis to identify dysregulated TFs and gene expression in glia. a, Line plot showing the RVAgene 
training loss at each epoch for oligodendrocyte (ODC), microglia (MG), and astrocyte (ASC) RVAE models. b, c, d, Heatmaps showing TF motif variability 
smoothed using loess regression and scaled to minimum and maximum values for TFs up- and down-regulated in AD as well as cell-type marker TFs along 
the oligodendrocyte trajectory (b), microglia trajectory (c), and astrocyte trajectory (d). TFs are ordered by trajectory rank (point in trajectory where of 
75% maximum value is reached). e, f, g, Dot plot showing the enrichR combined score for the top enriched GO terms in oligodendrocyte (e), microglia (f), 
and astrocyte (g) t-DEGs.
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Extended Data Fig. 7 | Metacell aggregation and SREBP. a, Heatmap showing the enrichment of cell-type marker genes in standard WGCNA modules 
constructed from our snRNA-seq data. b, Schematic showing generation of 30,218 metacells from the integrated transcriptomic dataset of 132,106 nuclei 
from our snRNA-seq and Mathys et al. c, d, e, Heatmap showing enrichment of oligodendrocyte (c), microglia (d), and astrocyte (e) scWGCNA modules 
constructed with 12 metacells, 25 metacells, 100 metacells, and 200 metacells in the scWGCNA modules constructed with 50 metacells, as shown in Fig. 7  
and Supplementary Fisg. 15 and 16. f, SREBP protein-protein interaction (PPI) network. Green circle denotes proteins involved in ribosome processing and 
transcription pathway, cyan circle for mTOR pathway, and red circle for lipid processing pathway. g, Left: Representative immunohistochemistry images 
from postmortem human brain tissue for SREBP with nuclear counterstain. Right: Quantification of SREBP staining. n = 4 pathological controls, 3 late-stage 
AD. Data is represented as the mean of four equally sized regions per sample. Scale bar represents 100 μm. Linear mixed-effects model ** p < 0.01. Box 
boundaries and line correspond to the interquartile range (IQR) and median respectively. Whiskers extend to the lowest or highest data points that are no 
further than 1.5 times the IQR from the box boundaries.
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Extended Data Fig. 8 | iNMF integration of snRNA-seq with Mathys et al. snRNA-seq. a, Schematic representation of iNMF integration of snRNA-seq 
with Mathys et al. snRNA-seq. UMAP plots are colored by cell-type assignments. b, Dot plot of iNMF metagene expression in each cell-type, split by 
dataset of origin. c, UMAP plots of the integrated dataset colored by selected iNMF metagenes. d, Dot plots showing the iNMF loading for the top 30 
genes for the same metagenes in c.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | scWGCNA in microglia and astrocytes. a, Signed correlation of astrocyte modules to AD diagnosis. b, c, d, Co-expression plots 
for modules AM1 (b), AM2 (c), and AM5 (d). e, GO term enrichment of astrocyte modules. f, Heatmaps showing row-normalized Seurat module scores 
of astrocyte modules in snRNA-seq (left) and snATAC-seq (right) astrocyte clusters. g, Signed correlation of microglia co-expression modules with AD 
diagnosis. h, i, j, Co-expression plots for modules MM1 (h), MM2 (i), and MM4 (j). k, GO term enrichment of microglia modules. l, Heatmaps showing 
row-normalized Seurat module scores of microglia modules in snRNA-seq (left) and snATAC-seq (right) microglia clusters.

Nature Genetics | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


Articles NATuRE GEnETicS

Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | scWGCNA in neurons. a, Signed correlation of excitatory neuron modules to AD diagnosis. b, c, d, e, Co-expression plots for 
modules EM1 (b), EM2 (c), EM5 (d), and EM7 (e). f, GO term enrichment of excitatory neuron modules. g, Heatmaps showing row-normalized Seurat 
module scores of excitatory neuron modules in snRNA-seq (left) and snATAC-seq (right) excitatory neuron clusters. h, Signed correlation of inhibitory 
neuron modules to AD diagnosis. i, j, k, l, m, n, Co-expression plots for modules IM1 (i), IM2 (j), IM3 (k), IM4 (l), IM5 (m), and IM6 (n). o, GO term 
enrichment of inhibitory neuron modules. p, Heatmaps showing row-normalized Seurat module scores of inhibitory neuron modules in snRNA-seq (left) 
and snATAC-seq (right) inhibitory neuron clusters.
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