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The gene-regulatory landscape of the brain is highly dynamic in health and disease, coordinating a menagerie of biologi-
cal processes across distinct cell types. Here, we present a multi-omic single-nucleus study of 191,890 nuclei in late-stage
Alzheimer's disease (AD), accessible through our web portal, profiling chromatin accessibility and gene expression in the same
biological samples and uncovering vast cellular heterogeneity. We identified cell-type-specific, disease-associated candidate
cis-regulatory elements and their candidate target genes, including an oligodendrocyte-associated regulatory module contain-
ing links to APOE and CLU. We describe cis-regulatory relationships in specific cell types at a subset of AD risk loci defined by
genome-wide association studies, demonstrating the utility of this multi-omic single-nucleus approach. Trajectory analysis
of glial populations identified disease-relevant transcription factors, such as SREBF1, and their regulatory targets. Finally, we
introduce single-nucleus consensus weighted gene coexpression analysis, a coexpression network analysis strategy robust to
sparse single-cell data, and perform a systems-level analysis of the AD transcriptome.

subsets of cells; both neuronal and nonneuronal cells work
in concert to perform simple and higher-order tasks. Recent
studies have provided more precise molecular characterization
and identification of neuronal and nonneuronal cell populations
in the cognitively normal brain'~. However, our understand-
ing of heterogeneous cell populations within the diseased brain is
still largely limited, hindering our understanding of the biological
processes underlying disease. Neurodegenerative disorders, such
as AD, are marked with massive neuronal loss, accompanied by
gliosis, and the role of specific neuronal and glial cell populations
in AD pathophysiology remains unclear. Several single-cell and
single-nucleus RNA-sequencing (snRNA-seq) studies have been
performed on both mouse and human tissue to study AD, reveal-
ing cell-type-specific transcriptional changes™, but the regulators
of these disease-associated cell subtypes have yet to be defined.
Moreover, a slew of genetic studies has been performed on
AD, identifying multiple associated genetic risk variants'®-'°.
Genome-wide association studies (GWAS) of complex diseases
such as AD show that a substantial proportion of genetic risk from
common variants partitions to distal regulatory elements, which are
often cell-type-specific regions in disease-relevant tissues. While
much work has gone into intersecting GWAS signals with func-
tional genomics assays, including bulk-tissue RNA-seq and assay for
transposase-accessible chromatin with high-throughput sequenc-
ing (ATAC-seq)", the resolution of such studies is noticeably lim-
ited by cell-type heterogeneity. A prerequisite for linking GWAS hits
to cell types is a map that links distal regulatory elements with their
target genes.

| he human brain is composed of multiple heterogeneous

ATAC-seq profiles the open-chromatin regions within a tis-
sue and has recently been adapted for single-cell resolution'.
To date, single-cell chromatin accessibility techniques, such as
single-nucleus ATAC-seq (snATAC-seq) have been seldom used
in primary samples of diseased tissues, with only two published
studies of single-cell chromatin accessibility in the cognitively nor-
mal human brain'**. Therefore, we performed snATAC-seq and
snRNA-seq in the same AD postmortem human brain tissue sam-
ples to define AD-associated gene-regulatory programs at the epig-
enomic and transcriptomic levels, providing a powerful lens into
the cellular heterogeneity of the brain and allowing us to unravel
new biological pathways underlying neurodegeneration in specific
cell populations.

Here, we present a multi-omic analysis of 191,890 nuclei from
postmortem human brain tissue of AD and cognitively healthy
controls at the single-nucleus resolution, in which we directly inte-
grated snRNA-seq and snATAC-seq datasets, thus providing a more
complete understanding of the molecular changes in AD. We iden-
tified cell-type-specific candidate cis-regulatory elements (cCREs)
based on chromatin accessibility and found disease-associated
cell-subpopulation-specific transcriptomic changes. We identified
transcription factors (TFs) that may regulate AD gene expression
changes. Further, we applied pseudotime trajectory analysis on our
integrated dataset to extensively characterize disease-associated
glial cell states at the epigenomic and transcriptomic levels, expand-
ing on previous work exploring gene expression in diverse glial sub-
types. We integrated fine-mapped GWAS signals at selected AD risk
loci with our snATAC-seq data to link AD risk signals to the specific
cell types in which they are accessible and defined the cis-regulatory
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chromatin accessibility networks at these loci. Moreover, as network
analysis has been effective at clarifying disease transcriptomic sig-
natures in tissue-level RNA-seq data, we designed a coexpression
network analysis pipeline, integrating single-cell and bulk-tissue
RNA-seq datasets, that robustly identified AD-associated coexpres-
sion networks within each cell type. Altogether, we have clarified
the gene-regulatory landscape of AD, highlighting the role of glia in
AD pathophysiology and identifying several genes, namely SREBF]I
in oligodendrocytes, for further study in the context of AD. Finally,
we provide an online interface for exploration of these datasets
(https://swaruplab.bio.uci.edu/singlenucleiAD).

Results

Multi-omic analysis of the human prefrontal cortex. We per-
formed both snATAC-seq (10x Genomics; n=12 late-stage AD;
n=8 control) and snRNA-seq (10x Genomics v3; n=11 late-stage
AD; n=7 control) on nuclei isolated from the prefrontal cor-
tex (PFC) using postmortem human tissue from individuals with
late-stage AD and age-matched cognitively healthy controls (74-90+
years old; Fig. 1a). We defined late-stage AD and controls based
on both Braak and plaque staging (Supplementary Tables 1 and
2). We specifically aimed to generate both transcriptomic and epi-
genetic data from the same tissue sample (aliquots of samples from
the same dissection; Methods) to minimize differences in cell-type
composition between the two methods, thus allowing for meaning-
ful downstream integrated analysis. After quality-control filtering,
we retained a total of 130,418 nuclei for snATAC-seq and 61,472
nuclei for snRNA-seq (Supplementary Figs. 1 and 2, Supplementary
Table 3 and Supplementary Note). To ensure the rigor of our study,
we applied batch correction methods to the data from both assays,
as library preparation limitations required multiple batches. For
snATAC-seq, we used mutual nearest neighbors (MNN)*' to cor-
rect the latent semantic indexing reduced chromatin accessibility
matrix, and for snRNA-seq, we used integrative non-negative matrix
factorization (iNMF)* to reduce dimensionality while simultane-
ously eliminating batch effects (Methods, Extended Data Fig. 1 and
Supplementary Note). We applied uniform manifold approxima-
tion and projection (UMAP)* dimensionality reduction and Leiden
clustering™ to the batch-corrected epigenomic and transcriptomic
datasets, identifying distinct cell-type clusters in snATAC-seq (35)
and snRNA-seq (34; Fig. 1b,c). With snATAC-seq, we profiled all
major cell types of the brain—excitatory neurons (24,076 nuclei;
EX.a-e), inhibitory neurons (9,644 nuclei; INH.a-d), astrocytes
(15,399 nuclei; ASC.a-f), microglia (12,232 nuclei; MG.a-e),
oligodendrocytes (62,253 nuclei; ODC.a-m) and oligodendro-
cyte progenitor cells (4,869 nuclei; OPC.a)—annotated based on
chromatin accessibility at the promoter regions of known marker
genes (Fig. 1d and Extended Data Fig. 2). We used chromVAR”
to compute TF motif variability in single nuclei by estimating the
enrichment of TF binding motifs in accessible chromatin regions
(Methods) and examined the enrichment of TF motifs by cell
type with respect to diagnosis, identifying several TF motifs with
increased enrichment with disease in astrocytes, excitatory neurons
and microglia (Supplementary Fig. 3 and Supplementary Data 1).
Moreover, we performed TF footprinting analysis to further clarify
cell-type-specific TF regulation, highlighting the SOX9 TF footprint
in oligodendrocytes. Interestingly, we noticed TF motif enrichment
of oligodendrocyte-related TFs in excitatory neurons. Likewise, we
detected similar cell types using snRNA-seq—excitatory neurons
(6,369 nuclei; EX1-5), inhibitory neurons (5,962 nuclei; INH1-4),
astrocytes (4,756 nuclei; ASC1-4), microglia (4,126 nuclei; MG1-3),
oligodendrocytes (37,052 nuclei; ODC1-13) and oligodendrocyte
progenitor cells (2,740 nuclei; OPC1-2)—classified by the gene
expression of cell-type markers (Fig. le). In both assays, oligoden-
drocytes were the most commonly profiled cell type (Supplementary
Fig. 3). Additionally, while many differentially expressed genes

(DEGs) in each major cell type agreed with previous literature, we
also found cluster-specific genes previously established as neuronal
or glial subtype markers, such as LINC00507 for L2-3 excitatory
neurons (EX1)*, SV2C for L3 interneurons (INH4)' and CX3CR1
for homeostatic microglia (MG2)* (Supplementary Fig. 3 and 4 and
Supplementary Data 1).

Because the epigenomic landscape is deeply intertwined
with downstream gene expression signatures, we integrated our
snATAC-seq and snRNA-seq datasets using Seurat’s integration plat-
form”** (Methods, Fig. 1f, Extended Data Fig. 3 and Supplementary
Fig. 3). Cell types that were independently classified using chroma-
tin data or transcriptome data overwhelmingly grouped together
in the integrated UMAP space (Fig. 1g and Supplementary Fig. 3).
Using the same biological samples in snATAC-seq and snRNA-seq
resulted in a high degree of overlap between nuclei from these two
data modalities in the jointly constructed space. Additionally, we
confirmed cell-type identities by gene activity and gene expres-
sion in a panel of canonical cell-type marker genes (Supplementary
Fig. 3) and used Seurat’s label-transfer algorithm to verify cell-type
annotations in the snATAC-seq dataset using the snRNA-seq data-
set as a reference (Supplementary Fig. 5).

Multi-omic characterization of cellular heterogeneity in
Alzheimer’s disease. In both snATAC-seq and snRNA-seq, we
discovered multiple neuronal and glial subpopulations, and we
annotated the subpopulations from snRNA-seq based on previ-
ously identified marker genes* (Fig. 2, Supplementary Figs. 6 and
7 and Supplementary Note). For our snATAC-seq clusters, we used
Seurat’s label-transfer algorithm to calculate cluster prediction
scores allowing for supervised annotation of our cell clusters, in
which we mapped EX.a to EX1 and ASC.b to ASC2, for example
(Supplementary Figs. 6 and 7). We examined the composition of
each cluster in the context of disease and found several that were
significantly overrepresented or underrepresented in late-stage AD
compared to control samples, in both data modalities (Fig. 2d-g
and Methods). ASC3 (GFAPe"/CHI3L*) significantly increased
in proportion with disease (bootstrapped cluster proportion
analysis using a two-sided Wilcoxon rank-sum test, false discov-
ery rate (FDR)=8.63x107°), whereas ASC4 (GFAP"*/WIFI*/A
DAMTSI17+) significantly decreased (FDR=4.68%107), consis-
tent with a recent snRNA-seq study of the 5XFAD mouse model
of AD¥. We also found that the proportions of MG.a. and MG.b
were increased in late-stage AD (FDR=9.82X 107" and 8.88 107",
respectively), both of which mapped to the activated snRNA-seq
cluster MG1 (SPP1"¢"/CD163*), which was also increased with dis-
ease (FDR=6.32x1077). Additionally, we found that immune oligo-
dendrocyte cluster ODC13 was significantly increased in late-stage
AD (FDR=1.62Xx107).

Further, we identified both differentially accessible chromatin
regions and DEGs in late-stage AD for each cell cluster and found
high cluster specificity for Gene Ontology (GO) term enrichment
of distal and proximal differentially accessible chromatin regions,
as well as DEGs (Supplementary Figs. 7-9, Supplementary Data 1-6
and Supplementary Note). For example, we identified NEATI as
upregulated in astrocytes and oligodendrocytes, in agreement
with previous findings in the entorhinal cortex’, and we confirmed
AD upregulation of NEATI with in situ hybridization (Extended
Data Fig. 4). Altogether, we found cluster-specific epigenetic and
transcriptomic changes in late-stage AD, which may underlie the
dysregulation of distinct biological pathways in different cell sub-
populations in neurodegeneration.

Cell-type-specific cis-gene regulation in late-stage Alzheimer’s
disease. Based on our experimental design using both snATAC-seq
and snRNA-seq in the same samples, we reasoned that we could iden-
tify the target genes of cCRE:s in specific cell populations (Extended
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Fig. 1| Single-nucleus ATAC-seq and single-nucleus RNA-seq for the study of cellular diversity in the diseased brain. a, Schematic representation of
the samples used in this study, sequencing experiments and downstream bioinformatic analyses, created with BioRender.com. b,c, UMAP visualizations
where dots correspond to individual nuclei for 130,418 nuclei profiled with snATAC-seq (b) and 61,472 nuclei profiled with snRNA-seq (¢), colored by
Leiden cluster assignment and cell type. ASC, astrocytes; EX, excitatory neurons; INH, inhibitory neurons; MG, microglia; ODC, oligodendrocytes; OPC,
oligodendrocyte progenitor cells; PER/END, pericytes/endothelial cells. d, Pseudo-bulk chromatin accessibility profiles for each cell type at canonical
cell-type marker genes. For each gene, 1kb upstream and downstream are shown. The promoter/transcription start site (TSS) is highlighted in gray with
gene model and chromosome position shown below. Chromosome coordinates are: GFAP chr17: 44904008-44919937; SLC17A7 chr19: 49428401-
49445360; GAD2 chr10: 26213307-26305558; CSFIR chr5:150052291-150116372; MBP chr18: 76977827-77136683; PDGFRA chr4: 54226097~
54299247. e, Row-normalized single-nucleus gene expression heatmap of cell-type marker genes. f, UMAP plot of 186,167 nuclei from a jointly learned
subspace of snATAC-seq and snRNA-seq, colored by cell-type assignment. g, Integrated UMAP as in f, colored by originating dataset. Smaller gray dots
represent nuclei from the other data modality. A consistent coloring scheme for each cell type and cluster is used throughout the paper.

Data Fig. 5a and Methods). To this end, we sought to elucidate the
cis-regulatory architecture of the PFC in late-stage AD by construct-
ing cis co-accessibility networks™ (CCANSs) separately for late-stage
AD and control samples in each cell type (Methods). To identify
target genes of cCREs, we focused on the subset of co-accessible
peaks where one of the peaks lies in a promoter element, yielding a
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set of cCREs and candidate target genes. For this set of co-accessible
links, we correlated the expression of the candidate target gene to
the chromatin accessibility of the cCRE, strengthening the evidence
of a potential regulatory relationship beyond co-accessibility alone.
Finally, we used NMF to analyze and cluster these gene-linked
cCREs (gl-cCREs) based on their chromatin accessibility in each cell
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Fig. 2 | Epigenetically and transcriptionally distinct cell subpopulations in human AD prefrontal cortex. a,b, Hierarchically clustered heatmaps of
row-normalized gene expression in snRNA-seq OPC and oligodendrocyte clusters (a) and gene activity in snATAC-seq OPC and oligodendrocyte clusters
(b) for the top 25 upregulated DEGs (sorted by average log fold change) identified in each oligodendrocyte subpopulation. ¢, Pseudo-bulk chromatin
accessibility coverage profiles for OPC (progenitor), intermediate oligodendrocyte and mature oligodendrocyte snATAC-seq clusters; assignments as in
b. Promoter/TSS regions highlighted in gray with gene model and chromosome position shown below. Chromosome coordinates are: VCAN chr5:
83468465-83583303; ITPR2 chr12: 26335515-26836198; CD74 chr5: 150400637-150415929; APOLD1 chr12:12722917-12830975; OPALIN chr10:
96342216-96362365; CNP chr17: 41963741-41978731; MOG chr6: 29653981-29673372. d,e, snATAC-seq (d) and snRNA-seq (e) UMAPs as in Fig. 1,
where nuclei are colored by AD diagnosis. Clusters annotated by cell type. f,g, Box-and-whisker plots showing the proportion of nuclei mapping to each
cluster for each sample, split by control and late-stage AD samples for snATAC-seq (f) and snRNA-seq (g) clusters, with measures of significance from
bootstrapped cluster composition analysis (Wilcoxon test, Methods; *** FDR<0.001, ** FDR<0.01, * 0.01 < FDR<0.05) and n as per Supplementary
Tables 7-9. For box-and-whisker plots, the box boundaries and line correspond to the interquartile range (IQR) and median, respectively. Whiskers extend
to the lowest or highest data points that are no further than 1.5 times the IQR from the box boundaries.

cluster. In sum, this approach results in a set of candidate enhancer
elements (gl-cCREs) grouped into functional modules, as well as a
set of cCRE-linked genes, for each major cell type in late-stage AD
and control samples.

In total, using this approach, we identified 56,552 gl-cCREs and
11,440 cCRE-linked genes, with a median of 4 cCREs linked to
each of these genes (Fig. 3a and Supplementary Tables 4 and 5). By
examining the overlap between sets of cCRE-linked genes identified
in each cell type, we observed a substantial number of genes with
linked cCREs that were shared across multiple cell types, in addition
to those that are cell-type specific (Fig. 3b). For several cell types, we
found a significant overlap between the set of cCRE-linked genes
and cell-type marker DEGs, as well as genes that are upregulated
in AD within that cell type, highlighting a critical role of cCREs
in disease-related gene expression changes (Fig. 3c). We also inves-
tigated the chromatin accessibility in each snATAC-seq cluster
for these gl-cCREs and noted a high degree of cell-type and clus-
ter specificity (Fig. 3d). The majority of the gl-cCREs mapped to

intronic regions (58.35%; Fig. 3¢). Moreover, by inspecting the NMF
coefficient matrix (H), we were able to identify which cluster or cell
type each NMF module corresponds to, and we annotated several
modules that are specific to control or late-stage AD nuclei within a
given cluster (Fig. 3f,g and Supplementary Note). Additionally, we
found that some of the cCRE target genes that are common to more
than one cell type are regulated by different cCREs in each cell type.

Cell-type-specific transcription factors in late-stage Alzheimer’s
disease. To complement our analysis of cis-regulatory elements,
we sought to identify cell-type-specific trans-regulatory elements
in late-stage AD. TFs tightly control cell fate in neurodevelopment
and have been implicated in neurodegenerative processes. We
examined the regulatory role of microglial TF SPI1 (also known as
PU.1) and nuclear respiratory factor 1 (NRF1) in oligodendrocytes
(Fig. 4a—f, Supplementary Fig. 10 and Supplementary Note). SPI1
motif variability in our snATAC-seq microglia clusters was sig-
nificantly increased in only upregulated clusters MG.a and MG.b,
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of unique genes in one set. ¢, Venn diagrams for each major cell type showing the overlaps between the set of cCRE-linked genes and genes upregulated in
that cell type (cell-type DEGs) and genes upregulated in AD within this cell type (diagnosis DEGs). A one-sided Fisher's exact test was used for gene-set
overlap significance (***P<0.001, **P<0.01, *P< 0.05). d, Heatmap showing row-normalized pseudo-bulk chromatin accessibility in each snATAC-seq
cluster split by nuclei from control and late-stage AD samples. Rows (cCREs) are organized based on NMF module assignment. Annotations correspond to
genes from differential gene expression analysis that were upregulated in AD in at least one cell type. e, Donut chart showing the percentage of gl-cCREs
that mapped to intronic, exonic or distal regions. f, Heat map showing NMF coefficients in each snATAC-seq cluster split by nuclei from control and
late-stage AD samples. g, Heatmap showing log-transformed enrichR combined scores for GO terms for gene sets of selected NMF modules.

but SPIl’s targets were significantly downregulated in only MG1
(Fig. 4a,b and Supplementary Fig. 10). We also identified NRF1
as dysregulated in select oligodendrocyte clusters (Fig. 4d-f and
Supplementary Fig. 10). These results indicate that SPI1 acts as a
transcriptional repressor in late-stage AD, providing insight into
how SPI1 contributes to AD pathophysiology. Additionally, NRF1
has previously been associated with mitochondrial function®, and
impaired mitochondrial function, mediated by NRF1 dysregulation,
may contribute to neuronal dysfunction in late-stage AD through
the disruption of myelination. TF analyses in neuronal popula-
tions and Fos-related antigen 2 (FOSL2) in astrocytes are shown in
Extended Data Fig. 4 and Supplementary Fig. 10.

To gain further insight into TF-mediated gene regulation in
late-stage AD, we constructed cell-type-specific TF regulatory
networks. For a given TF, we identified candidate target genes as
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those whose promoters or linked cCREs are accessible and con-
tain the TF’s binding motif in the cell type of interest, and we
repeated this for several select TFs, generating microglia-specific
and oligodendrocyte-specific TF regulatory networks (Fig. 4g,h,
Extended Data Fig. 5b and Supplementary Note). Within these
networks, we identified multiple AD DEGs, in addition to genes
located at known AD GWAS loci, regulated by SPI1 in microglia
and NRF1 in oligodendrocytes.

Integrated trajectory analysis of disease-associated glia. To further
uncover molecular mechanisms driving glial heterogeneity in AD, we
performed pseudotime trajectory analysis using Monocle3 (refs. *~*)
on the integrated snATAC-seq and snRNA-seq data in oligodendro-
cytes, microglia and astrocytes (Supplementary Note). Multi-omic
trajectory analysis allows us to investigate the dynamics of gene
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Fig. 4 | Cell-subpopulation-specific transcription factor regulation in late-stage AD. a, Left: snATAC-seq and snRNA-seq integrated UMAP colored by
SPIT motif variability with microglia outlined. Right: violin plots of SPIT motif variability in snATAC-seq microglia clusters that had a significant difference
between control and late-stage AD, split by diagnosis. b, Left: Integrated UMAP colored by SPI1 target gene score with microglia circled. Right: violin plots
of SPI1 target gene score in snRNA-seq microglia clusters that had a significant difference between control and late-stage AD, split by diagnosis as in a.

¢, Tn5 bias-subtracted TF footprinting for SPIT by snATAC-seq microglia cluster (top) and by AD diagnosis (bottom). TF binding motif shown as motif logo
above. d, Left: integrated UMAP colored by NRF1 motif variability with oligodendrocytes outlined. Right: violin plots of NRF1 motif variability in snATAC-seq
oligodendrocyte clusters that had a significant difference between control and late-stage AD, split by diagnosis as in a. e, Left: integrated UMAP colored
by NRF1 target gene score with oligodendrocyte outlined. Right: violin plots of NRF1 target gene score in snRNA-seq oligodendrocyte clusters that had

a significant difference between control and late-stage AD, split by diagnosis as in a. f, Tn5 bias-subtracted TF footprinting for NRF1 by snATAC-seq
oligodendrocyte cluster (top) and by AD diagnosis (bottom) as in ¢. g,h, TF regulatory networks showing the predicted candidate target genes for the
following TFs: ELF5, ETS1, ETV5, SPIC and SPI1 in microglia (g); SOX9, SOX13, SREBF1, SREBF2, OLIG1 and NRF1 in oligodendrocytes (h). For violin plots,
two-sided Wilcoxon test was used to compare control versus AD samples; not significant, P> 0.05; *P <0.05, **P<0.01, ***P<0.001, ****P<0.0001.

expression, chromatin accessibility and TF motif variability through-
out a continuum of cell-state transitions. We modeled gene expression
and chromatin accessibility dynamics using a recurrent variational
autoencoder (RVAE)*. Briefly, a RVAE is an encoder-decoder neural
network framework that uses long short-term memory units to effec-
tively model temporal biological data, yielding a two-dimensional

(2D) latent representation of the input features, as well as a de-noised
reconstructed version of the original input (Supplementary Note). For
each cell type, we identified genes that were differentially expressed
along the trajectory (t-DEGs; Supplementary Data 7) and used these
genes as features to train the RVAE until the loss function converged
(Supplementary Note and Extended Data Fig. 6).
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Fig. 5 | Multi-omic oligodendrocyte trajectory analysis. a, UMAP dimensionality reduction of oligodendrocytes from the integrated snATAC-seq (n="58,221
nuclei) and snRNA-seq (n=36,773 nuclei) analysis. Each cell is colored by its pseudotime trajectory assignment. b, Scatterplot showing the proportion

of oligodendrocyte nuclei from AD samples at 50 evenly sized bins across the trajectory. The black line shows a linear regression, and the gray outline
represents the 95% Cl. Pearson correlation coefficient and P value from two-sided test are shown. ¢, Scatterplot of module scores for NF-ODC, MF-ODC
and mature ODC gene signatures®**’ (see Supplementary Note for full gene lists) averaged for nuclei in each of the 50 trajectory bins. Solid colored lines
represent loess regressions for each signature, and the gray outlines represent 95% Cls. d, Left: heatmap of chromatin accessibility at 9,231 oligodendrocyte
gl-cCREs reconstructed using RVAE. Right: heatmap of gene expression for 1,563 oligodendrocyte t-DEGs reconstructed using RVAE. Annotated genes are
DEGs in oligodendrocytes, with respect to other cell types, or AD upregulated genes in oligodendrocytes. e, 2D latent space learned by RVAE modeling of
oligodendrocyte t-DEGs (left) and gl-cCREs (right), where each dot represents one gene. Left: genes colored by trajectory rank, the point in the trajectory
where the gene reaches 75% of max expression. Right: genes colored by correlation of RVAE reconstructed expression with AD diagnosis proportion as in b.
f, Oligodendrocyte t-DEG latent space colored by correlation of reconstructed gene expression to NRF1 (left) and SREBF1 (right) motif variability. The shape
of each point represents the regulatory relationship between the TF and each gene, while genes without regulatory evidence are shown as small gray dots.
Annotated genes are AD upregulated genes in oligodendrocytes (AD DEGs). TF binding motifs are shown as motif logos.

Oligodendrocyte trajectory reveals SREBF1 dysregulation. We
constructed an integrated oligodendrocyte trajectory using 58,221
nuclei from snATAC-seq and 36,773 nuclei from snRNA-seq
(Fig. 5a), noting that the proportion of nuclei from late-stage
AD samples appeared to increase along the trajectory (Fig. 5b;
Pearson correlation R=0.32, P value=0.022). To clarify the func-
tional state of oligodendrocytes associated with late-stage AD,
we examined the gene expression signatures’’” of newly formed
oligodendrocytes (NF-ODCs), myelin-forming oligodendrocytes
(MF-ODCs) and mature oligodendrocytes (mature ODCs; Fig. 5¢;
see Supplementary Note for gene signature lists). Interestingly, we
found that the mature ODC gene expression signature increased
at the end of the trajectory, whereas the MF-ODC gene signature
decreased. In addition, the NF-ODC gene signature decreased
throughout the trajectory, altogether suggesting that the oligo-
dendrocyte pseudotime trajectory recapitulates oligodendrocyte
maturation. Chromatin accessibility of 9,231 oligodendrocyte
gl-cCREs and gene expression of 1,563 oligodendrocyte t-DEGs
reconstructed with a RVAE showcases the vast amount of chro-
matin remodeling and transcriptional reprogramming that may
underlie oligodendrocyte maturation (Fig. 5d).

Additionally, the latent feature space (Z) learned by the RVAE
provides further biological insight into the pseudotime trajec-
tory and gene regulation in disease (Fig. 5¢). Here, each dot rep-
resents a single feature (gene or chromatin region), and they are
organized in 2D space based on their pseudotemporal dynamics
learned by the RVAE. We ranked each feature based on the point
in the trajectory that it reached 75% of its maximum value, which
we termed as the feature’s ‘trajectory rank’ We then correlated the
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reconstructed feature trajectories, as in Fig. 5d, to the proportion
of late-stage AD nuclei, as in Fig. 5b, to see which features con-
sistently changed with AD. For both genes (t-DEGs) and chro-
matin regions (gl-cCREs), the latent space clearly groups features
together that are positively or negatively correlated with the pro-
portion of late-stage AD nuclei and groups features together with
similar trajectory ranks, demonstrating the power of this RVAE
model for the analysis and interpretation of multi-omic pseudo-
temporal dynamics.

We showcase two key TFs in oligodendrocytes: NRF1 and ste-
rol regulatory element binding transcription factor 1 (SREBFI).
SREBF1 is critical in regulating the expression of genes involved
in cholesterol and fatty acid homeostasis®, and it is proposed
that AP inhibits SREBF1 activation®. We found that NRF1 motif
variability is upregulated in oligodendrocytes in late-stage AD
(Bonferroni-adjusted P value=5.13x107%; Fig. 4d), and SREBF1
motif variability is downregulated with disease in oligodendro-
cytes (Bonferroni-adjusted P value=2.67x107"!; Extended Data
Fig. 4). We correlated TF motif variability trajectories (Extended
Data Fig. 6) with the reconstructed t-DEG expression trajectories
and visualized the correlation between the TF and each gene within
the 2D latent space, identifying candidate target genes activated or
repressed by TF binding events (positive or negative trajectory cor-
relation, respectively; Fig. 5f and Supplementary Note). We found
that NRF1 was negatively correlated with target genes at the end
of the trajectory, while SREBF1 was positively correlated with tar-
get genes at both the beginning and the end of the trajectory, indi-
cating that SREBFI acts as a transcriptional activator throughout
the trajectory.
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Fig. 6 | Multi-omic microglia and astrocyte trajectory analyses. a, UMAP dime

nsionality reduction of microglia from the integrated snATAC-seq

(n=10,768 nuclei) and snRNA-seq (n=4,119 nuclei) analysis. b, Scatterplot of the proportion of AD microglia nuclei as in Fig. 5b. ¢, Scatterplot of module
scores as in Fig. 5¢ for gene signatures from Keren-Shaul et al.*°: homeostatic microglia, stage 1 DAM and stage 2 DAM (see Supplementary Note for full
gene lists). d, Heatmaps of RVAE reconstructed chromatin accessibility and gene expression as in Fig. 5d, for 9,163 microglia gl-cCREs (left) and 2,138
microglia t-DEGs (right). e, 2D latent space learned by RVAE modeling of microglia t-DEGs (left) and gl-cCREs (right), as in Fig. Se. f, Microglia t-DEG
latent space colored by correlation of gene expression to SPI1 (left) and ETV5 (right) motif variability, as in Fig. 5f. g, UMAP dimensionality reduction of

astrocytes from the integrated snATAC-seq (n=12,112 nuclei) and snRNA-seq (

n=4,704 nuclei) analysis. h, Scatterplot of the proportion of AD astrocyte

nuclei as in b. i, Scatterplot of module scores as in ¢ for gene signatures from Habib et al.?: GFAP-low, GFAP-high and DAAs (see Supplementary Note

for full gene lists). j, Heatmaps of RVAE reconstructed chromatin accessibility a

nd gene expression as in d for 12,487 astrocyte gl-cCREs (left) and 1,797

astrocyte t-DEGs (right). k, 2D latent space learned by RVAE modeling of astrocyte t-DEGs (left) and gl-cCREs (right), as in e. I, Astrocyte t-DEG latent
space colored by correlation of gene expression to CTCF (left) and ETV5 (right) motif variability, as in f.

Microglia trajectory to define disease-associated microglia.
Using the same analytical approach as that used for our oligoden-
drocyte trajectory analysis, we constructed an integrated microglia
trajectory using 10,768 nuclei from snATAC-seq and 4,119 nuclei
from snRNA-seq (Fig. 6a). The proportion of nuclei from late-stage
AD samples significantly increased throughout the microglia tra-
jectory (Fig. 6b; Pearson correlation R=0.53, P value=6.9x107).
We next sought to investigate gene signatures of disease-associated

microglia (DAM), which were introduced in a single-cell transcrip-
tomic study” of 5XFAD mice and are highly debated in the field
of AD genomics. DAM are described as AD-associated phagocytic
microglia that are sequentially activated in TREM2-independent
and TREM?2-dependent stages (stage 1 and stage 2, respectively). We
found that the integrated microglia trajectory follows a decrease in
the homeostatic signature, an increase in the stage 1 DAM signature
and a distinct global depletion of the stage 2 TREM2-dependent
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DAM signature (Fig. 6¢; see Supplementary Note for gene signa-
ture lists), suggesting that this microglia trajectory describes the
transcriptional and epigenetic changes during the transition from a
homeostatic to disease-associated cell state.

To further dissect the microglia trajectory, we modeled the chro-
matin accessibility and gene expression dynamics of 9,163 microg-
lia gl-cCREs and 2,138 microglia t-DEGs, respectively, using RVAE
(Fig. 6d,e). We highlight two ETS family TFs, SPI1 and ETS vari-
ant 5 (ETV5), both of which showed upregulated motif variability
in late-stage AD (Bonferroni-adjusted P values 1.19X 107 and
6.68 X 107", respectively), and their candidate target genes along the
trajectory (Fig. 6f and Supplementary Note). We observed that the
SPI1 motif trajectory was negatively correlated with genes at the end
of the trajectory, supporting our previous findings that SPI1 acts as
a repressor in late-stage AD.

Disease-associated astrocytes in human Alzheimer’s disease. We
also constructed an integrated astrocyte trajectory using 12,112
nuclei from snATAC-seq and 4,704 nuclei from snRNA-seq (Fig. 6g),
and we again found that the proportion of late-stage AD nuclei
significantly increased throughout the trajectory (Fig. 6h; Pearson
correlation R=0.57, P value=1.9x107°). In a similar fashion to
our analysis of the DAM signature in the microglia trajectory, we
investigated the gene signature of disease-associated astrocytes
(DAAs), described in a recent snRNA-seq study of the hippocampus
in 5XFAD mice” as an AD-specific GFAP"#" astrocyte subpopula-
tion that is distinct from another GFAP"s" astrocyte subpopulation
found in aged wild-type and 5XFAD mice (GFAP-high). Based on
DAA gene signature analysis, we reasoned that this trajectory fol-
lows a trend from a GFAP-low state to GFAP-high and DAA-like
states (Fig. 6i; see Supplementary Note for gene signature lists).

RVAE modeling of 12,487 astrocyte gl-cCREs and 1,797 astro-
cyte t-DEGs revealed rich gene-regulatory dynamics across the
trajectory (Fig. 6j,k). We investigated the relationship between
astrocyte t-DEGs and two TFs: CCCTC-binding factor (CTCF) and
FOSL2, whose motif variability we have found to be downregulated
and upregulated in late-stage AD, respectively (Bonferroni-adjusted
P values 6.45% 107" and 5.65 X 10~%, respectively). CTCF is known
as a master chromatin regulator*-*>, and we observed that the CTCF
motif variability trajectory was anti-correlated with the DAA and
GFAP-high signatures (end of the trajectory; Extended Data Fig. 6)
and positively correlated with t-DEGs in the GFAP-low phase of
the trajectory (Fig. 61). Alternatively, we found a positive correla-
tion between the motif variability trajectory of FOSL2 with the
GFAP-high and DAA gene signatures and a positive correlation
with genes at the end of the trajectory (Fig. 6] and Supplementary
Note). These findings suggest that FOSL2 may be an activator of the
DAA signature, whereas CTCF may promote a more homeostatic
or non-diseased astrocyte state. By relating gene expression with TF
motif enrichment, TF binding site accessibility and using the tem-
poral information learned by the RVAE, we begin to unravel the role
of TFs in regulating cell states, such as DAAs.

Cell-type-specific cis-regulation at Alzheimer’s disease genetic
risk loci. To further our understanding of AD genetic risk sig-
nals, we performed cell-type-specific linkage-disequilibrium score
regression (LDSC) analysis in our snATAC-seq clusters using
GWAS summary statistics in AD'®"" and other relevant traits*~>°
(Methods, Supplementary Table 6 and Supplementary Note).
Microglia clusters MG.b and MG.c showed a significant enrich-
ment (FDR<0.05) for AD GWAS SNPs from the study by Kunkle
et al,, and all five microglia clusters showed a significant enrich-
ment (MG.a and MG.e FDR<0.005; MG.b, MG.c and MG.d
FDR <0.0005) for GWAS SNPs from the study by Jansen et al.,
which included familial AD-by-proxy samples in addition to data
from patients with AD (Fig. 7a). The results of this GWAS herita-
bility analysis supports previous findings in non-diseased humans®
and mice” snATAC-seq data. We further investigated AD risk sig-
nals in microglia using gchromVAR® to compute the enrichment
of fine-mapped AD-associated polymorphisms from Jansen et al.
along the microglia pseudotime trajectory and observed a signifi-
cant increase (Pearson correlation, P value=0.0048; Methods and
Fig. 7b,c) in the gchrom VAR deviation score in distal peaks through-
out the microglia trajectory, in stark contrast with a significant
decrease in the deviation score for the analogous gene-proximal
peak analysis (Pearson correlation, P value=0.0053), highlight-
ing AD-associated SNPs at distal enhancers in DAM. By overlay-
ing the co-accessibility map with chromatin accessibility signal and
GWAS statistics along the genomic axis, we unraveled the poten-
tial cis-regulatory relationships disrupted by causal disease vari-
ants in GWAS genes, such as BINI, ADAMI10, APOE and SLC24A4
(Fig. 7d-i). We found that the APOE locus, which harbors the main
determinants of AD heritability and is one of the best studied AD
risk loci, has cis-regulatory chromatin networks altered in disease in
microglia and astrocytes, highlighting cCREs that are prime candi-
dates for further study using genome-editing technologies.

Single-cell coexpression networks using sScWGNCA. To recon-
textualize snRNA-seq data in a systems-level framework, we
sought to develop a gene coexpression network analysis approach
for single-cell data based on weighted gene coexpression analy-
sis (WGCNA)>™™, a powerful analytical approach for identifying
disease-associated gene modules™™ originally designed for bulk
gene expression data. Our revised approach uses aggregated expres-
sion profiles in place of potentially sparse single cells, where ‘meta-
cells’are constructed from specific cell populations by computing the
mean expression from 50 neighboring cells using k-nearest neigh-
bors (Methods, Extended Data Fig. 7 and Supplementary Note). We
reprocessed published AD snRNA-seq data from Mathys et al.” and
used iNMF to integrate these with our snRNA-seq data (Methods
and Extended Data Fig. 8). Additionally, we performed bulk
RNA-seq in early-stage and late-stage AD samples, as well as patho-
logical controls, and curated additional AD bulk-tissue RNA-seq
samples from the Religious Orders Study and Memory and Aging
Project (ROSMAP) study”. Finally, we used consensus WGCNA™,

>
>

Fig. 7 | Cell-type-specific regulatory landscapes of GWAS loci in the AD brain. a, Heatmap showing LDSC enrichment of GWAS traits and disorders

in snATAC-seq clusters. P values were derived from LDSC enrichment tests, and FDR-corrected P values are overlaid on the heatmap (*FDR < 0.05,
**FDR < 0.005, ***FDR < 0.0005). PSP, progressive supranuclear palsy; MS, multiple sclerosis; IBD, inflammatory bowel disease; FTD, frontotemporal
dementia. b,¢, Scatterplots showing gchromVAR enrichments along the microglia pseudotime trajectory in distal peaks (b) and gene-proximal peaks

(c) averaged for nuclei in each of the 50 trajectory bins. The black line shows a linear regression, and the gray outline represents the 95% ClI. Pearson
correlation coefficients and P values are shown. d-i, Cis-regulatory architecture at the following GWAS loci and cell types: BINT (d) and ADAMI10 (e) in
oligodendrocytes; BINT (f) and APOE (g) in microglia; SLC24A4 (h) and APOE (i) in astrocytes. Co-accessible links for late-stage AD and control samples
are shown separately, with the line height and opacity corresponding to the co-accessibility score; links with a score below the gray dashed line were
removed for visualization purposes. Genomic coverage plots for AD and control samples are shown separately. AD GWAS statistics from Jansen et al. for
SNPs at each locus are shown. Lead SNPs are shown as diamonds, and SNPs in 99% credible set are shown as triangles. Chromosome ideogram indicates
genomic coordinates in a 500-kb radius centered at each GWAS gene. Chromosome coordinates are: BINT chr2:127047027-127110355; ADAM10 chr15:
58587807-58752978; APOE chr19: 44902754-44910393; SLC24A4 chr14: 92319581-92502483.
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a meta-analytical approach, to jointly form coexpression networks cohorts. We call this approach single-nucleus consensus WGCNA
in metacells constructed from the integrated snRNA-seq dataset (scWGCNA; Extended Data Figs. 1, 7, 9 and 10 and Supplementary
and bulk-tissue RNA-seq data of the human PFC from two distinct  Data 7), performed iteratively for each cell type, where each edge
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Gene coexpression networks in oligodendrocytes
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Fig. 8 | Robust gene expression modules revealed using integrated bulk and single-cell coexpression network analysis. a, Coexpression plots for modules
OMT1, OM2, OM4 and OMB. b, Signed correlation oligodendrocyte coexpression modules with AD diagnosis. ¢, Enrichment of SREBF1 target genes in
oligodendrocyte coexpression modules. d, Boxplots showing RNA (top) and protein expression® (bottom; n=98 controls, 76 early pathology and 101 late
pathology) of the targets of SREBF1 with AD pathological staging. Two-sided Wilcoxon test. e, Boxplots showing quantification of SREBF1 puncta per MOG*
oligodendrocyte; n=3 cognitively healthy controls, 5 late-stage AD. Data are represented as the mean of four equally sized regions per sample. Linear
mixed-effects model. f, Boxplots showing quantification of ACSL4 puncta per MOG™ oligodendrocyte; n=4 cognitively healthy controls, 4 late-stage AD.
Data are represented as the mean of four equally sized regions per sample. Linear mixed-effects model. g, Representative RNA FISH (RNAscope) images
from postmortem human brain tissue for combined SREBFT and MOG staining as in e (left) and ACSL4 and MOG staining as in f (right) with DAPI nuclear
counterstain. For box-and-whisker plots, the box boundaries and line correspond to the IQR and median, respectively. Whiskers extend to the lowest or
highest data points that are no further than 1.5 times the IQR from the box boundaries.

in a coexpressed module is supported by both bulk-tissue RNA-seq
data (this study and ROSMAP*’) and aggregated snRNA-seq data
(this study and Mathys et al.).

We specifically highlight our sc(WGCNA analysis for oligoden-
drocytes; we found four coexpression modules significantly corre-
lated with AD diagnosis—OM1, OM2, OM4 and OM5 (Fig. 8a,b
and Supplementary Data 7). For example, hub genes of the
AD-downregulated module OM1 encoded ribosomal subunits
(RPS15A, RPL30 and RPL23A, for example), consistent with its
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enrichment of GO terms related to protein synthesis and sorting
(Supplementary Fig. 11). OM2 gene members MAG, CNP and PLP1
are known to be involved in myelination, and unsurprisingly, we
found OM2 downregulated with disease.

Additionally, we examined the downstream regulatory targets of
SREBF1 in the context of coexpression networks (Methods). Notably,
we found that three of the oligodendrocyte modules were signifi-
cantly enriched for targets of SREBF1, indicating the importance of
SREBF1 in regulating gene expression in these modules (Fig. 8c).
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Using multi-scale data from bulk-tissue RNA-seq, high-throughput
proteomics™ and SREBF1 chromatin immunoprecipitation (ChIP)
with sequencing (ChIP-seq; ENCODE), we defined a protein—pro-
tein interaction (PPI) network of SREBFI target genes (Extended
Data Fig. 7). Additionally, we found module eigengene expression
of SREBF1 targets downregulated in early-stage and late-stage AD
samples at the level of proteins® and RNA (Fig. 8d), corroborated
by downregulation of SREBF1 motif variability in snATAC-seq
data (Extended Data Fig. 4). We also validated the downregula-
tion of SREBF1 in late-stage AD through RNA in situ hybridiza-
tion and immunohistochemistry and found a decrease in ACSL4
expression, one of SREBF1’s targets identified in ENCODE ChIP-
seq data, in late-stage AD (Fig. 8e-g and Extended Data Fig. 7).
Overall, our coexpression network analysis approach facilitates
the identification of cell-type-specific disease biology, and we have
highlighted TF SREBF], largely unstudied in the context of AD, in
oligodendrocytes to demonstrate our approach’s ability to yield new
disease insights.

Discussion

Our integrated multi-omic analysis of late-stage AD pro-
vides a unique lens into the continuum of cellular heteroge-
neity underlying disease pathogenesis. Pinpointing causal
mechanisms of complex diseases requires a rigorous understand-
ing of cell-population-specific gene-regulatory systems at both the
epigenomic and transcriptomic levels. While single-cell chromatin
accessibility can provide important insights into disease, it is a chal-
lenging data modality to work with due to its inherent sparsity. We
circumvented the issue of sparsity by integrating single-nucleus
open-chromatin and single-nucleus transcriptomes from the same
samples, in addition to using aggregation methods for pseudo-bulk
accessibility profiling and co-accessibility analysis. Taking these
considerations into account, our multi-omic analysis enabled us to
analyze cell-type-specific epigenomic dysregulation in neurodegen-
eration and expands on previous work to decipher the transcrip-
tomes of single nuclei in human AD.

A major contribution of our study is that we identified cell-
type-specific gl-cCREs, which may mediate gene-regulatory changes
in late-stage AD, along with TFs that may bind to these gl-cCREs
within the given cell type. While cCREs can be identified with
epigenetic data alone, our analysis is substantiated by integrating
single-nucleus transcriptomic data, as we link the gene expression of
candidate target genes with cCRE chromatin accessibility. Previous
studies of AD have not explored cis-gene regulation at a cell-type
or cell-subpopulation level. We have highlighted both cis-gene and
trans-gene regulation disrupted in late-stage AD, providing poten-
tial targets for further study into AD, such as NRF1 in oligodendro-
cytes and FOSL2 in astrocytes and their corresponding gl-cCREs.
Further, we examined cis-regulatory interactions in our multi-omic
dataset to elucidate cell-type and disease-specific patterns of genes
implicated in inherited AD risk by GWAS, which are of particular
interest as candidate therapeutic targets. For a subset of AD GWAS
loci, we compared cis-regulatory networks between AD and control
cell populations to identify interactions that are uniquely found in
disease. Thus, this study serves as a resource for the broader AD
community to explore cell-type and cell-state-specific regulatory
landscapes of genes and genomic regions that may be of particular
interest, such as AD GWAS loci.

Moreover, independent and joint analyses of the transcriptome
and chromatin profiles of oligodendrocytes revealed disrupted gene
regulation and biological pathways in AD (Supplementary Note).
We described a multi-omic oligodendrocyte trajectory and evalu-
ated gene expression signatures in the transition from newly formed
to mature oligodendrocytes, observing that the trajectory seemed
to follow oligodendrocyte maturation. Notably, we analyzed the
trajectory dynamics of SREBF1, a TF involved in the regulation of

cholesterol and lipid metabolism that has been shown to be involved
in Ap-related processes®. We found that SREBF1 motif variability
was decreased in late-stage AD, indicating that fewer SREBF1 bind-
ing sites are accessible in disease, and SREBFI gene expression is
also downregulated in AD oligodendrocytes. Trajectory analysis
revealed that SREBF1 motif variability is positively correlated with
t-DEGs throughout the trajectory, suggesting that it acts as a tran-
scriptional activator in oligodendrocytes.

Coexpression network analysis methods like WGCNA have
been widely used for discovery of disease-associated gene mod-
ules in bulk gene expression data®°'; however, these approaches
are rarely used in single-cell transcriptomics, with some excep-
tions®” due to challenges in network construction from noisy data.
Here we introduced scWGCNA, a method for interrogation of
cell-population-specific coexpression networks that leverages aggre-
gated metacells to combat the sparsity of single-cell gene expres-
sion. Using scWGCNA, we found gene coexpression networks in
human AD by jointly analyzing our snRNA-seq and bulk RNA-seq
data with additional snRNA-seq and bulk RNA-seq samples from
the ROSMAP cohort>”. This meta-analytical approach ensured the
robustness of our network analysis and allowed us to evaluate the
resulting gene modules in early-stage AD (Supplementary Note).
Notably, scWGCNA identified three oligodendrocyte modules that
were enriched for target genes of SREBF1 and showed that the gene
and protein expression of these targets were decreased in late-stage
AD. With our coexpression and trajectory analysis of SREBF1 in oli-
godendrocytes, SREBF1 is clearly a gene to prioritize for follow-up
studies as a candidate target for AD therapeutics, demonstrating the
utility of our approach in identifying new gene targets for disease.

While the causative molecular mechanisms of sporadic AD
remain unknown, our work offers new insights that assist in unrav-
eling the nature of gene regulation in AD, especially regarding
genomic loci with well-described heritable disease risk. Additional
work is needed to spatially resolve the complexity of gene expres-
sion and epigenomics in AD and neurodegeneration in general. The
data presented here are a valuable resource for understanding regu-
latory relationships in the diseased brain, and our analysis frame-
work serves as a blueprint for making discoveries in complex traits
using single-cell multi-omic data. Finally, our intuitive web portal
for exploring single nuclei in the human brain allows for the acces-
sibility of our results to anyone with an internet-equipped device.
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Methods

Human samples. Human PFC brain samples were obtained from the University of
California Irvine Institute for Memory Impairments and Neurological Disorders
(UCI MIND) Alzheimer’s Disease Research Center (ADRC) tissue repository

and under UCT’s Institutional Review Board. Postmortem human brain tissue

from the ROSMAP study was obtained under the Institutional Review Board of
Rush University Medical Center. Informed consent was obtained for all human
participants. Samples were dissected, homogenized on a dry-ice pre-chilled
isolating platform and aliquoted for snRNA-seq and snATAC-seq. For details on
the human samples used in this study (AD, n =6 males and 6 females; controls,
n=>5 males and 3 females; all 74-90+ years old), please see Supplementary Tables 1
and 2. ROSMAP RNA-seq data and details can be found on https://www.synapse.
org/ under synapse ID syn3219045.

Bulk RNA-seq. Total RNA was isolated from human PFC using Mini Nucleospin
RNA kit (740955.250, Takara Bio). RNA integrity was assessed using a 2100
Bioanalyzer (Agilent). Total RNA was quantified using Qubit RNA HS assay kit
(Q32852, Invitrogen). Around 500 ng total RNA was used to prepare the cDNA
library using SMARTer Stranded Total RNA Sample Prep kit-HI Mammalian
(634874, Takara Bio). cDNA library concentration was calculated using Qubit
dsDNA HS assay kit (Q32851, Invitrogen). Library quality was assessed using
either high-sensitivity DNA assay kit (5067-4626) on a 2100 Bioanalyzer or D5000
HS kit (5067-5589 and 5067-5588) on a 4200 Tapestation (Agilent). Libraries were
multiplexed with 96 and 95 samples in two lanes on an Illumina NovaSeq S4 for
100-bp paired-end reads.

Single-nucleus RNA-seq. Single-nucleus suspensions were isolated from

~50 mg frozen human PFC. Samples were homogenized in Nuclei EZ Lysis
buffer (NUC101-1KT, Sigma-Aldrich) and incubated for 5min. Samples were
passed through a 70-pm filter and incubated in additional lysis buffer for 5min
and centrifuged at 500g for 5min at 4 °C before two washes in Nuclei Wash and
Resuspension buffer (1x PBS, 1% BSA and 0.2 U pl~! RNase inhibitor). Nuclei
were FACS sorted with DAPI (NucBlue Fixed Cell ReadyProbe Reagent, R37606,
Thermo Fisher) before running on the 10x Chromium Single Cell 3’ v3 platform.
cDNA library quantification and quality were assessed as per bulk RNA-seq.
Libraries were sequenced using the Illumina NovaSeq 6000 S4 platform at the
New York Genome Center, using 100-bp paired-end sequencing.

Single-nucleus ATAC-seq. Single-nucleus suspensions were isolated from ~50 mg
frozen human PFC according to the 10x Genomics Nuclei Isolation from Mouse
Brain Tissue protocol (CG000212, Rev A) with an additional sucrose purification
step. Before resuspending our nuclei in Diluted Nuclei Buffer, we removed cellular
debris by preparing a sucrose gradient (Nuclei PURE Prep Nuclei Isolation Kit,
NUC201-1KT, Sigma). Nuclei were spun at 13,000g for 45min at 4°C and then
washed once and filtered before running on the 10x Chromium Single Cell ATAC
platform. Library quantification and quality checking were performed according to
the manufacturer’s recommendations. Libraries were sequenced using the Illumina
NovaSeq 6000 S4 platform at the UCI Genomics core facility, using 100-bp
paired-end sequencing.

RNAscope (FISH). Fresh-frozen human postmortem tissue was sectioned at

20 um on a cryostat at —20 °C. Slides were stored in airtight containers at —80°C
until use. Immediately after removing from —80°C, slides were dried for 20 min
at room temperature and then fixed in 4% paraformaldehyde/PBS for 15min at
4°C. Slides were then washed in RNase-free PBS for 5min at room temperature
three times. For single-labeling experiments, slides were incubated in PBS with
an LED light for 96 h at 4°C to quench autofluorescence®, and for dual-labeling
experiments, autofluorescence was quenched with TrueBlack (Biotium) for 30s
before coverslipping. Slides were processed following the RNAscope Multiplex
Fluorescent Reagent Kit v2 Assay (ACD) instructions for fresh-frozen tissue,
except protease IV incubation was performed for 15 min. Probes used were NEAT1
(411531), PLP1 (499271), CNP (509131-C2), SREBF1 (469871), ACSL4 (408301),
MOG (543181-C2) and AQP4 (482441-C2). Fluorophores used were TSA Plus
Cy5 (1:200 dilution; Perkin Elmer) and Opal 570 (1:200 dilution, Perkin Elmer)
to avoid autofluorescence. Images were taken on a ZEISS Axio Scan.Z1 at X20
magnification. Four regions per section were analyzed using QuPath. We used a
trained object classifier to identify MOG* or AQP4* nuclei, except for ASCL4/
MOG dual staining, which required manual assignment of MOG* nuclei due to
high background. Subcellular detection was used to count RNA punctae. We used
a linear mixed-effects model to account for random effects (age and sex) and fixed
effects (multiple regions from the same individual).

Immunofluorescence. Fixed and cryoprotected human postmortem tissue was
sectioned at 40 pm using a cryotome (Leica). For 6E10, Iba-1, MAP2 and GFAP,
brain sections were treated with 90% formic acid for 4 min. For PDGFRA and
Olig2, sections in sodium citrate buffer were heated at 80 °C in a bead bath for
30min. Sections were then washed before blocking (PBS with 5% goat or donkey
normal serum, respective to the antibodies, and 0.2% Triton X-100) for 1h at room
temperature. Primary antibodies were incubated at 4°C overnight (6E10, 1:1,000

dilution, 803001, BioLegend; Iba-1, 1:1,000 dilution, 019-19741, Wako; MAP2,
1:500 dilution, ab32454, Abcam; GFAP, 1:500 dilution, G3893, Sigma; PDGFRA,
1:50 dilution, AF-307, R&D Systems; Olig2, 1:200 dilution, ab109186, Abcam).
Secondary antibodies (goat anti-mouse 555, A-21422; goat anti-rabbit 488, A11034;
goat anti-rabbit 488, A11034; goat anti-mouse 555, A-21422; donkey anti-goat 488,
A-11055; donkey anti-rabbit 555, A31572; all from Thermo Fisher) were diluted
(1:200) and incubated for 1h. Slides were treated with 0.3% Sudan Black in 70%
ethanol for 4min to reduce autofluorescence and imaged on a confocal microscope
(Leica). Images from three randomly selected areas were used for volume analysis
of amyloid plaques using IMARIS. We used linear mixed-effects model as
previously stated.

Annotation of major cell types. Major cell-type annotations were assigned to
UMAP partitions and initial clusters in snATAC-seq and snRNA-seq datasets,
respectively, through manual inspection of canonical marker gene signals.
‘Pseudo-bulk’ chromatin accessibility coverage profiles of gene-body and
upstream promoter regions were visualized using the Signac® (v0.2.0) function
CoveragePlot, while gene expression signals were visualized using Seurat**
(v3.1.2). snRNA-seq cell-type assignments were further validated by integration
with the Mathys et al.” dataset.

Integrated analysis of snRNA-seq and snATAC-seq data. A unified dataset of
both chromatin accessibility and gene expression was constructed using Seurat’s
integration framework. Canonical correlation analysis was used to generate a
shared dimensionality reduction of the ‘query’ snATAC-seq gene activity and
the ‘reference’ snRNA-seq gene expression. MNNs were then identified in this
shared space, effectively identifying pairs of corresponding cells that anchor the
two datasets together. To confirm major cell-type annotations in snATAC-seq
cell populations, we used Seurat’s label-transfer algorithm, which leverages these
anchors to predict cell types in snATAC-seq data, with cell-type annotations

in snRNA-seq cells as the reference and chromatin accessibility with latent
semantic indexing reduction as the weights. We achieved a maximum prediction
score > 0.5 in 94% of cells, demonstrating high correspondence between the two
data modalities. Next, we used these shared anchors to impute gene expression
signals in snATAC-seq data. Following imputation, we merged gene expression
in cells from the snRNA-seq dataset with snATAC-seq cells that had a maximum
prediction score > 0.5. The merged dataset was then centered, dimensionally
reduced with principal-component analysis using 30 dimensions, batch corrected
with MNNs (monocle3, v0.2.0) and embedded with UMAP. Clusters and UMAP
partitions were identified using Leiden clustering (monocle3). We visualized
correspondence of major cell types from their dataset of origin to their joint
UMARP partitions using ggalluvial (v0.11.1).

Cell-type-specific dimensionality reduction and cluster analysis. Cell-type-
specific analyses were performed for snATAC-seq and snRNA-seq by subsetting
each major cell type from the fully processed dataset followed by re-embedding
with UMAP. Subpopulations of each cell type used for all downstream analysis
were then identified using Leiden clustering (monocle3). Clusters smaller than
100 cells were removed as outliers. We then used the addReproduciblePeakSet
function from the R package ArchR (v1.0.0)* with default parameters to call
accessible chromatin peaks using MACS2 (v2.2.7.1) in each cell-type subcluster.
For snRNA-seq and snATAC-seq clusters, we performed a bootstrapped cluster
composition analysis to robustly assess the composition of each cluster with respect
to AD diagnosis. Over 25 iterations, 20% of cells were sampled from the whole
dataset, and the proportion of cells from AD or control samples was computed

for each cluster. A two-sided Wilcoxon rank-sum test was used to compare the
proportion of AD and control samples in each cluster using the wilcox.test R
(v3.6.1) function with default parameters and Benjamini-Hochberg correction for
multiple testing.

Annotation of cell subpopulations. snRNA-seq subpopulations for astrocytes,
microglia, neurons and oligodendrocyte progenitors were annotated in a

similar way to the major cell types, using canonical marker gene signals as well

as DEGs. snATAC-seq subpopulations for astrocytes, microglia, neurons and
oligodendrocyte progenitors were annotated using Seurat label-transfer prediction
scores with the snRNA-seq clusters as a reference annotation. We annotated the
snRNA-seq oligodendrocytes by hierarchically clustering oligodendrocyte and
oligodendrocyte progenitor clusters based on the gene expression matrix of the top
25 DEGs (by average log fold change) from each oligodendrocyte subpopulation,
grouping oligodendrocytes into major lineage classes such as progenitor,
intermediate and mature. We used the same approach to annotate the snATAC-seq
oligodendrocytes, hierarchically clustering the gene activity matrix using the same
DEGs. The R package ComplexHeatmap (v2.7.6.1010) was used for hierarchical
clustering and visualization of these gene expression and gene activity matrices.

Single-nucleus transcription factor binding motif analysis. Single-nucleus
TF motif enrichment was computed for a set of 452 TFs from the JASPAR
2018 database® using the Signac wrapper for chromVAR (v1.12.0)*. The motif
accessibility matrix was first computed, describing the number of peaks that
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contain each TF motif for all cells. chromVAR then uses this motif accessibility
matrix to compute deviation z-scores for each motif by comparing the number of
peaks containing the motif to the expected number of fragments in a background
set that accounts for confounding technical factors such as GC content bias, PCR
amplification and variable Tn5 tagmentation. To further analyze specific TFs of
interest, we used the getFootprints function in ArchR to perform TF footprinting
analysis in pseudo-bulk aggregates of single nuclei in the same cluster or cell type,
splitting nuclei from control or late-stage AD samples where appropriate.

Chromatin cis co-accessibility network analysis. The correlation structure of
chromatin accessibility data was analyzed using the R package cicero™ (v1.3.4.7).
Briefly, cicero quantifies ‘co-accessibility’ between pairs of genomic regions in a
population of cells by correlating accessibility signals aggregated from several cells
at a time, penalizing for the distance between regions using a graphical LASSO
with a maximum interaction constraint of 500 kb. Importantly, before correlation
and regularization, a bootstrap approach was used to generate metacells by
aggregating 50 cells at a time using k-nearest neighbors, circumventing the sparsity
of single-cell chromatin data. Finally, CCANs were identified through community
detection. We applied this procedure in each major cell type as well as splitting
each cell type into control and AD cells for CCAN analysis.

Analysis of gene-linked candidate cis-regulatory elements. We sought to
further contextualize co-accessible chromatin regions by linking them to likely
target genes using an accessibility—expression correlation strategy stratified by
major cell type and disease status of each sample. First, we identified pairs of
co-accessible peaks where one of the peaks overlaps a gene’s promoter, which
serves as a candidate target gene for that particular cCRE. We then computed
the Pearson correlation between the expression of the candidate target gene
from snRNA-seq with the chromatin accessibility of the linked cCRE from
snATAC-seq, where expression and accessibility values have been averaged for
all cells within a given cell population. This correlation analysis was performed
iteratively across all promoter-cCRE co-accessible links identified separately

in each major cell with regard to AD diagnosis status. Retaining links with the
Pearson correlation coefficient in the 95th percentile and a P value <0.01, we
defined gl-cCREs as genomic regions with a significant correlation to at least
one target gene, and we defined cCRE-linked genes as genes with a significant
correlation to at least one cCRE. We used NMF (v0.23.0) as implemented in
the R NMF package® using k = 30 matrix factors on the gl-cCRE accessibility
matrix averaged by each snATAC-seq cluster split by cells from control and AD
samples, yielding 30 gl-cCRE modules. The NMF basis matrix (W) was used

to assign each gl-cCRE to its top associated module, and the NMF coefficient
matrix (H) was used to determine which cell cluster that each module was most
associated to. To identify biological processes associated with these gl-cCRE
modules, we used the enrichR*” (v 3.0) package to query enriched GO

terms for the set of target genes in each gl-cCRE module in the GO Biological
Processes 2018, GO Cellular Component 2018 and GO Molecular Function
2018 databases.

TF regulatory network construction. Using snATAC-seq and snRNA-seq data

in one cell type, we identified candidate TF regulatory target genes and used this
information to construct cell-type-specific TF regulatory networks. We used the
same set of TF binding motifs as those used in our single-cell TF motif enrichment
analysis (JASPAR 2018 motifs). For a given TF, we defined candidate target genes
as those with an accessible promoter containing the TF binding motif, or an
accessible gl-cCRE linked to the target gene’s promoter, allowing us to distinguish
between TFs that regulate genes through promoter or enhancer binding events. We
used this information to construct a directed TF regulatory network using the R
package igraph (v1.2.6), where each vertex represents a TF or target gene, and each
edge represents a promoter or linked-cCRE binding event, overlaying additional
information onto the network such as DEG or AD GWAS gene status.

Estimating GWAS enrichment using cluster-specific accessible chromatin
regions. To estimate heritability of a variety of complex traits, we used LDSC
(v1.0.1)”. GWAS summary statistics were input to LDSC, which then computes
the enrichment of heritability for an annotated set of SNPs conditioned on a
baseline model to account for genomic features that influence heritability, and
jointly modeling multiple annotations together. Sets of cluster-specific peaks were
constructed by extending peaks upstream and downstream by 2,000 bp, identifying
peaks that are accessible in 1% of all cells within each cluster and removing all
peaks that are accessible in more than one other cell type. Cluster-specific peaks
were formatted for LDSC using the make_annotation.py script, and LD scores were
computed for each set using the Idsc.py script. Publicly available GWAS summary
statistics were collected for AD'*"!, schizophrenia®, frontotemporal dementia®,
progressive supranuclear palsy*’, multiple sclerosis*’, inflammatory bowel disease®,
height* and cholesterol*. Next, summary statistics were converted to hg38
coordinates using the UCSC liftover tool (v377) and formatted for LDSC using

the munge_sumstats Python script. We followed the recommended guidelines for
cell-type-specific partitioned heritability analysis, using HapMap3 SNPs and their
provided hg38 baseline model (v2.2). The ldsc.py script was then used to compute
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cluster-specific enrichments of GWAS heritability, with Benjamini-Hochberg
multiple-testing correction applied to enrichment P values.

Single-nucleus consensus weighted gene coexpression network analysis. We
developed a coexpression network analysis approach to analyze single-cell

data by integrating snRNA-seq and bulk-tissue RNA-seq datasets and called

this approach single-nucleus consensus weighted gene coexpression network
analysis (sc(WGCNA). sc(WGCNA is based on WGCNA, implemented using the
WGCNA R package (v1.69)**". For scsWGCNA, we used multiple transcriptomic
datasets comprising our snRNA-seq data, snRNA-seq data from Mathys et al.,
bulk-tissue RNA-seq data from our UCI cohort and bulk-tissue RNA-seq data
from the ROSMAP cohort”. First, we integrated our snRNA-seq dataset and

the snRNA-seq dataset from Mathys et al. using the INMF approach, and then
constructed metacells in a fashion similar to that used in our CCAN analysis of
chromatin accessibility data, in which we applied a bootstrapped aggregation
process to single-nucleus transcriptomes. During metacell computation, we only
pooled cells within the same cell type, and within the same AD diagnosis stage, to
retain these metadata for scsWGCNA. We then used a signed consensus WGCNA
approach’ within a given cell type, by calculating component-wise values for
topological overlap for each dataset. First, bi-weighted mid-correlations were
calculated for all pairs of genes, and then a signed similarity matrix was created. In
the signed network, the similarity between genes reflects the sign of the correlation
of their expression profiles. The signed similarity matrix was then raised to power
B, varying between cell types, to emphasize strong correlations and reduce the
empbhasis of weak correlations on an exponential scale. The resulting adjacency
matrix was then transformed into a topological overlap matrix. Modules were
defined using specific module-cutting parameters, including a minimum module
size of 100 genes, a deepSplit score of 4 and a threshold of correlation of 0.2.
Modules with a correlation of greater than 0.8 were merged together. We used the
first principal component of the module, called the module eigengene, to correlate
with diagnosis and other variables. Hub genes were defined using intra-modular
connectivity (kME) parameters of the WGCNA package. Gene-set enrichment
analysis was done using EnrichR.

Analysis of regulatory targets of SREBP. We downloaded a dataset of ENCODE
ChIP-seq validated TF target genes from EnrichR, containing regulatory targets
of SREBP. Fisher’s enrichment tests were performed with the R function fisher.
test to test whether oligodendrocyte modules were significantly overrepresented
with SREBP target genes, inferring which modules are regulated by SREBP.
Module eigengenes were computed for the set of SREBP target genes, and the RNA
expression as well as protein expression data from Inweb”" and Biogrid’ was also
used to analyze SREBP targets during AD progression. A PPI network of SREBP
target genes was constructed using SREBF1 ChIP-seq data from ENCODE and
visualized using the STRING database”, restricting the edges to known PPIs. In
addition to bulk RNA-seq data, we used a proteomics dataset from our group’s
previous study® of 685 samples representing AD, asymptomatic AD and controls
from the human PFC to interrogate the levels of SREBF1 target genes and target
proteins in AD.

Statistics. All statistical methods and tests used in this paper are described in the
figure legends, Methods, Supplementary Note or main text as appropriate.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

All the multi-omics raw and processed data are available at https://www.synapse.
org/#!Synapse:syn22079621/. Raw sequencing data have been deposited into the
National Center for Biotechnology Information Gene Expression Omnibus under
accession number GSE174367. Additionally, these data can be accessed through
our web app at http://swaruplab.bio.uci.edu/singlenucleiAD. Source data are
provided with this paper.

Code availability

The custom code used for this paper is available on GitHub™ (https://
doi.org/10.5281/zenodo0.4681643) at https://github.com/swaruplab/
Single-nuclei-epigenomic-and-transcriptomic-landscape-in-Alzheimer-disease/.

References

63. Sun, Y., Ip, P. & Chakrabartty, A. Simple elimination of background
fluorescence in formalin-fixed human brain tissue for immunofluorescence
microscopy. J. Vis. Exp. 127, 56188 (2017).

64. Stuart, T, Srivastava, A., Lareau, C. & Satija, R. Multimodal single-cell
chromatin analysis with Signac. Preprint at bioRxiv https://doi.
org/10.1101/2020.11.09.373613 (2020).

65. Granja, J. M. et al. ArchR is a scalable software package for
integrative single-cell chromatin accessibility analysis. Nat. Genet. 53,
403-411 (2021).


https://www.synapse.org/#!Synapse:syn22079621/
https://www.synapse.org/#!Synapse:syn22079621/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174367
http://swaruplab.bio.uci.edu/singlenucleiAD
https://doi.org/10.5281/zenodo.4681643
https://doi.org/10.5281/zenodo.4681643
https://github.com/swaruplab/Single-nuclei-epigenomic-and-transcriptomic-landscape-in-Alzheimer-disease/
https://github.com/swaruplab/Single-nuclei-epigenomic-and-transcriptomic-landscape-in-Alzheimer-disease/
https://doi.org/10.1101/2020.11.09.373613
https://doi.org/10.1101/2020.11.09.373613
http://www.nature.com/naturegenetics

ARTICLES

NATURE GENETICS

66. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and
correlations in multidimensional genomic data. Bioinformatics 32,

2847-2849 (2016).

67. Khan, A. et al. JASPAR 2018: update of the open-access database of
transcription factor binding profiles and its web framework. Nucleic Acids
Res. 46, D260-D266 (2018).

68. Gaujoux, R. & Seoighe, C. A flexible R package for nonnegative matrix
factorization. BMC Bioinformatics 11, 367 (2010).

69. Kuleshov, M. V. et al. Enrichr: a comprehensive gene-set enrichment analysis
web server 2016 update. Nucleic Acids Res. 44, W90-W97 (2016).

70. Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list
enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).

71. Lage, K. et al. A human phenome-interactome network of protein complexes
implicated in genetic disorders. Nat. Biotechnol. 25, 309-316 (2007).

72. Stark, C. BioGRID: a general repository for interaction datasets. Nucleic Acids
Res. 34, D535-D539 (2006).

73. Szklarczyk, D. et al. STRING v11: protein—protein association networks with
increased coverage, supporting functional discovery in genome-wide
experimental datasets. Nucleic Acids Res. 47, D607-D613 (2019).

74. Morabito, S. & Swarup Lab. swaruplabUCI/
single-nuclei-epigenomic-and-transcriptomic-landscape-in- Alzheimer-disease:
publication. Zenodo https://doi.org/10.5281/zenodo.4681643 (2021).

Acknowledgements

Funding for this work was provided by UCI and UCI MIND start-up funds, a National
Institute on Aging grant 1RF1AG071683, Adelson Medical Research Foundation funds
and an American Federation of Aging Research young investigator award to V.S. The
funders had no role in the study design, data collection and analysis, decision to publish
or in the preparation of the manuscript. We thank the New York Genome Center for
sequencing our bulk and single-nucleus RNA-seq libraries and UCT’s Genomic High
Throughput Facility for providing their facilities and sequencing our single-nucleus
ATAC-seq libraries. In addition, we thank J. Atwood and UCT’s Institute for Immunology
Flow Cytometry Core for assisting us in FACS sorting. We also thank K. Green and F.
LaFerla for generously providing their imaging facilities and M. Arreola, Y.-Q. Xue

and I. Cobos for their technical advice. This work utilized the infrastructure for
high-performance and high-throughput computing, research data storage and analysis,
and scientific software tool integration built, operated and updated by the Research
Cyberinfrastructure Center (RCIC) at the University of California, Irvine (UCI). For
ROSMAP, study data were provided by the Rush Alzheimer’s Disease Center, Rush
University Medical Center, Chicago. Data collection was supported through funding

by National Institute on Aging grants P30AG10161, R0O1AG15819, R0O1AG17917,
RO1AG30146, R0O1AG36836, U01AG32984 and U01AG46152, the Illinois Department of
Public Health and the Translational Genomics Research Institute. The results presented
here are in whole or in part based on data obtained from the AMP-AD Knowledge Portal
(https://doi.org/10.7303/syn2580853).

Author contributions

S.M., EM.,, N.M. and V.S. planned and directed all experiments and analyses and
wrote the manuscript with assistance from all authors. N.M., E.M. and V.S. performed
all dissections and sequencing experiments, and S.M., EM. and V.S. performed all
bioinformatic analyses. A.C.M., E.H.,, J.S., K.L., M.P.-R., EEM., N.M. and V.S. reviewed
clinical information. E.M. performed RNAscope validation, and N.M., S.S. and A.C.M.
performed immunofluorescence/immunohistochemistry.

Competing interests

The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41588-021-00894-z.

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41588-021-00894-z.

Correspondence and requests for materials should be addressed to V.S.

Peer review information Nature Genetics thanks Goncalo Castelo-Branco,
Alexandra Grubman and Yin Shen for their contribution to the peer review
of this work.

Reprints and permissions information is available at www.nature.com/reprints.

NATURE GENETICS | www.nature.com/naturegenetics


https://doi.org/10.5281/zenodo.4681643
https://doi.org/10.7303/syn2580853
https://doi.org/10.1038/s41588-021-00894-z
https://doi.org/10.1038/s41588-021-00894-z
http://www.nature.com/reprints
http://www.nature.com/naturegenetics

ARTICLES

NATURE GENETICS
b
snATAC-seq, MNN batch correction

snATAC-seq, no batch correction

a
snRNA-seq, no batch correction snRNA-seq, iINMF batch correction

Batch

| K

- .
&
\
[\ I\
o a
< <
= =
= 5
UMAP1 UMAP1
c d
iNMF metagene expression iNMF 13 iNMF 15 iNMF 23
oo [ ] . [ ICN ) [ ] e o 0 .
. -
[ J [ [} [} —
c
25
o LN J [ ] -0 @ o o o2
R
TS
° o ‘o0 .00 g X
o =
min
[ [ ] [ ] ° [ J
[ ] [} ] ° L
O DDA\ A0 A A% 4D A AN A 2D 2D A 10 K0 WX D N
%WWWWWWWW’LW\\\\\\\\\\Q
SEEEEEE S S
FTEFITTITTITTTITIRTTIT T TN S
metagene  percent | | Astrocytes
expression  expressed Excitatory Neuron
2 - 20 Inhibitory Neuron
1 ® 40 . Microglia
® 60 I Oligodendrocyte
0 : 80 M Olig. Progenitor
-1 100 & Pericyte / Endothelial
(]
TPST1 o CPNE4 o GRIK1 . SLC11A1 . PPP2R2B: o TNR o
CHI3L1 o POUG6F2 o ROBO2 o CPVL ° LPAR1 . LHFPL3 o
SLC44A3-ASH o TSHZ2 o XKR4 o NHSL1 o ANK3 o PCDH15 o
OSMR-AST: o KHDRBS2 ° KIAA1217- o RGS1 o CERCAM o MEGF11 o
CD4- ° HECW1 o GRIK3 o SMAP2 ° LINC01608- ° DSCAM .
SAMD4A . AC109466.1- . PCDH11X- . KLHL6 . SIK3 . PTPRZ1 .
GLIS3 . AC073365.1- . SYNPR ° ARHGAP24 . MOBP . AC004852.24 .
GNA14 o RALYL . KIF26B o HIF1A o TRIM2 . VCAN .
ARHGEF3: o RORB . GRIN3A o LRRK2 o TTLL7 . LRRC4C o
AC010655.4 ° IL1RAPL2: o GRIK2 o TNFRSF1B:- o MBP o XYLT1 °
DTNA . RYR2 . BCL11A . CD86 . TMEFF2 . CA10 °
OSMR . CLSTN2 . NETO1 . MSR1 . SLC24A2 . LUZP2 o
EMP1 o AC019211.1 . RBFOX1 . RIN3 ° PLEKHH1 . MMP16 .
MGST1 o FSTL4 . SATB1-AS1 . SRGN . UNC5C ° STK32A .
BCL6 3 NELL2 . NXPH1 . SLA . KCNH8 . SLC35F1 .
FAM189A2- . AC008415.1- . PLCH1 . HCLS1 . CTNNA3 . MAS, o
MACF1 . AC016687.24 . LINC00535- . CCND3 . POLR2F: . SMOC1 .
IGFBP7 . SLC22A10- . TRHDE . PADI2{ o AK: . BRINP3 .
MAPK4 . 1 . CDH9 . PDE3B{ e LINC00639- . DGKG .
AC083837.2{ e KCNH51 o COL25A1 o ALOX15B{ e FNBP1 o FERMT1 o
AHCYL1{ e EFNA5{ e ROBO14 e FGD4 e AUTS2{ o SEZ6L o
MRVITH o AC090578.1{ o SHISAG e PRKAG2{ e HHIP A o SULF2{ e
NEAT14 o AC067956.1{ CADPSA IRAK31 » MIR181ATHG| e MIR3681HG{ o
WWTR1q e OLFM31 e CDH124 ® LDLRADA4+ o PDE1A{ o ZFPM24 o
. SH3GL2{ e RUNX1T1q ® RAPGEF1q ® CREB5 o LINC025881 ®
SORBS1q AGBL44 e TENM1A e CSGALNACTH e EXOC6BA NRCAMA o
AL355974.2 o ZNF385B1 ¢ TENM3-e MAP3K81 ® DAAM2 e PDZD21
PALLDqe BMPER{® GRIP14e ACSL1 e LINCO11701e CHL1qe
CACHD1+e PTPRT e LINC013224e FAM149A1e CNTNAP4+e LINC005114 e
ALDH1L14e MSC-AS14e GRIA3{e FKBP5{e IL1RAPL14e MPPED2{e
50 60 70 80 00 110 120 130 70 90 110 130 80 100 120 110 120 130 920 110 130
iNMF_15 iNMF_23 iNMF_14 iNMF_4 iNMF_2

iNMF_13
Extended Data Fig. 1| Batch correction of snATAC-seq, snRNA-seq, and merged datasets. a, snRNA-seq UMAPs before (left) and after INMF batch
correction (right), colored by sequencing batch. b, snATAC-seq UMAPs before (left) and after MNN batch correction (right), colored by sequencing batch
¢, Dot plot of INMF metagene expression in each snRNA-seq cluster. d, snRNA-seq UMAPs colored by metagene expression of selected INMF metagenes

e, Dot plots showing the iINMF loading for the top 30 genes for the same metagenes in d.
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Extended Data Fig. 2 | Cell-type immunostaining and in situ hybridization. a-d, Representative immunofluorescence images from postmortem human
brain tissue from control and late-stage AD cases for Iba-1(a), GFAP (b) MAP2 (c), and 6E10 (d). e, Quantification of 6E10-positive amyloid plaques. n=3
cognitively healthy controls, 3 late-stage AD. Data is presented as the average of three different sections per sample. Linear mixed-effects model

**** p<0.0001. Box boundaries and line correspond to the interquartile range (IQR) and median respectively. Whiskers extend to the lowest or highest
data points that are no further than 1.5 times the IQR from the box boundaries. f, Representative immunofluorescence images from postmortem human
brain tissue from control and late-stage AD cases for OLIG2 with PDGFRA co-labeling. g, h, Representative RNAscope images from postmortem human
brain tissue from control and late-stage AD cases for CNP (g) and PLP1 (h) with DAPI counterstain.
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Extended Data Fig. 3 | Comparison of gene expression and gene activity. a, Scatter plot comparing average gene activity from snATAC-seq and average
gene expression from snRNA-seq by each major cell-type, with accompanying Pearson correlation statistics and linear regression lines. b, Donut chart
showing the percent of genes with high chromatin accessibility and low gene expression in grey for each major cell-type. High chromatin accessibility was
defined as genes in the top 20% of gene activity, while low gene expression was defined as genes in the bottom 20% of gene expression. Percent of all
other genes are colored by the cell-type.
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Extended Data Fig. 4 | NEAT1 validation and neuronal TFs. a, b, Representative RNAscope images from postmortem human brain tissue for

NEAT1 and AQP4 staining (a) and NEATT and MOG staining (b) with DAPI nuclear counterstain. ¢, Boxplots showing quantification of NEAT1

puncta per AQP4 + astrocyte as in a. n=4 cognitively healthy controls, 5 late-stage AD. d, Boxplots showing quantification of NEATT puncta per

MOG + oligodendrocyte as in b. n=4 cognitively healthy controls, 4 late-stage AD. Data is represented as the mean of four equally sized regions per
sample. Linear mixed-effects model e, Tn5 bias subtracted TF footprinting for JUN by snATAC-seq neuron cluster (top) and by AD diagnosis (bottom),
with TF binding motif logo above and Tn5 bias insertions below. f, Left: Co-embedding UMAP colored by JUN motif variability (top) and JUN target gene
score (bottom). Right: Violin plots of JUN motif variability (top) and JUN target gene score (bottom) in excitatory neuron clusters, split by diagnosis.
Wilcoxon test (ns: p>0.05, *: p<=0.05, **: p<=0.01, ***: p<=0.001, ****: p<=0.0001). g, Tn5 bias subtracted TF footprinting for EGR1 by
snATAC-seq neuron cluster (top) and by AD diagnosis (bottom), as in e. h, Left: Co-embedding UMAP colored by EGR1 motif variability (top) and EGR1
target gene score (bottom). Right: Violin plots of EGR1 motif variability (top) and EGRT target gene score (bottom) in excitatory neuron clusters, split by
diagnosis, as in f. i, Violin plots of SREBF1 motif variability in oligodendrocyte snATAC-seq clusters, as in f. j, Violin plots of SREBF1 gene expression in
oligodendrocyte snRNA-seq clusters, as in i. For boxplots, box boundaries and line correspond to the interquartile range (IQR) and median respectively.
Whiskers extend to the lowest or highest data points that are no further than 1.5 times the IQR from the box boundaries.
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Extended Data Fig. 5 | Schematics of analyses. a, Schematic diagram linking cCREs to target genes and downstream analysis. First, we identify
co-accessible chromatin peaks in each cell-type for control and late-stage AD. Second, we identify pairs of co-accessible peaks where one peak overlaps

a gene promoter and correlate the expression of that gene with the chromatin accessibility of the other peak. Third, NMF is used to group gl-cCREs

into functional modules. b, Schematic of construction of TF regulatory networks for each cell-type. ¢, Schematic representation of scWGCNA analysis,
including iINMF integration with the Mathys et al. 2019 dataset, metacell aggregation, construction of co-expression networks, and downstream analysis of
gene modules.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Pseudotime trajectory analysis to identify dysregulated TFs and gene expression in glia. a, Line plot showing the RVAgene
training loss at each epoch for oligodendrocyte (ODC), microglia (MG), and astrocyte (ASC) RVAE models. b, ¢, d, Heatmaps showing TF motif variability
smoothed using loess regression and scaled to minimum and maximum values for TFs up- and down-regulated in AD as well as cell-type marker TFs along
the oligodendrocyte trajectory (b), microglia trajectory (c), and astrocyte trajectory (d). TFs are ordered by trajectory rank (point in trajectory where of
75% maximum value is reached). e, f, g, Dot plot showing the enrichR combined score for the top enriched GO terms in oligodendrocyte (e), microglia (f),
and astrocyte (g) t-DEGs.
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Extended Data Fig. 7 | Metacell aggregation and SREBP. a, Heatmap showing the enrichment of cell-type marker genes in standard WGCNA modules
constructed from our snRNA-seq data. b, Schematic showing generation of 30,218 metacells from the integrated transcriptomic dataset of 132,106 nuclei

from

our snRNA-seq and Mathys et al. ¢, d, e, Heatmap showing enrichment of oligodendrocyte (c), microglia (d), and astrocyte (e) scWGCNA modules

constructed with 12 metacells, 25 metacells, 100 metacells, and 200 metacells in the scWGCNA modules constructed with 50 metacells, as shown in Fig. 7
and Supplementary Fisg. 15 and 16. f, SREBP protein-protein interaction (PPI) network. Green circle denotes proteins involved in ribosome processing and
transcription pathway, cyan circle for mTOR pathway, and red circle for lipid processing pathway. g, Left: Representative immunohistochemistry images

from

postmortem human brain tissue for SREBP with nuclear counterstain. Right: Quantification of SREBP staining. n=4 pathological controls, 3 late-stage

AD. Data is represented as the mean of four equally sized regions per sample. Scale bar represents 100 pm. Linear mixed-effects model ** p < 0.01. Box
boundaries and line correspond to the interquartile range (IQR) and median respectively. Whiskers extend to the lowest or highest data points that are no
further than 1.5 times the IQR from the box boundaries.
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Extended Data Fig. 8 | iINMF integration of snRNA-seq with Mathys et al. snRNA-seq. a, Schematic representation of INMF integration of snRNA-seq
with Mathys et al. snRNA-seq. UMAP plots are colored by cell-type assignments. b, Dot plot of INMF metagene expression in each cell-type, split by
dataset of origin. ¢, UMAP plots of the integrated dataset colored by selected INMF metagenes. d, Dot plots showing the iNMF loading for the top 30

genes for the same metagenes in c.

NATURE GENETICS | www.nature.com/naturegenetics


http://www.nature.com/naturegenetics

ARTICLES NATURE GENETICS

Astrocytes
a b e o .
cellular zinc ion homeostasis
FDR<0.05 Module AM1 inc ion h ;
- . SLC1A3 sy 1 zinc ion on:wec‘)sta‘sns
[ response to zinc ion
AM1 I:l | GRAMD25 P e ~log(adj.Pval)
LAPTM4A cellular response to cadmium ion 9 12'5
AM2 : SRLATI1A2 EGFR response to cadmium ion 20
' WASF3 TIMP3 . § o
fn GPR37L1 ' cytokine-mediated signaling pathway { e 15
AM3 : H ! GPAM TMBIM6 GABRG1 cellular response to cytokine stimulus { @ ;0
1E N N " =
. TLR4 NDRG2 PTAR? extracellular matrix organization { ®
AM4 X SLC15A2 GLUD1 BREX2 negative regulation of programmed cell death Combined
GRAMD1C TR " ) ) . Score
, I HEPACAM positive regulation of angiogenesis @
AMS ' cc . . i
chemical synaptic transmission
' FAM1718 TTYH1 i @«
T T T T T T 1 . anterograde trans—synaptic signaling . 120
720-10 0 10 20 30 40 S0 regulation of delayed rectifier potassium . 160
Signed -log10 pvalue ) o channel activity
protein localization to plasma membrane
c d regulation of potassium ion transport
N — 0
Module AM2 Module AM5 s s =
KLF6 HENT sp3GL2 =
MYOF qpe GRIAT /‘ ] f
1 )\ zFps6L1 ~ARCY!
LR y NEFL / 7/ snRNA-seq clusters snATAC-seq clusters
KIAA1549L/ VSNL1 [
N3 [IMK2 116 S M{‘é\ e RINT
goN = HiRaa  TVEM! L 8 AM1 AM1
% 040 > 9]
IR _FAM189A2 CADR: IN2A - RQBO2 3 AM2 AM2 §I>2
— AR g 2 ] l
LpB2 /.
ChKNIA be2 SUT9A PGM2L1T | < 20!
s 'PFKFB3 y l? i B’A3 ~ST6GALNACS S AM3 AM3§ 0
MAOB HSOST3 ) g ol 1
‘ ADﬁgMng T EpHAS AM4 AM4 E’I i
ANXA CNKSR2 . g l<2
/igm Icam1 DYNC1I1UGHLT < AMS AM5 ©
- o~ « <
o o o O
17} 2] 17} [2]
< < < <
Microglia
FDR<0.05 positive regulation of epithelial cell migration
- Module MM1 positive regulation of substrate
MM RSE sectaL1 adhesion—-dependent cell spreading
DI\{(\Jca A IgFR regulation of substrate adheswn dePenél ~log(adj.Pval)
: AHNAK O\ 11 positive regulation of ceII substra?e 25
MM2 ey ‘ o adhesion 20
/\_RASS kD3 phosphatidylinositol phosphate binding 15
”% 2 P | cytokine-mediated signaling pathway . ;0
| S
MM3 | A ,/WLS neutrophil degranulation .
| A . . . . ..
: IL{7RD neutrophil activation involved in immune . Combined
i 1QGAPT response s
| v neutrophil mediated immunity o core
MM4 | DQCK1 infl y ) @ 100
\ga1 . in arﬁma ory respor?s.e @ 20
0 20 40 60 80 | Meari TGFB2 regulation of cation channel activity @ 30
Signed —log10 pvalue ¢ anterograde trans—synaptic signaling . 400
. . chemical synaptic transmission . 500
1 ) metal ion transport
Module MM2 Module MM4 calmodulin—-dependent protein kinase activity L
= =
CDKNIA ey DCAF6 kenas $:£2
I-‘SK GABRB2 r S S S
AN > STAB1 KCNAB2 |
SLC2A5 o> LARGE1
£249) || 14 5 { o ATP1A3 FAXC snRNA-seq clusters snATAC-seq clusters
LIpK2 i 4 ANXAG | HE e .
7 RINT PHF24
ITGB2 / IPCEF1 Nl 0 &
"
CEBPD CNTNAP1 CDK14  TUBA4A 2 g l>2 l
0 3 8
CASP1 THRB <] @1
G ! v CYFIP2 NCALD € i 2 3 o
SgNoz PLCBT ANK2 Rap2r8 3 £
PARP9 ( ARHGEF3 LN ] MM3 M3 §>I -1
{14 S RYGL CACNB2 = o <2
PM1 V SEPT5 ) ]
Hyox1~ TWFRSF1B FAM49A ARL4C s MM4

MG.a
MG.b

Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | scWGCNA in microglia and astrocytes. a, Signed correlation of astrocyte modules to AD diagnosis. b, ¢, d, Co-expression plots
for modules AM1 (b), AM2 (c), and AM5 (d). e, GO term enrichment of astrocyte modules. f, Heatmaps showing row-normalized Seurat module scores
of astrocyte modules in snRNA-seq (left) and snATAC-seq (right) astrocyte clusters. g, Signed correlation of microglia co-expression modules with AD
diagnosis. h, i, j, Co-expression plots for modules MM1 (h), MM2 (i), and MM4 (j). k, GO term enrichment of microglia modules. I, Heatmaps showing
row-normalized Seurat module scores of microglia modules in snRNA-seq (left) and snATAC-seq (right) microglia clusters.
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Extended Data Fig. 10 | scWGCNA in neurons. a, Signed correlation of excitatory neuron modules to AD diagnosis. b, ¢, d, e, Co-expression plots for
modules EM1 (b), EM2 (c), EM5 (d), and EM7 (e). f, GO term enrichment of excitatory neuron modules. g, Heatmaps showing row-normalized Seurat
module scores of excitatory neuron modules in snRNA-seq (left) and snATAC-seq (right) excitatory neuron clusters. h, Signed correlation of inhibitory
neuron modules to AD diagnosis. i, j, k, I, m, n, Co-expression plots for modules IM1 (i), IM2 (j), IM3 (k), IM4 (), IM5 (m), and IM6 (n). o, GO term
enrichment of inhibitory neuron modules. p, Heatmaps showing row-normalized Seurat module scores of inhibitory neuron modules in snRNA-seq (left)
and snATAC-seq (right) inhibitory neuron clusters.
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Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|Z| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|Z| For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|Z| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XOX 0O OO0 000F

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used.

Data analysis We used publicly available softwares for all analysis and the data analysis was performed in R or python. These R and python packages are
listed in the methods section with their appropriate citations and/or URLs. Custom codes used in the analysis can be accessed using this
github link: https://github.com/swaruplab/Single-nuclei-epigenomic-and-transcriptomic-landscape-in-Alzheimer-disease

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All the multi-omics raw and processed data are available here: https://www.synapse.org/#!Synapse:syn22079621/. Additionally, the data can be accessed through
our online web app: https://swaruplab.bio.uci.edu/singlenucleiAD/ . Mathys et al., Nature 2019 data was accessed from https://www.synapse.org/#!
Synapse:syn18485175 and ROSMAP bulk tissue RNA-seq data was accessed from https://www.synapse.org/#!Synapse:syn8456629. The proteomics data from AMP-
AD was accessed from https://swaruplab.bio.uci.edu/ADpNet
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculations were performed.
Sample size for snATAC-seq (n=12 late-stage AD; n=8 control) and snRNA-seq (n=11 late-stage AD; n=7 control) was based on current standard
in the field as defined by comparable studies in the field of neurology and Alzheimer's disease (PMIDs: 31768052, 30747918, 31932797)
Sample size for RNAscope and immunohistochemistry experiments (n = 3 cognitively healthy controls, 5 late-stage AD) was considered
sufficient to ensure reproducibility, and also consistent with comparable studies (PMID 31042697, 33795864)
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Data exclusions  For snRNA-seq and snATAC-seq experiments, we excluded samples and nuclei based on quality control procedures, and these exclusion
criteria were not pre-established. Details of our quality control procedures are provided in the methods section of the manuscript.

Replication We did not perform a traditional replication analysis. We did however use a strategy to understand and validate the robustness of the findings
- we performed correlation analysis between the samples as well as published snRNA-seq data (PMID: 31042697) and found great
concordance. In addition, we performed the experiments in multiple batches, and differences between batches were negligible and were
accounted for all downstream analysis.

Randomization  Samples were randomized by case and control status during RNA isolation or library preparation. For RNAscope and immunohistochemistry
randomization was not possible as all the samples were processed in the same day.

Blinding No blinding was performed during data collection or analysis. For RNAscope and immunohistochemistry studies, we did not have the
personnel resources to blind this study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies g |:| ChiIP-seq
|:| Eukaryotic cell lines g |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms
|Z Human research participants
|:| Clinical data

|:| Dual use research of concern

XXOXXX[] s

Antibodies

Antibodies used Mouse anti-beta-Amyloid (Biolegend, 803001, Clone: 6E10)
Rabbit anti-lbal (Wako, 019-19741)
Rabbit anti-MAP2 (Abcam, ab32454)
Mouse anti-GFAP (Sigma, G3893, Clone: G-A-5)
Goat anti-PDGFRA (R&D Systems, AF-307)
Rabbit anti-OLIG2 (Abcam, ab109186)
Rabbit anti-SREBP (Novus Biologicals, NB100-2215)

Validation Mouse anti-beta-Amyloid (Biolegend, 803001, Clone: 6E10)
The manufacture’s website shows validation that the antibody is specific for human Amyloid-beta protein and cites several studies in
which the antibody was used for immunohistochemistry.

Rabbit anti-lbal (Wako, 019-19741)
The manufacture’s website shows validation that the antibody is specific for mouse, rat and human Iba-1 protein and cites several
studies in which the antibody was used for immunohistochemistry.




Rabbit anti-MAP2 (Abcam, ab32454)
The manufacture’s website shows validation that the antibody is specific for mouse, rat and human MAP2 protein and cites several
studies in which the antibody was used for immunohistochemistry.

Mouse anti-GFAP (Sigma, G3893, Clone: G-A-5)
The manufacture’s website shows validation that the antibody is specific for pig, rat and human GFAP protein and cites several
studies in which the antibody was used for immunohistochemistry.

Goat anti-PDGFRA (R&D Systems, AF-307)
The manufacture’s website shows validation that the antibody is specific for human PDGFRA protein and cites several studies in
which the antibody was used for immunohistochemistry.

Rabbit anti-OLIG2 (Abcam, ab109186)
The manufacture’s website shows validation that the antibody is specific for mouse, rat and human OLIG2 protein and cites several
studies in which the antibody was used for immunohistochemistry.

Rabbit anti-SREBP (Novus Biologicals, NB100-2215)
The manufacture’s website shows validation that the antibody is specific for several species including mouse and human SREBP
protein and cites several studies in which the antibody was used for immunohistochemistry.

Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

We have adjusted our analysis for age and gender. For details on human samples used in this study, please see Supplemental
Table 1-2.

No donors were recruited, all participants gave prospective pro-mortem written consent for their brains to be banked and
used for research

Human prefrontal cortex brain samples were obtained from UCI MIND’s Alzheimer’s Disease Research Center (ADRC) tissue
repository and under UCI’s Institutional Review Board (IRB, #HS-2018-4515). Because the project evaluates post-mortem
brain samples, this activity is not considered to meet federal definitions under the jurisdiction of an IRB (IRB exemption to the
project was approved), and falls outside the purview of the Human Research Protection Office (HRPO)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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