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SUMMARY
Tau aggregation in neurofibrillary tangles (NFTs) is closely associated with neurodegeneration and cognitive
decline in Alzheimer’s disease (AD). However, the molecular signatures that distinguish between aggrega-
tion-prone and aggregation-resistant cell states are unknown. We developed methods for the high-
throughput isolation and transcriptome profiling of single somas with NFTs from the human AD brain, quan-
tified the susceptibility of 20 neocortical subtypes for NFT formation and death, and identified both shared
and cell-type-specific signatures. NFT-bearing neurons shared a marked upregulation of synaptic transmis-
sion-related genes, including a core set of 63 genes enriched for synaptic vesicle cycling. Oxidative phos-
phorylation and mitochondrial dysfunction were highly cell-type dependent. Apoptosis was only modestly
enriched, and the susceptibilities of NFT-bearing and NFT-free neurons for death were highly similar. Our
analysis suggests that NFTs represent cell-type-specific responses to stress and synaptic dysfunction.
We provide a resource for biomarker discovery and the investigation of tau-dependent and tau-independent
mechanisms of neurodegeneration.
INTRODUCTION

Alzheimer’s disease (AD) pathology is defined by amyloid-b (Ab)

plaques and intracellular hyperphosphorylated tau aggregates in

neurofibrillary tangles (NFTs) (Braak and Braak, 1991; Hyman

et al., 2012; Serrano-Pozo et al., 2011). In neocortex, plaque

buildup begins years before the onset of cognitive deficits,

whereas NFTs appear later and progress in parallel with cogni-

tive decline (Braak and Del Tredici, 2015; Nelson et al., 2012).

Due to the association of tau pathology with regional brain atro-

phy and neuronal and synaptic loss, NFTs have largely been

viewed as pathogenic (Ballatore et al., 2007; Jack et al., 2010;

Nelson et al., 2012; Terry et al., 1991). Hyperphosphorylated

tau appears to contribute to neurodegeneration by disrupting
axonal transport and synaptic function, affecting the cellular

stress response, and promoting neuroinflammation (Busche

et al., 2019; Malpetti et al., 2020; Sherman et al., 2016; Zhou

et al., 2017). Pathological taumay also contribute to disease pro-

gression by spreading toxic species through synapses (Franz-

meier et al., 2019; Gibbons et al., 2019; Vogel et al., 2020). How-

ever, whether tau aggregation is toxic or protective—a main

driver of neurodegeneration or part of a homeostatic response

to cellular injury—remains unclear (Ittner et al., 2016; Kuchib-

hotla et al., 2014; Lewis and Dickson, 2016; Wang and Mandel-

kow, 2016).

Previousstudieshave identifiedbrain regionsandneuronal sub-

types susceptible to tau pathology in AD, including hippocampal

CA1, entorhinal cortex layer 2, and neocortical layer 2–3 and 5
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pyramidal neurons (Bussière et al., 2003a;Gómez-Isla et al., 1996;

Hofetal., 1990). Immunohistochemistry (IHC)and in situhybridiza-

tion (ISH) studies have demonstrated the susceptibility of excit-

atory projection versus GABAergic inhibitory neurons (Fu et al.,

2019; Hof et al., 1991, 1993; Saiz-Sanchez et al., 2015). Bulk

RNA-seq and network-based analysis suggested vulnerability of

certain pathways to tau, including microtubule-related pathways

(Roussarie et al., 2020), the heat-shock response, and autophagy

(Fu et al., 2019). Despite these advances, the heterogeneity of

cellular and transcriptional responses associated with tau pathol-

ogy in human AD has not been resolved.

Transcriptome profiling of single cells or nuclei (snRNA-seq)

can resolve cellular heterogeneity and predict pathological

cellular states (Darmanis et al., 2015; Habib et al., 2017; Hodge

et al., 2019; Lake et al., 2016). Studies comparing nuclear gene

expression with whole cells have shown a high degree of concor-

dance (Bakken et al., 2018; Grindberg et al., 2013; Lake et al.,

2017). snRNA-seq has been successfully applied to frozen hu-

man AD brains, revealing shared and cell-type-specific gene

expression changes, sex-biased transcriptional responses,

and potential drivers of disease progression (Del-Aguila et al.,

2019; Grubman et al., 2019; Leng et al., 2021; Mathys et al.,

2019). However, nuclear profiling cannot distinguish between

cells with and without cytoplasmic aggregates, like NFTs.

Laser-capture microdissection allows the profiling of individual

NFT-bearing cells (Dunckley et al., 2006; Tagliafierro et al.,

2016) but is low throughput and may present sampling bias.

Profiling whole cells from fresh brain tissue is feasible (Darmanis

et al., 2015) but presents low yield biased toward glial cell recov-

ery. The difficulty of obtaining fresh tissue from unique clinical

samples and diseases managed non-surgically, such as neuro-

degenerative dementias, represent another limitation.

We developed a fluorescence-activated cell sorting (FACS)-

based method for the high-throughput isolation of somas with

NFTs and profiled 63,110 somas with or without NFTs from the

prefrontal cortex of Braak VI AD donors and 57,534 somas

from age-matched controls. This method allowed us to quantify

the susceptibility of 20 cortical neuronal subtypes for NFT forma-

tion and death, to characterize molecular signatures of NFT sus-

ceptibility within and across subtypes, and to distinguish molec-

ular changes associated with NFTs from those commonly

altered in AD. By comparing NFT-bearing and neighboring

NFT-free somas, we obtained unbiased, precise identification

of the neuronal subtypes exhibiting aggregates. NFT-bearing

neurons shared a marked upregulation of genes related to syn-

aptic transmission, particularly the synaptic vesicle cycle. We

provide a ranked list of 227 synaptic genes associated with

NFTs, including a core set of 63 genes shared across neuronal

subtypes. Genes encoding neurodegeneration biomarkers neu-

rofilament light-chain protein (NEFL), synaptosomal-associated

protein 25 (SNAP25), and synaptotagmin-1 (SYT1) sat within

the top 25, highlighting the value of our datasets for discovery.

By comparing the transcriptomes of non-AD and AD (NFT-

bearing and NFT-free) somas, we distinguished between sus-

ceptibility for NFT formation and cell death. Our analysis reveals

a modest association between NFTs and death and suggests

that NFT-bearing neurons may represent a cellular response to

stress and synaptic dysfunction.
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RESULTS

Isolation and transcriptome profiling of single somas
with NFTs
Since the standard methods for profiling nuclei from human brain

(Habib et al., 2017; Krishnaswami et al., 2016; Lake et al., 2016)

cannotdistinguishbetweencellswithandwithout cytoplasmicag-

gregates,wedevelopedprocedures for thehigh-throughput isola-

tion and profiling of NFT-bearing somas (Figures 1A–1D and 1F).

First, we optimized the isolation of cells with well-preserved

somas. We microdissected gray matter from prefrontal cortex

(BA9), brainstem, and basal ganglia and applied gentle mechani-

cal dissociation without detergents or enzymatic digestion. Using

a tissue grinder with a wider clearance between the pestle and

tube than those typically used for nuclei facilitated thedissociation

of larger somas (Figure 1A).We then performed sucrose-iodixanol

gradient centrifugation with adjusted parameters for density bar-

rier composition, centrifugal force, and time to eliminate debris

and obtain an enriched soma fraction. Microscopic examination

showed neurons with well-preserved somas, including pyramidal

cell bodies with proximal dendrites (Figure 1B).

To compare single-soma and single-nucleus profiling, we

used pan-neuronal markers MAP2 (cytoplasmic) and NeuN (nu-

clear) to sort single somas or nuclei by FACS and analyze the

transcriptomes of 74,283 cells from the BA9 of four healthy do-

nors (Figure S1A). MAP2+ cells had modest increases in the me-

dian number of genes per cell (2,210 versus 2,086 for NeuN) and

higher mitochondrial gene content (1.49% versus 0.18% for

NeuN) (Figure S1B), indicating efficient profiling of nuclear tran-

scripts using both methods and limited cytoplasmic transcripts

from MAP2+ cells. This outcome is expected in frozen tissues

whose cell membranes have been disrupted and most cyto-

plasmic transcripts lost. To assess whether single-soma isola-

tion was biased toward the recovery of specific neuronal sub-

types, we compared the relative percentages of 20 subtypes

derived from soma or nuclear homogenates. Both methods

yielded highly similar cell compositions, except for an increased

recovery of two rarer excitatory subtypes by soma isolation (Ex3:

3.02% ± 0.30% versus 1.36% ± 0.13% for nuclei; Ex5: 2.83% ±

0.16% versus 2.05% ± 0.11% for nuclei; Figure S1F). Thus, the

ability to discriminate between neuronal subtypes remained

highly similar using both methods (Figures S1C–S1G).

Next, we applied our method to NFT-bearing somas from AD

donors. Immunostaining and FACS using MAP2 and the AT8

antibody, which detects hyperphosphorylated tau aggregates,

allowed us to isolate single NFT-bearing somas (MAP2+/AT8+;

referred to as AT8+) and neighboring NFT-free somas (MAP2+/

AT8�; referred to as AT8�) from the same homogenate. As in

IHC and immunoblotting, AT8 labeled pretangles and mature

tangles in fresh somas (Moloney et al., 2021; Wesseling et al.,

2020; Figure 1D). It overlapped with populations sorted by

FACS using T22, an antibody against oligomeric tau enriched

in pretangles, and PHF1, which is enriched in mature and ghost

tangles (�82% and 89% overlap, respectively; Figure S2). Our

method could also isolate glial cells with tau aggregates, as

shown by FACS of the MAP2�/AT8+ population from donors

with progressive supranuclear palsy (PSP), a primary tauopathy

with both neuronal and glial aggregates (Figure 1E).
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Figure 1. Isolation of single somas with pathological tau aggregates
(A) Experimental approach to single-soma isolation.

(B) Representative single-cell suspensions displaying neuronal somas (arrows) and naked nuclei (arrowheads).

(C) Representative FACS plots of pallidum-derived somas from a PSP donor. Gating using MAP2 and AT8 allows the collection of glial cells with tau aggregates

(Q1; MAP2�/AT8+), neuronal somas with tau aggregates (Q2; MAP2+/AT8+), and neuronal somas without aggregates (Q4; MAP2+/AT8�).
(D) FACS plot and sorted AT8+/MAP2+ neurons displaying mature tangles (band or flamed shaped; arrowheads) and early perikaryal fibrils (arrow) from AD

neocortex.

(E) FACS plot and sorted MAP2�/AT8+ glia displaying oligodendrocytes with coiled bodies from a PSP donor.

(F) Overview of strategy for single-soma transcriptomics of NFT-bearing and NFT-free neurons from AD brain.

See also Figures S1 and S2.
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Figure 2. Census of neuronal subtypes exhibiting NFTs in AD

(A) Quantification of NFT density in tissues used for transcriptomics. NFTs were abundant in layers 2–3 (8.94% ± 1.52%) and 5 (8.86% ± 1.56%) and sparse in

layers 4 (1.75% ± 1.03%) and 6 (3.03% ± 0.96%). Data are represented as mean ± SD.

(B and C) Clustering of NFT-free and NFT-bearing somas separately. t-SNE plots illustrate the annotated cell types. Gray clusters represent mixed populations.

Violin plots show the distribution of UMI counts per cell in each sample.

(D–F) Clustering of NFT-free and NFT-bearing combined datasets after multiCCA (63,110 somas after QC). One color in (D) per sample. Unsupervised clustering

(E) identified the same neuronal subtypes as in (B). Dot plots (F) depict the expression of marker genes (x axis) within Ex and In clusters (y axis).

(legend continued on next page)
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Census of neuronal subtypes exhibiting NFTs in the
prefrontal cortex of human AD brain
To determine the cellular specificity of NFTs, we profiled AT8+

and AT8� somas from the BA9 of eight Braak VI AD donors

(Table S1). NFTs were present in 6.3% ± 1.15% of all neurons

in histological sections from the same tissue blocks used for

transcriptomics (Figure 2A). We analyzed 24,660 AT8+ and

38,465 AT8� single transcriptomes. The median numbers of

genes and unique molecular identifiers (UMIs) per soma were

�18% higher in AT8+ (1,481 and 2,440, respectively) than in

AT8� somas (1,248 and 2,062; paired t test; p = 0.01 and p =

0.02, respectively; Figures 2B and 2C). The increase in UMIs

and genes in AT8+ somas may have resulted from differences

in cell composition (i.e., higher transcript abundance in larger

cells) and/or transcriptional upregulation.

Unsupervised clustering of the NFT-free (AT8�) dataset identi-
fied a cell composition concordant with published datasets from

control and AD nuclei (Hodge et al., 2019; Mathys et al., 2019;

Figures 2B and S1D). Using conservative parameters, we anno-

tated 17 clusters including 11 expressing the pan-excitatory

marker SLC17A7 and 6 expressing the pan-inhibitory marker

GAD1 (‘‘Ex’’ and ‘‘In’’ clusters; Figure S1D). Excitatory subtypes

included layers 2–4 CUX2 (superficial LAMP5/SERPINE [Ex1]

and deeper COL5A2 cells [Ex2]), layers 4/5 RORB (RORB/

PLCH1/MME/GAL, RORB/GABGR1, RORB/RPRM, and RORB/

PCP4 [Ex3, Ex4/5, Ex6, and Ex7]), layer 5b PCP4/ROBO3 (Ex8),

layers 5/6 NFIA/THEMIS (Ex10), layer 6 THEMIS/NR4A2/

NTNG2 (Ex11) and FEZF2/SYT6 (Ex12), and deeper layer 6b

FEZF2/SEMA3D/CTGF (Ex13) cells. Inhibitory subtypes included

two major classes with developmental origins in the medial

(LHX6) and caudal (ADARB2) ganglionic eminences (MGE and

CGE). LHX6 cells consisted of PVALB and somatostatin (SST)

subtypes. AdistinctPVALB cluster characterized by high expres-

sion of GAD1, low expression of GAD2, and expression of

SCUBE3 defined putative chandelier cells (Hodge et al., 2019).

ADARB2 cells included LAMP5/KIT cells (split into two clusters

by expression of CXCL14) and a highly heterogeneous VIP/

CALB2 cluster. The proportion of inhibitory cells was 26.6%.

Thus, all major neuronal subtypes were identified in BA9 from

Braak VI AD patients, despite neuronal loss in this region

throughout disease progression (Bussière et al., 2003b; Frisoni

et al., 2010; Serrano-Pozo et al., 2011).

Unsupervised clustering of the NFT-bearing (AT8+) dataset us-

ing the same pipeline showed clusters corresponding to cell

types and technical covariates. Multiple canonical correlation

analysis (multiCCA) (Butler et al., 2018) enhanced cell identity-

based clustering and removed clusters originating from individ-

ual samples. We annotated 8 excitatory and 2 inhibitory clusters

(94% and 3.2% of total cells, respectively) (Figure 2C). The excit-

atory clusters were less distinct, likely resulting from cell state

variation associated with tau pathology. Some excitatory sub-
(G) Bar plots illustrating the fraction of somas derived from each donor per clust

(H) t-SNE plot highlighting the relative contributions of AT8� and AT8+ somas to

(I) Bar plots showing the percentages of AT8� and AT8+ somas per cluster. Data a

predicted percentages of AT8+ neurons in histological sections for each subtype

clustering analysis divided by percentage of NFT-bearing neurons obtained in hi

See also Figures S3 and S4 and Table S2.
types were not identified, likely due to the small number of cells

in those subtypes.

To obtain a census of neuronal subtypes exhibiting NFTs, we

integrated the AT8+ and AT8� datasets using multiCCA

(Figures 2D–2F). We annotated the same 17 neuronal subtypes

as in the AT8� dataset (Figures 2E and 2F). Clustering was not

driven by particular samples, as all eight donors contributed cells

evenly (Figure 2G). The results were consistent across clustering

algorithms and robust to clustering parameter variation (Fig-

ure S3). We counted the number of AT8+ and AT8� somas within

each cluster (Figures 2H and 2I; Table S2) and normalized the cell

counts to NFT density by tissue section (Figure 2A). The propor-

tion of AT8+ neurons ranged from 1.0% to 11.7% for excitatory

and 0.5%–6.8% for inhibitory subtypes (Figure 2I). The subtypes

with the highest NFT proportion were layers 2–4 CUX2 (Ex1 and

Ex2; 11.7% and 10.5%, respectively) and layer 5 RORB/PCP4

(Ex7; 10.6%). Notably, layer 5was heterogeneous and contained

highly susceptible (Ex7) and less susceptible (RORB/GABGR1

[Ex4/5] and RORB/RPRM [Ex6]; 3.6% and 5.2%, respectively)

subtypes (Figures 2I, 3B, and 3D). Layer 6 was largely spared,

although a deep layer 6b subpopulation showed intermediate

proportions of NFTs (Ex11; 5.6%). Most inhibitory neurons

were spared (overall 1.9%), except for chandelier cells (In2;

6.8%) (Figure 2I).

To validate markers for susceptible neuronal subtypes, we

used histological sections from the same tissue blocks (Figure 3).

Combined IHC for AT8 and ISH for SLC17A7 and GAD1 showed

proportions of NFTs in excitatory (11.59% ± 3.7%) and inhibitory

neurons (0.95% ± 0.41%) similar to those in our transcriptome

analysis (Figures 3A and 3F). Layer 2–3 neurons expressing

CUX2 and either LAMP5 (Ex1) or COL5A2 (Ex2) showed high

NFT proportions (10.64% ± 4.2%; Figures 3C and 3F). Layer 5

neurons expressing PCP4, including RORB/PCP4 (Ex7) and

layer 5b PCP4/ROBO3 (Ex8) neurons, were susceptible

(12.24% ± 4.2% and 5.70% ± 2.53%, respectively; Figures 3D

and 3F). The layer 6 NR4A2/NTNG2 (Ex11) subtype was largely

spared (0.5% ± 0.3%; Figures 3E and 3F). NFT proportions ob-

tained by histology were consistent with those in our transcrip-

tome analysis (Figures 2I and 3F), except for the PCP4/ROBO3

cluster (9.6% versus 5.7%), likely due to the low number of

ROBO3 transcripts detected by RNAscope ISH. Thus, various

subpopulations of excitatory and inhibitory neurons demon-

strate markedly different susceptibilities to NFT formation. This

specificity can be resolved via single-soma transcriptomics.

Signatures of NFT susceptibility within and across
excitatory neuronal subtypes
To define shared and cell-type-specific molecular signatures of

NFT susceptibility, we performed a two-step differential gene

expression (DGE) analysis, first between NFT-bearing and NFT-

freeneuronswithineachsubtypeand thencomparingdifferentially
er (normalized to sample size).

each cluster.

re represented asmean ± SEM. The column adjacent to the bar plots shows the

(percentage of AT8+ somas per cluster normalized to total somas obtained in

stological sections from the same donor in A).
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Figure 3. Histological validation of vulnerable excitatory neuronal subtypes

(A) Nissl, AT8 and NeuN IHC, and SLC17A7 ISH provide anatomical reference. Double fluorescent AT8 IHC (blue) and ISH (white) stains illustrate susceptibility of

excitatory (SLC17A7) and resistance of inhibitory (GAD1) neurons. Arrowheads point to neurons with NFTs.

(B) t-SNE and violin plots highlight marker genes for excitatory neuronal subtypes and their laminar distribution.

(C) Susceptibility of layers 2–3 CUX2 (Ex1 and Ex2) neurons. Feature plots illustrate gradient-like expression of SERPINE2/LAMP5 and COL5A2within the CUX2

cluster. Double chromogenic ISH illustrates two subpopulations with preferential distributions in superficial (CUX2/LAMP5+; Ex1) or deep (CUX2/COL5A2+; Ex2)

layers 2–3. Arrows point to double-positive cells. Double fluorescent AT8 IHC and CUX2 ISH illustrate CUX2+ neurons with NFTs.

(D) Susceptibility of layer 5 RORB/PCP4 (Ex7) and layer 5b PCP4/ROBO3 (Ex8). Feature plots illustrate a heterogeneous RORB population comprised of RORB/

PLCH1/GAL (Ex3), RORB/GABRG1 (Ex4/5), RORB/RPRM (Ex6), and RORB/PCP4 (Ex7) clusters, and a RORB�, PCP4/ROBO3/HTR2C cluster (Ex8). Double

chromogenic ISH for RORB and either GAL, GABRG1, RPRM, or PCP4 confirmed distinct neuronal populations within layers 4–5. Double chromogenic ISH for

PCP4 and ROBO3 illustrates small PCP4/ROBO3+ neuronal bodies in layer 5b (arrows). Fluorescent staining for AT8 and either PCP4 or PCP4 and ROBO3 il-

lustrates neurons with NFTs.

(E) Resistance of layer 6 NR4A2/NTNG2 (Ex11). Double chromogenic and triple fluorescent staining illustrate AT8�, NR4A2/NTNG2+ neurons.

(F) Bar plot showing the frequency of NFTs in cells expressing SLC17A7 (11.59% ± 3.7%), GAD1 (0.95% ± 0.41%), CUX2 (10.64% ± 4.2%), PCP4 (12.24% ±

4.2%), PCP4/ROBO3 (5.70% ± 2.53%), and NR4A2/NTNG2 (0.5% ± 0.3%). Error bars indicate SD.
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Figure 4. Transcriptomic signatures of tau pathology within and across neuronal subtypes

(A) Total numbers of upregulated and downregulated genes between neurons with and without NFTs.

(B) Volcano plots of DE genes for five excitatory subtypes with high NFT proportions. Dots represent genes (green, upregulated; magenta, downregulated).

Dashed lines indicate significance thresholds (log-fold change < 0.1 or > 0.1; adjusted p value < 0.05; for genes detected in R20% of cells in at least one

condition; MAST test). Top 10 DE genes are displayed.

(C) Heatmap and hierarchical clustering of DE genes highlighting shared and cell-type-specific upregulated and downregulated genes. Input lists of genes were

truncated to match the cell type with the smallest number of DE genes. The genes listed include shared DE genes with the highest log-fold change values.

(D) Box plots showing median expression values ofHSP90AA1, APP, PRNP, and the epigenetic repressorMPHOSPH8 in neurons with and without NFTs in each

cluster. *p < 0.05 (MAST test); n.s., not significant.

(E) REST andGABPA transcriptional regulatory networks (color code: cyan, genes coregulated and coexpressed based on our single-cell data and/or ROSMAP

datasets; red, genes coregulated, coexpressed, and differentially expressed in neurons with NFTs).

See also Figure S5 and Tables S2 and S3.
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expressed (DE) genes across subtypes. Using the model-based

analysis of single-cell transcriptomics (MAST) generalized linear

model (Finak et al., 2015) for DGE analysis within each subtype,

we identified 692–978DE genes in clusters with high cell numbers

and NFT proportions (Ex1, Ex2, Ex3, Ex7, and Ex10) and 55–186

DE genes in the smaller clusters (Figures 4A and 4B; Table S2)

(MAST test; adjusted p value < 0.05; log-fold change > 0.1; detec-

tion inR20% of cells). Most DE genes were upregulated in NFT-
bearing neurons (�66%–84% upregulated in Ex1, Ex2, Ex7, and

Ex10), except in clusterEx3 (�39%upregulated). Thiswidespread

transcriptional upregulation is consistent with previous work

showing an association between hyperphosphorylated tau and

chromatin remodeling (Frost etal., 2014;Kleinetal., 2019).Overall,

NFT-associated transcriptomic changes were robust to the sub-

sampling of a subset of donors, as assessed by the rank-rank hy-

pergeometric overlap (RRHO) test (Figure S4).
Neuron 110, 1–20, September 21, 2022 7
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We then performed hierarchical clustering of DE genes across

neuronal subtypes to identify cell-type-specific and shared

changes (Figure 4C). We focused on five excitatory clusters

with the highest cell numbers and NFT proportions (Ex1, Ex2,

Ex3, Ex7, and Ex10) to avoid underestimating the extent of

shared changes. Although many gene expression changes

were subtype specific, this approach distinguished 124 DE

genes (102 upregulated; 22 downregulated) altered across all

five clusters and 163 genes upregulated in all clusters except

Ex3 (Figure 4C). Upregulated genes with the highest fold

changes included genes encoding synaptic proteins (i.e.,

CALM1, ATP1B1, GRIN2B, CDK5R1, SYT4, CANX, and RTN4)

and cytoskeletal proteins and microtubule dynamics regulators

(i.e., ACTG1, TUBB2A, PLPPR4, MAP1A, ENC1, and STMN2).

Other commonly upregulated genes included the immediate

early gene JUN, the integrated stress response transcription fac-

tor (TF) ATF4, the gene encoding the heat-shock protein and

chaperone Hsp90 (HSP90AA1), the gene encoding the lyso-

somal protein prosaposin (PSAP), and the iron homeostasis-

associated genes FTL and FTH1 (Figure 4C). Notably, APP,

which encodes Ab precursor protein, was upregulated in neu-

rons with NFTs in most clusters but not in Ex3. Similar changes

were observed for the prion protein-coding gene (PRNP; Fig-

ure 4D), whose product acts as a receptor for soluble Ab oligo-

mers (Laurén et al., 2009).

To investigate the gene-regulatory networks underlying

shared and cell-type-specific responses associated with tau,

we performed TF-binding site enrichment analysis and gener-

ated TF regulatory networks integrating neuronal-specific

ENCODE ChIP-seq data and consensus coexpression networks

in AD (Mostafavi et al., 2018). Among the TF networks shared

across neuronal subtypes was REST, a key regulator of neuronal

differentiation and excitability previously implicated in aging and

AD (Lu et al., 2014; Zullo et al., 2019). Cluster Ex3 had a unique

set of TF networks including GABPA, a TF involved in nuclear

regulation of mitochondrial function (Figures 4E and S5;

Table S3; Yang et al., 2014). Together, our DGE and gene-regu-

latory network analyses identified shared and cell-type-specific

molecular signatures associated with tau pathology across

neuronal subtypes.

Shared versus cell-type-specific pathways associated
with tau pathology
To visualize shared and cell-type-specific pathways associated

with NFTs, we used functional enrichment analysis (Reimand

et al., 2019; Figure 5A). First, we generated a ranked list of statis-

tically significant gene ontology (GO) terms enriched in NFT-

bearing neurons for each cell type using g:Profiler (Figure 5B).

Then, we integrated results from five highly susceptible clusters

(Ex1, Ex2, Ex3, Ex7, and Ex10) into a single network using

Cytoscapewith EnrichmentMap. The resulting enrichmentmap il-

lustrates the pathways enriched in NFT neurons that were cell-

type-specific or shared across subtypes (Figure 5C) and delin-

eates the gene set associated with each dysregulated pathway

(Table S4). The shared pathways with the highest enrichment

scores were related to synaptic transmission (Figure 5C;

Table S4). Other commonly enriched pathways included calcium

homeostasis, microtubule polymerization, axonal remodeling,
8 Neuron 110, 1–20, September 21, 2022
dendritic spine remodeling, microtubule-based transport, and

intracellular protein transport. In contrast, glucose metabolism

and oxidative phosphorylation were cell-type dependent and

particularly enriched in Ex3. Notably, neuronal cell death and

apoptosis pathways were shared across cell types but repre-

sentedonlymodestly,withbothpro-andanti-apoptotic regulators

represented. Genes in this category included FAIM2 and MIF

(downregulated) and ATF4, BAD, BNIP3, and HIF1A (upregu-

lated). A smaller set of genes involved inmitochondrial membrane

permeability transition was upregulated, including BAD, BNIP3,

HSPA1A, and genes encoding 14-3-3 phospho-serine/phospho-

threonine binding proteins (YWHAE, YWHAH, YWHAG, YWHAZ,

andYWHAB) (Figure 5C; Table S4). Collectively, our analysis iden-

tified shared and cell-type-specific pathways associated with tau

pathology and highlighted the enrichment of synaptic transmis-

sion pathways in neurons with NFTs across subtypes.

Dysregulation of synaptic transmission pathways in
neurons with NFTs
To further characterize synaptic transmission pathways in NFT-

bearing neurons, we used SynGO, a reference for synaptic gene

annotations and ontologies (Koopmans et al., 2019). We identi-

fied significant enrichment in 24 cellular component and 37 bio-

logical process terms (Table S5). By cellular location, the post-

synaptic density membrane, presynaptic membrane, and

presynaptic active zone were overrepresented. Top-level over-

represented terms included synapse organization, process in

the presynapse, and process in the postsynapse, whereasmeta-

bolism and transport were underrepresented (Figures 6A and

S6). The highest enrichment scores corresponded with the syn-

aptic vesicle cycle (Figures 6A and 6B). The central role of synap-

tic vesicle cycle dysregulation in AD pathogenesis has also been

suggested by previous omics and cellular studies (Canchi et al.,

2019; de Wilde et al., 2016; Zhou et al., 2017).

A total of 227 DE genes in NFT-bearing neurons mapped to

SynGO-annotated genes (Table S5). The vast majority were upre-

gulated (�89%–95% in Ex1, Ex2, Ex6, and Ex7), except in Ex3

(�60% downregulated). In total, 17 genes were dysregulated in

all 5 clusters, and 46 were dysregulated in 4 of 5 clusters (MAST

test; adjusted p value < 0.05; log-fold change > 0.1; detection in

R20% of cells) (Figures 6C and S6). Of these 227 genes, 15 are

AD risk factors (GRIN2B, NRXN3, CTNND2, NRN1, NCS1,

CDH13, PTK2B, BCL11A, SHANK2, NRGN, FARP1, VCP,

CAMK4, SYNGAP1, and SYNJ1) (Kunkle et al., 2019). Notably,

among the commonly upregulated were three genes for

biomarkers of neurodegeneration and cognitive decline in AD:

NEFL, SNAP25, and SYT1 (Brinkmalm et al., 2014; Davidsson

et al., 1996; Mattsson et al., 2017; Figures 6B and S6; Table S5).

Other upregulated genes related to the synaptic vesicle cycle

included STY4 and STY11, SV2B, and BSN. Several ion channel

and membrane potential regulators were commonly upregulated

in NFT neurons, including genes for NMDA glutamate receptor

subunits (GRIN2B and GRIN2A), GABAA receptor subunits (GA-

BRA1 and GABRG2), Na+/K+-ATPase subunits (ATP1A3 and

ATP2B2), and voltage-gated sodium channel Nav1.6 (SCN8A).

Other commonly upregulated genes included NTRK2, encoding

neurotrophic receptor tyrosine kinase 2 (TrkB), and NRXN3. No

genes were downregulated in all 5 clusters, and only 2 genes
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Figure 5. Shared versus cell-type-specific pathways associated with tau pathology

(A) Overview of strategy to identify shared and cell-type-specific pathways overrepresented in the five clusters with the highest cell numbers andNFT proportions.

(B) Manhattan plots of GO biological processes enriched in NFT-bearing versus NFT-free neurons for each cluster obtained using g:profiler. Colored circles

represent significant terms (thresholds: g:SCS significance < 0.001; GO terms with >50 or <500 genes; capped at terms with a �log10 [padj] > 16). Top 5

nonredundant terms are highlighted.

(C) Functional enrichment map. Nodes represent gene sets of GO biological processes; each node is color coded by cluster to illustrate shared and cell-type-

specific contributions. Yellow circles delineate constellations of functionally related gene sets.

See also Table S4.
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were downregulated in 4 of the 5: RIMS2, encoding a Rab3-inter-

acting protein implicated in synaptic vesicle exocytosis, and

PNKD, whose product interacts with RIM proteins (Kaeser et al.,

2012; Shen et al., 2015; Figures 6C and S6).

Tohistologically validate the upregulationof synapticmarkers in

NFT-bearing neurons,wequantifiedSNAP25,GABRA1,GRIN2B,

andSYT1 transcripts inAT8+ versusAT8� excitatory neurons from

the BA9 of four Braak VI AD donors (Figures 6D and 6E). The inte-

grated density of all four synaptic markers was significantly

increased in AT8+/SLC17A7+ compared with AT8�/SLC17A7+

layer 2–3 neurons, consistent with the upregulation of these

markers in Ex1 and Ex2 (Figure 6F). Thus, our analysis identified

a set of commonly dysregulated synaptic genes in neurons with

NFTs that included well-established AD biomarkers, highlighting

the value of our datasets for discovery.

Uncoupling ofNFT andneuronal death susceptibilities in
the AD prefrontal cortex
To analyze transcriptional changes associated with NFTs in the

context of AD, we profiled control tissue with no AD pathology
(BA9; 8 cognitively normal, age-matched donors; 57,534 somas)

(Table S1) and integrated the control, NFT-bearing datasets, and

NFT-free AD datasets (referred to as non-AD, AD-AT8+, and AD-

AT8�). This approach allowed us to determine whether neuronal

subtypes prone to forming NFTs are equally susceptible

to death.

Integration of the non-AD, AD-AT8+, and AD-AT8� datasets

(119,326 somas after QC) identified the same neuronal clusters

as in our AD dataset. Additionally, we identified small clusters

of putative layer 5b subcortical projection neurons (Ex9; 534

somas) and SST/NPY interneurons (In4; 194 somas). Ex4/5 split

into two distinct subclusters (Ex4 and Ex5; Figures 7A and 7B).

The BA9 shows atrophy and neuronal loss at Braak stage VI

(Bussière et al., 2003b). To determine susceptibility to death,

we obtained the relative fractions of somas within each cluster

(13 excitatory and 7 inhibitory) in non-AD versus AD

(Figures 7C and 7D). If NFTs were a primary driver of toxicity

and death, the neuronal subtypes harboring them (i.e., overall

excitatory; particularly Ex1, Ex2, and Ex7) would be relatively

reduced at Braak VI. In contrast with the marked differences in
Neuron 110, 1–20, September 21, 2022 9
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Figure 6. Dysregulation of synaptic transmission pathways in NFT-bearing neurons

(A and B) Enrichment of synaptic transmission pathways in NFT-bearing neurons by Syngo. Sunburst plot illustrates over- and under-represented biological

process terms; colors represent enrichment values at 1% FDR. The bar plot highlights top 12 enriched terms and commonly DE genes in NFT-bearing neurons

within each term.

(C) Heatmap and hierarchical clustering of 63 synaptic genes dysregulated across five excitatory subtypes (green, upregulated; magenta, downregulated; MAST

test with adjusted p value < 0.05; log-fold change > 0.1; detection in R20% of cells). Arrows indicate genes for known biomarkers.

(legend continued on next page)
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susceptibility to NFTs across neuronal subtypes, we found only

minor differences in their susceptibility to death (Figure S7).

Because there was a non-statistically significant trend toward

a decrease in total excitatory somas relative to total neuronal

somas in AD versus non-AD (75.06% ± 3.2% versus 80.13% ±

2.9%; Figure 7D), we analyzed the excitatory and inhibitory pop-

ulations separately. We found no differences across excitatory

subtypes and detected a small but statistically significant in-

crease in the susceptibility of SST interneurons to cell death

(In3 and In4; Figure 7D).

To address susceptibility to death in the BA9 in two indepen-

dent AD snRNA-seq studies (Leng et al., 2021; Mathys et al.,

2019), we reanalyzed all datasets using the MapQuery function

in Seurat v4. This tool enables harmonization by using consistent

annotations across datasets. We transferred the annotations

from our reference dataset (64,792 nuclei and somas; 4 donors;

Braak 0-II; Figure S1) to the query datasets: Mathys et al. (44,123

neurons; 48 donors; Braak 0-VI), Leng et al. (23,339 neurons; 7

donors; Braak 0, II and VI), and ours (119,326 neurons; 16 do-

nors; Braak 0-II and VI; Figure 7) and projected the query data-

sets onto the reference UMAP (Figures S8A and S8B). None of

the query datasets showed statistically significant changes in

neuronal cell composition as a function of Braak stage, except

for a decrease in In3/4 (SST+/NPY+) and In6 (LAMP5+) interneu-

rons in high versus lowBraak stages inMathys et al. (Figure S8C),

supporting a lack of substantial cell-type-specific neuronal loss

in the BA9 of AD patients.

Overall, our analysis showed that highly susceptible (layers 2–

3 Ex1 and Ex2; layer 5 Ex7) and resistant (layers 4–5 Ex4–Ex6;

layers 6 Ex11–Ex13) subtypes to NFT formation were neither

more susceptible nor resistant to death. Although interneurons

were generally resistant to forming NFTs, they were not spared

from death. Chandelier interneurons were relatively susceptible

to NFT formation, whereas SST interneurons were most suscep-

tible to death. Our analysis suggests an uncoupling of NFT sus-

ceptibility from neuronal death, highlighting the existence of

NFT-dependent and NFT-independent mechanisms contrib-

uting to neurodegeneration.

NFT-specific versus common AD-associated
transcriptome changes
To distinguish NFT-specific transcriptomic changes from those

commonly altered in AD, we performed a three-way DGE anal-

ysis between non-AD, AD-AT8�, and AD-AT8+ datasets. First,

we compared the number of DE genes between each pair: AD-

AT8� versus non-AD (referred to as Ab-associated), AD-AT8+

versus non-AD (AD-associated), and AD-AT8+ versus AD-AT8–

(NFT-associated) (Figure 8A; Table S6). Most Ab-associated

DE genes were downregulated (�79%–53%; 276–1,203 DE
(D) Experimental design to validate upregulation of synaptic markers in AT8+ exci

tion in layers 2–3 SLC17A7+ neurons (arrowheads).

(E) Representative double fluorescent ISH staining for SLC17A7 and either SNAP

(F) Quantification of integrated density (IntDen) of SNAP25, GABRA1, GRIN2B,

versus AT8� neurons for each donor was significantly increased for 3 of the 4 m

p = 0.02 [GRIN2B], and p = 0.04 [SYT1]). After fitting a linear mixed model to p

was statistically significant and positive (p < 0.001) for all markers.

See also Figure S6 and Table S5.
genes in excitatory clusters excluding Ex9; MAST test with

adjusted p value < 0.05, log2-fold change > 0.2, detection in

R20% of cells), consistent with previous studies showing a

global transcriptional downregulation in the human AD brain

(Wan et al., 2020) and contrasting with the upregulation associ-

ated with NFTs (Figures 4A and 8B). Next, we obtained the

numbers of upregulated and downregulated genes that were

unique or shared between the three comparisons (Figures 8C

and 8D; Ex1, Ex2, Ex3, Ex7, and Ex10). We found a high degree

of overlap between the three comparisons (55.7%–69.5% of the

DE genes) and relatively low numbers of DE genes that were NFT

specific (�4%–7%; 54–146 DE genes) or NFT independent

(�8%–16%; 145–280 DE genes) (Figures 8C and 8D). Most

expression changes in the overlap group occurred in the same

direction (�99%), and the log2-fold expression values were

greater in association with NFTs (�8%–23% for downregulated

genes; �9%–58% for upregulated genes; AD-AT8+ versus non-

AD compared with AD-AT8� versus non-AD in Ex1, Ex2, Ex3,

Ex7, and Ex10) (Figure 8E; Table S6).

To visualize Ab-associated, NFT-associated, and AD-associ-

ated pathways, we generated functional enrichment maps

(Ex1, Ex2, Ex3, Ex7, and Ex10; Figure 8F; Table S7). As ex-

pected, most enriched pathways were shared between all three

groups. These included pathways related to the synapse (synap-

tic transmission, synapse assembly, calcium homeostasis, and

action potential regulation), the cytoskeleton (microtubule dy-

namics, axonal remodeling, and microtubule-based transport),

transport (intracellular protein transport and protein targeting to

the membrane), and metabolism (oxidative phosphorylation

and ATP synthesis). In contrast, pathways identified exclusively

as NFT-associated or Ab-associated were underrepresented.

Notably, RNA splicing was underrepresented in the NFT-associ-

ated category. This pathway included the spliceosomal complex

and nuclear speck genes PDCD7, HNRNPU, FUS, SRSF10,

SRRM2, RBM5, and SNU13 (Figure 8G; Table S7). Autophagy

pathways were enriched in association with AD and with NFTs

and included macroautophagy and regulation of autophagy by

lysosomal pH (e.g., BNIP3, IRS2, UBB, UBC, TSC1, TSC2,

RHEB, CAMKK2, PIK3C3, and MAPK1). Correspondingly, we

found an increase in SQSTM1/p62 protein expression in AT8+

versus AT8– FACS-sorted neuronal somas (Figure S9D), as pre-

viously reported in postmortem sections from AD patients (Piras

et al., 2016). Neuronal death and neurodegeneration were also

overrepresented in association with both AD and NFTs. This

complex category included master regulators of neuronal sur-

vival, the stress response, and apoptosis: UBB, encoding ubiq-

uitin (upregulated in AD); BAD, encoding Bcl-2 agonist of cell

death protein (upregulated in AD and NFT-bearing); and JUN

and ATF4 (upregulated in NFT-bearing) (Figure 8G; Table S7).
tatory neurons. Representative section illustrates AT8 and GRIN2B colocaliza-

25, GABRA1, GRIN2B, or SYT1 in AT8+ neurons (arrowheads).

or SYT1 in AT8+ versus AT8� excitatory neurons. Average expression in AT8+

arkers (paired t test; n = 4 donors; p = 0.11 [SNAP25], p = 0.05 [GABRA1],

redict IntDen with AT8, using the donor as a random effect, the effect of AT8
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A

C

D

B

(legend on next page)

ll
NeuroResource

12 Neuron 110, 1–20, September 21, 2022

Please cite this article in press as: Otero-Garcia et al., Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer’s disease,
Neuron (2022), https://doi.org/10.1016/j.neuron.2022.06.021



ll
NeuroResource

Please cite this article in press as: Otero-Garcia et al., Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer’s disease,
Neuron (2022), https://doi.org/10.1016/j.neuron.2022.06.021
Notably, ATF4, the main effector of the integrated stress

response, a common adaptive pathway for restoring cellular ho-

meostasis (Pakos-Zebrucka et al., 2016), was highly upregulated

in association with NFTs. We validated this finding using RNA-

scope ISH in histological sections (Figures S9A–S9C). Collec-

tively, our analysis highlighted dysregulated genes and path-

ways enriched in an NFT-associated and NFT-independent

manner in the AD brain.

DISCUSSION

Despite evidence linking tau pathology to histological and neuro-

imaging features of neurodegeneration in AD (Bejanin et al.,

2017; Braak and Del Tredici, 2015; Franzmeier et al., 2019; Han-

seeuw et al., 2019; Jack et al., 2018; Nelson et al., 2012; Schöll

et al., 2016; Schwarz et al., 2016), the molecular signatures that

distinguish between aggregation-prone and aggregation-resis-

tant cell states remain undetermined. To address this, we devel-

oped procedures for the unbiased, high-throughput profiling of

NFT-bearing neurons from fresh-frozen human brain.

A caveat of our method is the disruption of cell membranes by

freeze-thawing, which results in the loss of most cytoplasmic

transcripts. Our analysis comparing nuclear and soma FACS-

sorted populations showed highly similar total gene and UMI

content in both conditions; however, 50%–80% of transcripts

are estimated to be cytoplasmic (Bakken et al., 2018; Grindberg

et al., 2013). Variable cytoplasmic amountsmay introduce bias in

transcript quantification and/or cell recovery. To reduce this vari-

ability, we compared NFT-bearing and NFT-free somas pro-

cessed in parallel from the same tissue sample. This strategy

also reduced potential confounding effects from patients’ ge-

netics, sex, age, comorbidities, medication, and premortem

agonal state. The loss of cytoplasmic transcripts did not under-

mine ourmethod’s ability to discriminate between closely related

neuronal subtypes, as shown in previous snRNA-seq studies

(Bakken et al., 2018; Lake et al., 2017). The relative abundance

of each neuronal subtype was highly similar after sorting somas

or nuclei, except for an increase in two relatively rare subtypes

(Ex3 and Ex5) in the soma preparations. This selection bias

may be explained by technical differences in cell fractionation

and/or immunostaining and should be considered particularly

when analyzing mixed datasets from both nuclei and somas.

Thus, we provide a method for profiling single cells with cyto-

plasmic protein aggregates. Our method can be applied to other

tauopathies such as PSP, corticobasal degeneration, Pick’s dis-

ease, primary age-related tauopathy (PART), and chronic trau-

matic encephalopathy to investigate shared and disease-spe-

cific mechanisms of tau-mediated neurodegeneration.
Figure 7. Uncoupling of NFT and neuronal death susceptibilities in AD

(A and B) Integration of non-AD, AD-AT8�, and AD-AT8+ datasets. UMAP plots sho

sets are split and represented side by side to illustrate similar cell compositions o

AT8+ dataset. Dot plots (B) depict the expression of marker genes (x axis) within

(C) UMAP plots highlighting relative contributions of non-AD, AD-AT8�, and AD-

(D) Bar plots showing fractions of AD-AT8+ versus AD-AT8� somas (relative susce

as relative susceptibility to death). The red and green colors indicate the most

***p < 0.001, and ****p < 0.0001; n.s., not significant; beta regression analysis). D

See also Figures S7 and S8 and Table S6.
Previous studies have suggested morphological and molecu-

lar features that may underlie selective susceptibility of cortical

neuronal subtypes to tau pathology. NFT formation has been

associated with larger cell size, low expression of Ca2+-binding

proteins, sparse myelination, and dysregulation of autophagy

and microtubule dynamics (Bussière et al., 2003a; Dunckley

et al., 2006; Fu et al., 2018; Fu et al., 2019; Roussarie et al.,

2020). Here, we demonstrate specificity of NFT formation in 20

neocortical neuronal subtypes. The subtypes with the highest

proportions of NFTs included putative cortico-cortical projection

neurons in layers 2–3 (Ex1, Ex2; CUX2+) and intratelencephalic

projection neurons in layer 5 (Ex7; RORB/PCP4+) (Harris et al.,

2019; Harris and Shepherd, 2015; Zeng et al., 2012). Among cor-

tico-thalamic neurons, a population of deep layer 6b neurons

(Ex13; FEZF2/CTGF+) that projects to anterior and mediodorsal

(i.e., association) thalamic nuclei in rodents (Hoerder-Suabedis-

sen et al., 2018; Zeng et al., 2012) was relatively vulnerable.

Combinedwith previous studies showing the stereotypical distri-

bution pattern of tau pathology and its spread through function-

ally connected brain regions (Braak and Braak, 1991; Braak and

Del Tredici, 2018; Franzmeier et al., 2019; R€ub et al., 2016), these

results support an association between tau pathology and neural

connectivity. As previously suggested, vulnerable circuits may

correspond to the default-mode network (Greicius et al., 2004;

Raichle et al., 2001; Seeley et al., 2009).

Our DGE analysis comparing non-AD, AD-AT8�, and AD-AT8+

somas illustrated shared AD and NFT-associated pathways

converging on the synapse, supporting the notion of AD as a syn-

aptopathy (de Calignon et al., 2010; deWilde et al., 2016; Selkoe,

2002; Sheng et al., 2012; Spires-Jones and Hyman, 2014).

Although the pathogenic cascade leading to synaptic failure in

AD is incompletely understood, APP cleavage products, Ab oligo-

mers, and tau oligomers appear to play key roles (Busche et al.,

2019; Moore et al., 2015; Pickett et al., 2019; Puzzo et al., 2017;

Zott et al., 2019). We identified APP upregulation in NFT-bearing

neurons across excitatory subtypes. APP/Ab is upstream of tau

pathology in AD, and duplication of APP causes early-onset AD

(Hardy and Selkoe, 2002; Rovelet-Lecrux et al., 2006). Increased

APP levels in NFT-bearing neurons may contribute to changes in

gene expression via the APP intracellular domain (AICD), an APP

cleavage product that translocates to the nucleus and acts as a

transcriptional regulator (Cao and S€udhof, 2001). NFT-bearing

neuronsmayalsomodulate their response toextracellular, soluble

Ab through the expression of Ab receptors. Putative cell surface

receptors for Ab upregulated in NFT-bearing neurons include

PRNP, GRIN2B, GRIN2A, ATP1A3, EPHA4, and PGRMC1 (Fu

et al., 2014; Izzo et al., 2014; Laurén et al., 2009; Ohnishi et al.,

2015; Shankar et al., 2007). Thus, our findings support a model
wunsupervised clustering of excitatory and inhibitory subsets. The three data-

f the non-AD and AD-AT8� datasets and different cell compositions of the AD-

Ex and In clusters (y axis).

AT8+ somas to each Ex or In cluster.

ptibility to exhibit NFTs) and fractions of non-AD versus AD somas (interpreted

susceptible and resistant subtypes (adjusted p values: *p < 0.05, **p < 0.01,

ata are represented as mean ± SEM.
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in which APP upregulation and/or synaptic dysregulation in NFT-

bearing neurons may contribute to neurodegeneration.

However, the ultimate role of APP/Ab and tau as drivers of

neurodegeneration remain undetermined. Mouse models of AD

and tauopathy have provided insight into synergistic and inde-

pendent pathogenic effects of APP and tau (Busche and Hyman,

2020; Puzzo et al., 2020). Mice with mutations inMapt exhibit tau

pathology resembling aspects of AD. However, in contrast to our

human results, these mice show subtle transcriptional changes

and downregulation of synaptic genes (Pickett et al., 2019; Sier-

ksma et al., 2020). This discrepancy may be explained by differ-

ences in methodology (i.e., profiling of all cells versus comparing

AT8+ and AT8� neurons), the cell types exhibiting tau aggregates

(i.e., glial and neuronal in tau transgenic models versus neuronal

in human AD), or the potential effects of APP/Ab on NFT-bearing

neurons in AD. Profiling NFT-bearing neurons in AD versus

PART, a primary tauopathy featuring tau aggregates in a similar

distribution to AD without amyloid (Crary et al., 2014), could help

elucidate the effects and potential synergy of amyloid and tau.

In contrast to the shared dysregulation of synaptic and stress

response genes in NFT-bearing neurons, we found that changes

in glucose metabolism and mitochondrial function genes were

highly cell-type dependent and particularly enriched in Ex3.

This cluster differed in the directionality of changes (mostly

downregulated in NFT-bearing), pathway enrichment (i.e., ATP

metabolic process, oxidative phosphorylation, and respiratory

electron transport chain), and its TF regulatory networks (i.e.,

GABPA). Intriguingly, this cluster corresponds to a poorly char-

acterized but distinct neuronal subtype in middle cortical layers

that expresses RORB and PLCH1 and contains neurons ex-

pressing the genes for the neuropeptide galanin (GAL) (Alexand-

ris et al., 2020) and neprilysin or CD10 (MME). Neprilysin is a

transmembrane endopeptidase involved in the cleavage of

several neuropeptides and a major Ab-degrading enzyme (Farris

et al., 2007; Iwata et al., 2001). In neocortex, neprilysin expres-

sion has been described in parvalbumin interneurons (Rossier

et al., 2015), but its expression by neocortical excitatory neurons

was unknown.

We identified a dissociation between NFT susceptibility and

neuronal death in the BA9. Although imaging and histopatholog-

ical studies have demonstrated the regional co-occurrence of

NFTs and neurodegeneration, whether NFTs play toxic and/or

neuroprotective roles remains debated (Ittner et al., 2016; Ku-

chibhotla et al., 2014; Menkes-Caspi et al., 2015; Ossenkoppele

et al., 2016; Spires-Jones et al., 2008; Wang and Mandelkow,
Figure 8. NFT-associated versus AD-associated transcriptomic chang

(A) Three-way DGE analysis between non-AD, AD-AT8�, and AD-AT8+ datasets;

(B) Bar chart showing the total number of upregulated and downregulated genes

(C) Venn diagrams showing the number of overlapping and unique DE genes for

(D) Scatter plots illustrating the distribution of upregulated and downregulated g

(E) Bar plot showing average log2-fold change values for overlap genes in a repres

bars are overlaid (orange, AD-AT8� versus non-AD; green, AD-AT8+ versus non-A

comparisons. Only the 11 genes named in the figure were dysregulated in oppo

(F) Functional enrichment maps illustrating Ab-associated, NFT-associated, and

Gray circles delineate constellations of functionally related gene sets.

(G) Heatmaps of DE genes within the RNA splicing, death, and autophagy path

(green, upregulated; magenta, downregulated; MAST test with adjusted p value

See also Figure S9 and Table S7.
2016). Although we identified notable differences in NFT suscep-

tibility among 20 neuronal subtypes from BA9, we found subtle

differences in their susceptibility to death. We replicated this

result by re-analyzing two independent snRNA-seq datasets

from the same brain region (Leng et al., 2021; Mathys et al.,

2019). Other regions, including the entorhinal cortex and hippo-

campal CA1, undergo early and substantial neuronal loss (Gó-

mez-Isla et al., 1996). Leng et al. showed the early selective

vulnerability of RORB+ excitatory neurons in Braak II versus

Braak 0 caudal entorhinal cortex. Thus, different brain regions

may possess different patterns of vulnerability. Large-scale

multi-region and multi-stage single-cell studies are needed to

characterize selective vulnerability in greater detail.

Our BA9 results suggest that NFTs may represent cell-type-

specific responses to cellular and microenvironmental stressors

in AD and that these responses are neither fully protective nor

deadly to the cells bearing them. NFT-bearing neurons showed

altered expression of both pro- and anti-apoptotic genes.

Although their ultimate effect on survival remains undetermined,

upregulation of ATF4 and other genes involved in the cellular

stress response such as APP, JUN, and HSP90AA1 suggests

a homeostatic response to cellular injury. This response appears

to be insufficient to protect neurons from death in the AD micro-

environment, where other factors such as neuroinflammation,

hyperexcitable circuits, and vascular pathology (Arboleda-Ve-

lasquez et al., 2019; Chen et al., 2020; De Strooper and Karran,

2016; Merlini et al., 2021; Palop and Mucke, 2016) may critically

impact neuronal function and survival. Although we cannot

distinguish drivers of degeneration from compensatory re-

sponses, our datasets provide a resource for exploring tau-

dependent and -independent pathogenic mechanisms and

serve as a platform for discovery.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-MAP2 polyclonal MilliporeSigma Cat#AB5622; RRID:AB_91939

Mouse anti-NeuN MilliporeSigma Cat#MAB377; RRID:AB_2298772

Mouse anti-phospho-Tau Ser202, Thr205

monoclonal (AT8)

ThermoFisher Cat#MN1020; RRID:AB_223647

Rabbit polyclonal anti oligomeric tau (T22) MilliporeSigma Cat#ABN454; RRID:AB_2888681

Recombinant rabbit anti-phospho-Tau (Ser396)

monoclonal [EPR2731]

Abcam Cat#ab109390; RRID:AB_10860822

Phospho-Tau (Thr205) Polyclonal ThermoFisher Cat#44-738G; RRID:AB_2533738

Recombinant anti-SQSTM1/p62 [EPR4844] Abcam Cat#ab109012; RRID:AB_2810880

HRP Anti-beta Actin [AC-15] Abcam Cat# ab49900; RRID:AB_867494

Lamin B1 (D4Q4Z) Rabbit monoclonal Cell Signaling Technology Cat#12586; RRID:AB_2650517

Histone H3 C-terminal EpiCypher Cat#13-0001

Biological samples

Human postmortem brain tissue Table S1 N/A

Chemicals, peptides, and recombinant proteins

RNAscope Probe SLC17A7 ACD Bio Cat#415611

RNAscope Probe GAD1 ACD Bio Cat#404031

RNAscope Probe CUX2 ACD Bio Cat#425581

RNAscope Probe LAMP5 ACD Bio Cat#487691

RNAscope Probe COL5A2 ACD Bio Cat#510911

RNAscope Probe RORB ACD Bio Cat#446061

RNAscope Probe GAL ACD Bio Cat#317631

RNAscope Probe GABRG1 ACD Bio Cat#485931

RNAscope Probe RPRM ACD Bio Cat#565701

RNAscope Probe PCP4 ACD Bio Cat#446111

RNAscope Probe ROBO3 ACD Bio Cat#483191

RNAscope Probe NR4A2 ACD Bio Cat#582621

RNAscope Probe NTNG2 ACD Bio Cat#551651

RNAscope Probe SNAP25 ACD Bio Cat#518851

RNAscope Probe GABRA1 ACD Bio Cat#472141

RNAscope Probe GRIN2B ACD Bio Cat#485851

RNAscope Probe SYT1 ACD Bio Cat#525791

RNAscope Probe AFT4 ACD Bio Cat#405741

Critical commercial assays

Chromium Single Cell 3’ v2 Reagent Kit 10x Genomics PN-120237

RNAscope Multiplex Fluorescent Reagent Kit v2 ACD Bio Cat#323120

RNAscope 2.5 HD Duplex Assay ACD Bio Cat#322430

Deposited data

Raw and processed data This paper GEO: GSE129308

Published dataset Mathys et al., 2019 https://www.synapse.org/

!Synapse:syn18485175

Published dataset Leng et al., 2021 https://cellxgene.cziscience.

com/collections/180bff9c-c8a5-

4539-b13b-ddbc00d643e6
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Seurat Seurat v2.4, v3 and v4 https://satijalab.org/seurat/

Fiji/ImageJ Fiji v.2.3.1 RRID:SCR_002285

Adobe Illustrator CC Adobe Systems RRID:SCR_010279

SynGO SynGO consortium https://www.syngoportal.org/

g:Profiler g:Profiler version Ensembl 97,

Ensembl Genomes 44

https://biit.cs.ut.ee/gprofiler/gost

Cytoscape Cytoscape v3.8.2 RRID:SCR_003032

Stereo Investigator MBF Bioscience v.2018 RRID:SCR_002526

Cell Ranger 10x Genomics RRID:SCR_017344
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Inma Cobos (icobos@

stanford.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Raw single-cell RNA sequencing data generated in this study, associatedmetadata, and processed digital expressionmatrices

have been deposited at the NCBI’s Gene Expression Omnibus with accession number GSE129308. This paper also analyzes

existing, publicly available data. The accession numbers for the datasets are listed in the key resources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human samples
Fresh-frozen human brain samples were obtained from public repositories. Donor demographics and samples characteristics can be

found in Table S1. All AD donors used for single-soma transcriptomics (n = 8; 5 females and 3males) diedwith dementia and received

a neuropathological diagnosis of Alzheimer’s disease neuropathological change, a Braak stage VI of VI, and an ABC score (NIA-AA

Research Framework criteria) of A3B3C3 (Hyman et al., 2012; Braak and Braak, 1991). All controls (n = 8; 3 females and 5males) were

cognitively normal and Braak stage 0�II. Donor age ranged from 66 to 93 years (76.9 ± 12.4 and 69.9 ± 7.7 years for AD and controls,

respectively [mean ± SD]; not significant change in AD vs. controls; p = 0.20; two-sample equal variance t-test). The postmortem

interval (PMI) ranged from 1 to 33 hours (12.8 ± 7.6 and 18.2 ± 7.9 hours for AD and controls, respectively [mean ± SD]; not significant

change in AD vs. controls; p = 0.20; two-sample equal variance t-test). The RNA integrity number (RIN) ranged from 5.7 to 7.8 (6.5 ±

0.4 and 6.9 ± 0.5 for AD and controls, respectively [mean ± SD]; not significant change in AD vs. controls; p = 0.08; two-sample equal

variance t-test).

METHOD DETAILS

Isolation of individual somas with tau aggregates from frozen human brains
Fresh-frozen brain tissue blocks stored at –80�C were first warmed to –12�C to enable the dissection of thick (�500 mm) tissue sec-

tions while preserving the remaining frozen tissue for additional experiments. For each experiment, a section of the cortex (�200 mg)

encompassing an equal representation of all cortical layers was cut. The tissue was dissected under a stereomicroscope to remove

the white matter and leptomeninges and was then chopped into small pieces (< 1 mm3) using a chilled razor blade. RNA quality was

assessed from�10mg of tissue using the RNeasy kit (Qiagen Cat#74134) according to themanufacturer’s instructions to purify RNA,

and the Agilent Bioanalyzer 2100 RNA Nano chips (Agilent Technologies Cat#5067-1511) were used according to the manufacturer

instructions to quantify the RNA integrity number (RIN). To prevent further RNA degradation during soma isolation, all steps were

performed on ice in RNase-free conditions. For tissue homogenization, a Potter-Elvehjem tissue grinder was used. These grinders
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have a clearance space between the pestle and tubes (0.1-0.15 mm clearance; 8 mL tubes) wider than those of the grinders typically

used to dissociate nuclei, which facilitates the dissociation of relatively well-preserved somas. Each tissue sample was dissociated

using 2.4 mL of homogenization buffer (10 mM Tris pH 8, 5 mM MgCl2, 25 mM KCl, 250 mM sucrose, 1 mM DTT, 0.5x protease in-

hibitor [cOmplete Protease Inhibitor Cocktail, MilliporeSigmaCat#11697498001], and 0.2 U/mLRNase inhibitor). No enzymatic diges-

tion or detergents were used. For this amount of tissue, �15 grinder strokes were needed. The number of strokes was adjusted by

microscopically assessing the number andmorphology of somas and the presence of clumps using a hemocytometer. Homogenates

were then filtered through a 100-mm cell strainer and transferred into two 1.5-mL Eppendorf tubes.

Further clean-up was performed using iodixanol gradient centrifugation. The homogenate was first centrifuged at 4003g for 5 min

at 4�C. Then, the supernatant was aspirated and discarded, and the pellets were gently resuspended in 200 mL of cold homogeni-

zation buffer. The homogenates were pooled into one tube, and the total volume was measured and adjusted with homogenization

buffer to obtain an exact volume of 450 mL. An equal volume (450 mL) of 42% v/v iodixanol medium (75mMsucrose, 25mMKCl, 5mM

MgCl2, 10 mM Tris [pH 8], and 42% w/v iodixanol) was added to the homogenate and gently mixed with a pipette to obtain a final

concentration of 21% iodixanol. The mixture was then transferred to a new 2-mL Eppendorf tube containing 900 mL of cold 25% io-

dixanol medium (146 mM sucrose, 48 mMKCl, 10 mMMgCl2, 19 mM Tris [pH 8], and 25%w/v iodixanol) by slow layering on the top.

The tubes were centrifuged at 8,000 3g for 15 min at 4�C, resulting in the sedimentation of somas at the bottom, covered by the

supernatant and a top layer of thick material containing cell clumps and abundant myelin. The top layer and supernatant were

removed and discarded carefully, avoiding contamination of the pellet. Pellets were detached with a small amount (�50 mL) of im-

munostaining buffer (0.1M phosphate-buffered saline [PBS; pH 7.4], 0.5%bovine serum albumin [BSA], 5mMMgCl2, 2 U/mLDNAse

I, and 0.2 U/mL RNase inhibitor), transferred to clean tubes, and gently resuspended in a total volume of 200 mL of immunostaining

buffer. After a 15-min incubation with immunostaining buffer, at 4�C, with gentle rocking, primary antibodies were added (mouse anti-

phospho-Tau [Ser202, Thr205] monoclonal antibody [AT8], 1:150, ThermoFisher Cat#MN1020; rabbit anti-MAP2 polyclonal anti-

body, 1:40, MilliporeSigma Cat#AB5622), and the suspension was incubated for 40 min at 4�C with gentle rocking. An equal volume

(500 mL) of immunostaining buffer was then added, and the tubes were inverted several times before being centrifuged at 4003g for

5 min at 4�C. The supernatant was carefully removed, and the pellets were resuspended in 600 mL of immunostaining buffer. Sec-

ondary antibodies (goat-anti-mouse, Alexa Fluor 350, 1:500; goat-anti-rabbit, Alexa Fluor 647, 1:500) and a nuclear stain (SYTOX

green, 1:40,000) were added, and the solutions were incubated for 30 min at 4�C with gentle rocking. Aliquots of unstained, second-

ary antibody-treated only, and single-stained (SYTOX green, MAP2, or AT8) cells were saved as FACS controls.

The number and morphology of the somas were evaluated microscopically after each critical step and immediately before FACS.

Good-quality samples contained a suspension of single somas and naked nuclei, with few clumps and little debris; the proportion of

cells with relatively well-preserved somas varied between 20-50% of the total sample. The typical yield for �100 mg of cerebral cor-

tex tissue was between 0.5�1.5 3 106 somas.

FACS of somas with and without NFTs
FACSwas used to collect single-cell suspensions of somaswith tau aggregates. Sorting was performed using a BD FACSAria II at the

Flow Cytometry Core Laboratory at UCLA or a Sony SH800S equipped with four excitation lasers (488nm, 405nm, 638nm and

561nm) at Stanford. We tested three antibodies against pathological tau that recognize different stages of NFT maturity: AT8, T22

and PHF1 (Moloney et al., 2021). AT8 (mouse anti-phospho-Tau [Ser202, Thr205] monoclonal antibody; ThermoFisher Cat#MN1020)

is the standard antibody in Neuropathology for clinical and research applications and a marker for both pretangles and mature tan-

gles; T22 (rabbit polyclonal anti oligomeric tau [T22]; MilliporeSigma Cat#ABN454) is an antibody against oligomeric tau; PHF1 (rabbit

anti-phospho-Tau [Ser396] monoclonal antibody; Abcam Cat#ab109390) is enriched in mature and ghost tangles. Suspensions of

single somas isolated from the BA9 of Braak VI AD donors (n = 4) were co-stained with AT8 and either T22 or PHF1, analyzed by

FACS, and collected for microscopic examination (Figure S2).

We selected AT8 for the isolation and profiling of neuronswith pathological tau aggregates.We collected single-cell suspensions of

somas with tau aggregates (AT8+) and neighboring neurons without tau aggregates (MAP2+/A8�) from AD brains as well as neuronal

somas (MAP2+) from control brains. PBS was used as the sheath fluid, with a sheath pressure of 20 psi. A 100-mm nozzle tip was

used, and the frequency of droplet generation was �30 kHz. The primary laser was a blue Trigon 488-nm used in the generation

of forward scatter (FSC) and side scatter (SSC). The secondary lasers were UV Trigon 355-nm, blue Trigon 488-nm, and red Trigon

640-nm, used for the excitation of Alexa 350, SYTOX green, and Alexa Fluor 647, respectively. Sample events were acquired

at < 30% droplet occupancy.

FACS gates were based on a combination of regions drawn around target populations in 2D plots, performed in the following order:

FSC height vs. SSC height; SSC area vs. FSC width; FSC area vs. FSC width; SSC area vs. SYTOX green fluorescence (bandpass

filter 525/50); and Alexa 350 fluorescence (bandpass filter 450/50) vs. Alexa Fluor 647 fluorescence (bandpass filter 670/30). The FSC

versus SSC gates were set with permissive limits, discarding the smallest and largest particles. SYTOX green fluorescence was used

to discriminate single cells from cell clumps and anucleated cell fragments. Alexa Fluor 647 was used to discriminate neurons with

soma (MAP2+) from nonneuronal cells and naked neuronal nuclei (MAP2�). Alexa Fluor 350 was used to discriminate between somas

containing tau aggregates (AT8+) and somas without tau aggregates (A8�). Unstained, only secondary antibody-treated, and only

single primary antibody-treated cell suspensions were included as controls to minimize false positives due to nonspecific staining

or autofluorescence.
Neuron 110, 1–20.e1–e8, September 21, 2022 e3



ll
NeuroResource

Please cite this article in press as: Otero-Garcia et al., Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer’s disease,
Neuron (2022), https://doi.org/10.1016/j.neuron.2022.06.021
Two populations from AD brains were collected: AT8+ (either positive or negative for MAP2) and MAP2+/A8� somas; a population

of MAP2+ somaswas collected from control brains. The yield per sample ranged from 1,600�37,000 somas for AT8+ and over 3 x 105

somas for MAP2+. Somas were collected in 1.5-mL Eppendorf tubes containing 100–200 mL of collection buffer (0.1 M PBS [pH 7.4]

and 0.1 U/mL RNase inhibitor). After collection, BSA was added to each tube for a final concentration of 1%. To prevent somas from

adhering to the tube walls, the Eppendorf tubes used for collection were precoated with BSA. BSA precoating was performed by

filling the tubes with 10% BSA solution in PBS for 5 min, rinsing with PBS, and drying at 4�C overnight.

Western blotting of FACS-sorted somas
Somas with and without NFTs were collected by FACS in 0.1 M PBS (30,000�400,000 somas per sample), and the pellets lysed in

RIPA buffer (Cell Signaling Technology, Cat#9806S) in the presence of cOmplete Protease Inhibitor Cocktail (MilliporeSigma

Cat#11697498001). Total protein concentration was quantified using a Bradford protein assay in duplicate. Samples were separated

on 4-20% Mini-PROTEAN TGX Gels (Bio-Rad Cat#4561094) and then transferred to PVDF membranes (Bio-Rad Cat#10026934).

Membranes were blocked with 5% skimmed milk in Tris Buffered Saline + 0.1% Tween 20 (TBST) and incubated with anti-

SQSTM1/p62 antibody (1:1000, Abcam Cat#ab109012) at 4�C overnight, and then washed and incubated with horseradish perox-

idase-conjugated (HRP) conjugated secondary antibody for 1 hour at RT. Membranes were visualized with ECL substrate

(ThermoFisher Cat#32209). To control for loading, the membranes were stripped with Blot Stripping Buffer (ThermoFisher

Cat#46430) and reprobed with the following antibodies: anti-beta Actin (1:25000, Abcam Cat#ab49900), anti-Lamin B1 (1:1000,

Cell Signaling Technology Cat#12586), and anti-Histone H3 (1:5000, EpiCypher Cat#13-0001).

Single-soma RNA-sequencing
Single-soma mRNA capture and library preparation were performed using the 10x Genomics Chromium Single Cell 3’ v2 or v3 as-

says. Single-cell suspensions for FACSwere centrifuged at 4003g for 5min at 4�C to concentrate cells. Without disturbing the pellet,

sufficient supernatant was removed to achieve a concentration of�350 cells per mL. Cell concentrations were measured using a he-

mocytometer, and the quality of cells was examined under a fluorescence microscope. The numbers of loaded cells ranged from

1,400�11,000 to capture the maximum number of cells, with an upper limit of �5,000 cells per sample (for an expected cell capture

efficiency of �40%). The following steps were performed according to the manufacturer’s instructions. For cDNA amplification, the

number of PCR cycles used was 13�15 (adjusted to the targeted cell recovery). For library construction, the number of cycles for the

sample index PCR was 12�13 (adjusted for the quantified cDNA input).

The generated paired-end libraries were sequenced on Illumina Novaseq 6000. All the libraries from the AD donors were combined

and sequenced together in a single run. The concentration of each sample was normalized to the total number of cells to achieve

similar numbers of reads per cell. Cells were sequenced at a depth of �72,000 reads per cell, corresponding to a sequencing satu-

ration of �85%.

Paired-end sequence reads were processed using the 10x Genomics software package Cell Ranger version 3.1. We used the Cell

Ranger count pipeline with default parameters to perform alignment to the prebuilt reference genome GRCh38 and for filtering,

barcode counting, and UMI counting. The resulting digital expression matrices were analyzed using the R-based Seurat package,

versions v2, v3, or v4.

Analysis of the AT8–, AT8+, and combined AT8– and AT8+ datasets
To analyze the AT8� datasets, we loaded all digital expression matrices into Seurat, filtered out cells with < 250 genes

or > 12,000 UMIs, and removed mitochondrial DNA-encoded genes, ribosomal genes, and uncharacterized RP11-, RP13-, RP1-,

RP3-, RP4-, RP5-, and RP6- genes. All datasets were combined and normalized using the function LogNormalize with the default

scale factor 10,000. The number of UMIs and samples of origin were regressed out. We selected genes with average expression

values between 0.0075 and 3 and dispersion values > 0.3 (�4,200 genes) for downstream analysis. Principle component analysis

(PCA) was used to reduce dimensionality, and the first 22 statistically significant principal components (PCs) were selected for clus-

tering. Clusters were identified using a graph-based clustering approach (Seurat FindClusters function with the following parameters:

1:22 PCs; 1.0 resolution; 100 random start positions and 10 iterations per random start; and 30 k for the k-nearest neighbor algorithm)

and visualized with t-SNE using the same PCs. Cluster-specific marker genes were obtained by comparing the gene expression

levels for each individual cluster with those for all other cells using the Wilcoxon rank-sum and MAST tests. Genes detected in R

25% of cells (in either the tested cluster or in all other cells combined) with positive log-fold changes > 0.25 and adjusted

p-values < 0.05 were included. Cluster robustness was assessed by examining cluster stability after subsetting and rerunning clus-

tering and by comparing our data with previous human brain snRNA-seq (Hodge et al., 2019; Mathys et al., 2019) and gene expres-

sion data. We annotated 23 clusters corresponding to 13 excitatory neuron subtypes, 7 inhibitory neuron subtypes, and 3 glial cell

types. Clusters containing cells with mixed identities and/or cell states (1.57%; gray colored) were removed from further analysis.

To analyze the AT8+ datasets and the combined AT8� and AT8+ datasets, we used multiCCA for dimensionality reduction (Butler

et al., 2018). MultiCCA performed better than PCA in distinguishing between cell types and disease states. We used the same pa-

rameters as described above to filter low-quality cells, except that we regressed out mitochondrial DNA-encoded genes instead of

filtering them. The top 4,200 highly variable genes that were present in at least two datasets were selected for downstream analysis.

The first 26 canonical correlation vectors were aligned using the datasets/samples as a grouping variable (Figures S4G–S4J).
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Clustering and t-SNE were performed using the same canonical correlation and a resolution of 1. Cluster-specific marker gene iden-

tification and cluster robustness assessment were performed as described above.

To further assess the robustness of the clustering of the combined AT8� and AT8+ datasets, we reanalyzed our sequencing data

after alignment to a pre-mRNA reference genome (Figure S3). This approach has been shown to markedly improve gene detection in

nuclear preparations due to the high fraction of intronic reads captured in nuclear sequencing (Bakken et al., 2018). We created a

custom pre-mRNA reference package by modifying the prebuilt reference genome GRCh38 provided by Cell Ranger to include

both intronic and exonic reads for downstream analysis. The resulting digital expression matrices were analyzed using version

v3.1 of the R-based Seurat package.We used the single-cell transform (SCT)method for normalization, variance stabilization, regres-

sion of the number of UMIs and mitochondrial gene fraction (Hafemeister and Satija, 2019), and uniformmanifold approximation and

projection (UMAP) for dimensionality reduction and clustering. By selecting the first 6 statistically significant PCs, we first obtained

three clusters corresponding to excitatory neurons, inhibitory neurons, and nonneuronal cells. Subsequently, we performed an inde-

pendent clustering analysis for the excitatory neuron and inhibitory neuron subsets. Identification of cluster-specific marker genes

and cluster annotation was performed as described above.

Analysis of the non-AD, AD-AT8– and AD-AT8+ datasets
To analyze the non-AD (healthy controls), AD-AT8�, and AD-AT8+ datasets together, we generated two sets of digital expression

matrices from each sample, after alignment to exons (prebuilt reference genome GRCh38 provided by Cell Ranger version 3.1) or

to our custom pre-mRNA reference (built by modifying the prebuilt reference genome in Cell Ranger to include both intronic and

exonic reads) and integrated both into a single Seurat object. The reads aligned to pre-mRNAwere used for clustering, and the reads

aligned to exons were used for DGE analyses.

We used SCT for multidataset integration and UMAP for dimensionality reduction and clustering using Seurat versions v3 and v4.

SCT integration was performed after splitting the combined dataset into different objects based on a combination of two variables,

sorting (AT8+ or AT8�) and sequencing chemistry (10x Genomics v2 or v3), and then applying the sctransform function, which incor-

porates normalization, scaling and identifying highly variable genes (top 3000 genes) while regressing out two unwanted sources of

variation, the total number of UMIs and the percentage of mitochondrial genes per sample.

For clustering, we first subset the clusters corresponding to excitatory or inhibitory neurons identified after running UMAP,

FindNeighbors and FindClusters with default parameters and using the first 10 statistically significant PCs. We then performed an

independent clustering analysis for the excitatory neuron and inhibitory neuron subsets with higher resolution parameters. We

used the R-based package Clustree version 0.4.4 to visualize the clustering at different resolutions from 0.1 to 1.0. Identification

of cluster-specific marker genes and cluster annotation was performed as described above.

Single-cell reference mapping and annotation of published datasets
To compare the neuronal composition of the BA9 across single-cell AD datasets (Figure S8), we used the neuronal subtype anno-

tations from our BA9 control dataset as reference (Figure S1; neuronal nuclei and somas; 64,792 cells after QC) to reanalyze and

annotate our single-soma AD dataset (Figure 7) and two published single-nucleus datasets (Leng et al., 2021; Mathys et al., 2019)

using the function MapQuery in the Seurat package version v4. The published query datasets were downloaded from Synapse (Ma-

thys et al.: https://www.synapse.org/!Synapse:syn18485175) and Cellxgene (Leng et al.: https://cellxgene.cziscience.com/

collections/180bff9c-c8a5-4539-b13b-ddbc00d643e6). For each of the published query datasets, we subset the excitatory and

inhibitory neurons as annotated by the authors and kept only the nuclei that passed the QC parameters set by the authors

(44,123 neuronal nuclei in Mathys et al. and 23,339 neuronal nuclei in Leng et al.).

First, we used the function FindTransferAnchors in Seurat v4 to define a set of anchors between the reference and each of the three

query objects (default parameters with SCT as normalization method and PCA for dimensional reduction with 50 dimensions). Then,

we computed a reference UMAP model (RunUMAP function with default parameters and the first 25 dimensions) from our BA9 con-

trol dataset as a reference for cluster annotations. Finaly, we used the wrapper functionMapQuery to predict the identity of the query

cells and to transfer the annotations from the reference to the query datasets (TransferData function), integrate the datasets using the

pre-computed set of anchors (IntegrateEmbeddings function), and project the query datasets onto the reference UMAP

(ProjectUMAP function, a wrapper for FindNeighbors and RunUMAP).

Statistical analysis of NFT and cell death susceptibility
To test for statistically significant differences in cell composition among datasets (i.e., AD vs. non-AD in Figure 7, comparisons across

published single-cell AD datasets in Figure S8, and comparisons between nuclear and soma isolation methods in Figure S1), we ob-

tained the relative abundance of each neuronal subtype for each donor, on a scale from 0 to 1, either relative to all neurons or to either

excitatory or inhibitory neurons separately and performed beta regression using the R package betareg version 3.1-4. We used

the formula Relative.Abundance�Condition with the bias-correctedmaximum likelihood estimator (R>betareg(Relative.Abundance

� Condition, data=data,type="BC")). To correct for multiple hypothesis testing, we used Holm’s method to adjust the p values ob-

tained from beta regression using the p.adjust function of the R Stats package with the number of neuronal subtypes tested as the

"length" variable.
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For the AT8+ vs. AT8� comparison, where both AT8+ and AT8� cells were obtained from the same donor, we added random effects

to the model to account for the paired design. We fitted a generalized linear mixed model using maximum likelihood estimation via

’TMB’ (Template Model Builder) with the R package glmmTMB, using the formula Relative.Abundance � AT8.condition + (1|Donor),

and the function "beta_family". Correction for multiple hypothesis testing was performed as described above.

DGE analysis
DGE between NFT and NFT-free and between non-AD and AD datasets was assessed using the MAST generalized linear model

(Finak et al., 2015) on each cluster separately (Tables S2 and S6). MAST considers the characteristic bimodal distribution of sin-

gle-cell data in which gene expression is either detected (nonzero) or not detected (typically high due to the high rate of dropout

events). It has been shown to perform highly favorably on statistical power and FDR control compared to other methods for DGE

analysis in single-cell datasets (Soneson and Robinson, 2018). To generate the lists of DE genes, we applied MAST using the Seurat

function FindMarkers (Seurat v4). The following parameters and cut-off values were included in the design formula: adjusted

p-value < 0.05 (based on Bonferroni correction using the total number of genes in the dataset); log2 fold change (positive or nega-

tive) > 0.2; detection in R 20% of cells for at least one condition; and nUMI (i.e., cellular detection rate), age, sex, and RIN as latent

variables (i.e., cofounding variables).

To visualize shared and distinct DE genes across cell types with or without NFTs, we generated gene expression heatmaps by

hierarchical clustering of genes using Ward’s minimum variance method with the heatmap.2 R package. The resulting clustering

was used to build the row (genes) dendrogram. Columns (cell types) were clustered using Euclidian distance and reordered by

mean values.

Cross-validation of the molecular signatures associated with NFTs was performed by rerunning DGE after excluding a subset of

samples. We removed different combinations of two of the eight samples from the dataset, generated full lists of DE genes using

MAST, and compared them with the lists of DE genes generated from the 8-sample dataset. We used the RRHO (Plaisier et al.,

2010) to identify and visualize statistically significant overlap between pairs of gene lists (RRHO 1.22.0 R package). The full lists of

genes without any cut-off filters were ranked by their adjusted p-values, and the statistical significance of the number of overlapping

genes was measured successively to determine the strength and pattern of correlations. The output was visualized using heatmaps

with a step size (i.e., resolution) of 50 (Figure S4).

TFBS analysis
Transcription factor binding site (TFBS) enrichment analysis was performed in the promoters of the genes that were DE in cells with

NFTs, compared to cells that were NFT free in five neuronal subtypes (Ex1, Ex2, Ex3, Ex7, Ex10), using the TFBS pipeline described

elsewhere (Parikshak et al., 2016). The region 1 kb upstream of the transcription start site was defined as the canonical promoter

region. For each of the five clusters, we assessed the top 200 connected genes, ranked by intramodular connectivity (kME), using

the Religious Orders Study and Memory and Aging Project (ROSMAP) prefrontal cortex AD dataset (Mostafavi et al., 2018). Putative

motifs bound by the TF were obtained from the TRANSFAC database (Matys et al., 2003). We identified the upstream sequences of

these 200 genes using the Clover algorithm (Frith et al., 2004) to calculate motif enrichment. The background for enrichment was

calculated with the MEME algorithm (Bailey and Elkan, 1994) using 1000-bp sequences upstream of all human genes, human

CpG islands, and the sequence of human chromosome 20.We calculated p-values by selecting 1,000 sequences of the same length,

testing them for enrichment using MEME, and computing the p-values based on the observed motif enrichment ranks versus the

randomized sets. The enriched TFs for each of the five neuronal subtype clusters were obtained (Figure S5).

TF regulatory networks
To generate neuronal TF regulatory networks, we obtained data for human neuronal TFs and their target genes from the ENCODE

ChIP-seq dataset (ENCODE Project Consortium, 2012; Davis et al., 2018) and intersected them with the TFs identified in our

TFBS enrichment analysis. For each TF regulatory network, we defined the genes with robust evidence of coexpression across brain

tissues based on AMP-AD network analysis using the top 100 connected genes (ranked by kME) for each coexpression module

(Morabito et al., 2020) the genes that were DE in cells with NFTs versus NFT-free cells (Table S2), and cluster-specific background

genes (expressed inR 10%of cells in the cluster). The edges in the networks represent the bicorrelation of gene expression values in

the AMP-AD datasets, and the nodes are spatially arranged by multidimensional scaling (MDS) of the AMP-AD gene expression. In

the interest of visual clarity of the networks, we limited the genes displayed to a maximum of 25 DE genes (ranked by p-value) and 20

background genes (ranked by p-value); the numbers of DE genes between NFT versus NFT-free cells that were also coexpressed in

the AMP-AD network analysis were not limited (Figure S5B). The complete list of genes and intramodular connectivity data for each

transcriptional regulatory network are provided in Table S3.

GO enrichment analysis
The web server g:Profiler (version Ensembl 97, Ensembl Genomes 44) (Raudvere et al., 2019) was used to perform GO enrichment

analysis. To analyze the NFT-bearing and NFT-free somas, we input for each cluster the list of DE genes between cells with and

without NFTs against a list of background genes (expressed in R 10% of cells in the cluster) and obtained hierarchical sorting lists

of GO terms. Statistical significance thresholds were determined using Fisher’s exact test and multiple testing correction (default
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native method g:SCS). To limit the size of functional categories subjected to enrichment analysis, we filtered out GO terms with < 50

or > 500 genes. Data were downloaded in generic enrichment map (GEM) format to be used as input for functional enrichment anal-

ysis. Cytoscape with EnrichmentMap (Merico et al., 2010) was used to integrate and visualize GO enrichment results from the five

excitatory clusters with the highest cell numbers and percentages of AT8+ cells into a single network. The ranked lists of statistically

significant GO biological process terms obtained with g:Profiler were loaded into Cytoscape v3.8.2 with the EnrichmentMap app.

v3.2 using the following conservative parameters: nodes (representingGO-derived gene sets) included gene setswith p-values < 0.02

and FDR q-values < 0.1; edges (representing gene overlap between gene sets) used an overlap coefficient threshold of 0.7. Each of

the five clusters was color coded to visualize the shared and distinct contributions of each cell type. The enrichment map was an-

notated automatically using the Autoannotate app. and the clusters labeled with three words using the WordCould app. To analyze

together AD-associated and NFT-associated enrichment, we followed the sameworkflow to first generate hierarchical sorting lists of

GO terms (AD-associated: DE genes between AD-AT8� and non-AD; NFT-associated: DE genes between AD-AT8+ and AD-AT8�)
and then integrate the two comparisons into a single network for each cluster (Ex1, Ex2, Ex3, Ex7, Ex10).

The SynGO enrichment tool (Koopmans et al., 2019) was used to further characterize the synaptic transmission pathways enriched

in neurons with NFTs. The list of genes associated with synaptic transmission by functional enrichment analysis (genes in clusters #1,

#2 and #6 in Table S4; 510 genes) was loaded against a custom background list containing all genes expressed in the five excitatory

cell subtypes analyzed (6,843 genes; expressed inR 10% of cells). Using high-stringency parameters to filter annotations by exper-

imental evidence and aminimum of 3matching input genes per term, 227 genesmapped to SynGO annotated categories; 171 genes

had a cellular component annotation, and 176 genes had a biological process annotation. A total of 24 cellular component and 39

biological process terms were significantly enriched at 1% FDR.

Histological validation in human brain tissue
Validation of selected genemarkers was performed in the BA9 from the same AD donors used for transcriptomics. Single and double

chromogenic RNAscope ISH staining was performed on 20-mm-thick cryosections from fresh-frozen tissue following the manufac-

turer’s protocol (RNAscope 2.5 HD assay and duplex assay). Human RNAscope probes were obtained from ACD Bio. to detect the

following genes: SLC17A7 (#415611), GAD1 (#404031), CUX2 (#425581), LAMP5 (#487691), COL5A2 (#510911), RORB (#446061),

GAL (#317631), GABRG1 (#485931), RPRM (#565701), PCP4 (#446111), ROBO3 (#483191), NR4A2 (#582621), and NTNG2

(#551651). Adjacent Nissl-stained and NeuN-immunostained sections served as anatomical references to delineate boundaries

between cortical layers.

Quantification of the proportions of neurons with NFTs within neocortical layers was performed on 20-mm-thick cryosections

immunostained with NeuN (mouse anti-NeuN antibody, 1:1,000, MilliporeSigma Cat#MAB377) and p-tau Thr205 (rabbit anti-p-tau

Thr205, 1:1000, ThermoFisher Cat#44-738G) and counterstained with DAPI (8 donors). Quantification of the proportions of neurons

with NFTs in specific neuronal subtypes was performed by double or triple fluorescent AT8 IHC and RNAscope ISH for cell identity

markers (SLC17A7,GAD1,CUX2, PCP4,ROBO3,NR4A2,NTNG2) on 12-mm-thick sections (4 donors). Prior to staining, the sections

were photobleached to quench lipofuscin autofluorescence using an LED light source (Sun et al., 2017). For this, sections were fixed

in 4% paraformaldehyde for 15 min at 4�C, washed twice in 1x PBS for 5 min, and then exposed to an LED light source (300-watt, full

spectrum LED; Platinum LED Lights, Cat# P300). Sections were kept in 1x PBS, placed at a distance of 40 cm from the LED, and

exposed for 36�48 hours at 4�C. After photobleaching, RNAscope ISH was performed using the Multiplex Fluorescent Reagent

Kit v2 according to the manufacturer’s instructions, except for a shortened protease treatment time of 15 min. Fluorescence

signals were amplified and visualized using the TSA Plus Cyanine-5 and the TSA Plus Fluorescein systems (Akoya Biosciences,

#NEL745E001KT and #NEL741E001KT, respectively), according to the manufacturer’s instructions, using a TSA Plus working solu-

tion concentration of 1:500. After ISH, the sections were fixed in 4%paraformaldehyde for 15min at 4�C and then washed twice in 1x

PBS for 5min. Nonspecific binding was blocked with 10% normal goat serum in PBS for 30min at 4�C. Sections were then incubated

with 1:100 AT8 antibody in 1x PBS with 5% normal goat serum at 4�C overnight. The next day, the sections were washed three times

for 10 min in 1x PBS and incubated with 1:50 goat anti-mouse Alexa Fluor 350 for 1 hour at 4�C. Sections were washed in 1x PBS

three times for 5 min and mounted with Vectashield antifade mounting medium (Vector Laboratories).

We used digital images taken at 400x magnification with a Zeiss Axio Imager M2microscope equipped with a monochrome digital

camera (Hamamatsu C11440-22CU) and the Zeiss ApoTome.2 optical sectioning system to quantify the colocalization of AT8 with

the different neuronal subtypemarkers. Multiple imageswere acquired automatically within a region of interest that was tracedmanu-

ally to include the entire thickness of the cortex (for SLC17A7 andGAD1), the upper layers 2-3 (for CUX2), the middle layers 3b-5 (for

PCP4), layer 5b (for PCP4 and ROBO3), or layer 6 (for NTNG2 and NR4A2) and then combined into a single image using the slide-

scanning module in Stereo Investigator software v.2018 (MBF Bioscience). A total of 10�12 counting frames (400 mmx 250 mm) were

randomly placedwithin the region of interest to cover an area of�5mm2. Double- or triple-positive cells were countedmanually using

the Placing markers module in Stereo Investigator. For PCP4/ROBO3/AT8 triple staining, cells were counted throughout layer 5b (7.5

to 15 mm2). Four patients andR 2 sections per marker were analyzed. The investigator was blinded to the sample and to the results

obtained from single-cell RNA-seq studies. A total of 1,200–5,000 cells per marker were analyzed. The results are expressed as the

percentage of double- or triple-positive cells and the standard deviation for each gene marker.

The quantification of synaptic markers and ATF4 expression levels in excitatory neurons with and without NFTs was performed

by double AT8 IHC and RNAscope ISH (Multiplex Fluorescent Reagent Kit v2) for SLC17A7 combined with either SNAP25,GABRA1,
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GRIN2B,SYT1, orATF4 (ACDBio. probe numbers #518851, #472141, #485851, #525791, and #405741 respectively), on 12-mm-thick

sections from 4 AD donors (2 sections each). The sections were photobleached to quench lipofuscin autofluorescence, immuno-

stained forAT8andprocessed forRNAscope ISHasdescribedabove, thencounterstainedwithDAPI. Four-channel imageacquisition

was performed at 200x magnification using a Zeiss Axio Imager M2 microscope equipped with a monochrome digital camera

(Hamamatsu C11440-22CU) and the Zeiss ApoTome.2 optical sectioning system. Each area of acquisition was selected using the

slide-scanning module in the Stereo Investigator software v.2018 (MBF Bioscience) within a region of interest traced manually to

include layers 2-3.

Images were processed using ImageJ (Fiji v.2.3.1). First, individual cells were identified via segmentation of the DAPI images using

the watershed function with default parameters. Nuclei were filtered by size to exclude cell fragments and clumped nuclei. Then, the

integrated density (IntDen; defined as the product of area and mean gray value of each region of interest) of each RNA probe was

calculated and recorded within each cell (�5,000�15,000 cells per marker). Non-excitatory neurons were filtered out by eliminating

cells with a SLC17A7 IntDen value below a threshold ranging from 0.12 to 0.4 by sample. Similarly, cells were sorted into AT8� and

AT8+ populations by identifying an AT8 IntDen threshold for tau-positive cells in each case. To assess expression level differences of

SNAP25,GABRA1,GRIN2B andSYT1 between AT8� and AT8+ cells, we compared themean IntDen of each gene from the AT8� and

AT8+ populations for each sample and gene after fitting a LinearMixedModel with IntDen as dependent variable, AT8 as independent

pseudo-variable (AT8+, AT8�), and "sample" as a random effect with the formula IntDen� AT8 + (1|sample). Outliers due to imaging

artifacts were excluded from the analysis using the R function rstatix::identify_outliers(IntDen).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using R version 4.0.2 or GraphPad Prism version 9 (GraphPad, San Diego, CA). The number of

donors, tissue sections, or cells and p values for each experiment are noted in the figure legends. Statistical details of each exper-

iment are included in the method details section.

ADDITIONAL RESOURCES

d The datasets are publicly available for interactive viewing and exploration on the cellxgene platform by the Chan Zuckerberg

Initiative at https://cellxgene.cziscience.com/collections/b953c942-f5d8-434f-9da7-e726ba7c1481.

d The single-soma isolation protocol is publicly available at https://www.protocols.io/view/isolation-of-single-somas-from-

postmortem-fresh-fr-bp2l64o2dvqe/v1.
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Figure S1. Comparison between NeuN+ (nuclei) and MAP2+ (somas) transcriptomes 
Related to Figure 1 
(A) Overview of the experimental approach used to compare the transcriptomes from single nuclei 
(NeuN+) and single somas (MAP2+) from the BA9 of healthy control donors (n = 4). Somas were 
dissociated with mechanical force only (Potter-Elvehjem tissue grinder; clearance space between 
pestle and tube: 0.1-0.15 mm); nuclei were dissociated using mechanical force (Dounce tissue 
grinder; clearance space between pestle and tight tube: 0.02-0.056 mm) in the presence of 0.1% 
Triton X-100. Microphotographs illustrate single-soma and single-nucleus suspensions. Somas were 
stained with Hoechst and immunostained with MAP2 (rabbit anti-MAP2 polyclonal antibody, 1:40, 
Millipore cat #AB5622); nuclei were stained with Hoechst and immunostained with NeuN (mouse anti-
NeuN antibody, 1:1,000, Millipore cat # MAB377). Three populations (MAP2+ somas, NeuN+ nuclei, 
and all nuclei) were isolated by FACS, and their transcriptomes were profiled using 10x Genomics 
Chromium Single Cell 3’ v2. Somas and nuclei were sequenced at a depth of ~58,000 reads per cell, 
corresponding to a sequencing saturation of ~83%. 
(B) Box plots representing the numbers and distributions of genes and mitochondrial transcript 
fractions in the three populations (coded by color). Each dot represents a single cell.  
(C) UMAP plots combining the three populations (coded by color), showing similar clustering patterns.  
(D) Unbiased clustering identified the same neuronal subtypes in the MAP2 and NeuN datasets (13 
excitatory neuron clusters [Ex1 to Ex13; 49,424 cells], 6 inhibitory neuron clusters [15,368 cells], and 
glial cells derived almost exclusively from the All-nuclei dataset (9,491 cells including 5,220 
oligodendrocytes, 757 OPCs, 2,333 astrocytes, 367 microglia cells and 814 endothelial cells).  
(E) Dot plots from MAP2 (red) and NeuN (blue) datasets depicting highly similar expression levels of 
several marker genes (x-axis) within major excitatory (SLC17A7+) and inhibitory (GAD1+) neuronal 
subtypes (y-axis). The sizes of the dots represent the percentage of neurons expressing the marker; 
color intensities represent scaled expression levels.  
(F) Bar plots illustrating the fraction of neurons within each cluster derived from either the MAP2, 
NeuN, or all nuclei datasets. Bars on the x-axis correspond to clusters; error bars indicate standard 
deviation (*adjusted p-value < 0.05; ***adjusted p-value < 0.001; beta regression with the biased-
corrected maximum likelihood estimator and correction for multiple testing with Holm method for 
MAP2 vs. NeuN, MAP2 vs. all nuclei, and NeuN vs. all nuclei). 
G) Volcano plots showing gene enrichment in the MAP2 compared to NeuN datasets. The y-axis 
corresponds to the adjusted p-values; the x-axis corresponds to the log-fold change. Dots represent 
genes and dashed lines indicate significance thresholds (red = overrepresented or underrepresented in 
somas; gray = not significant; log-fold change values of < 0.1 or > 0.1; adjusted p-value < 0.05).  
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Figure S2. Comparison of FACS isolation of somas using three antibodies against pathological 
tau  
Related to Figure 1 
(A and B) FACS of somas with tau aggregates using AT8 combined with either T22, an antibody 
against oligomeric tau or PHF1, an antibody against abnormal phosphorylated tau at Ser396 which is 
enriched in mature NFTs (Moloney, Lowe and Murray, 2021; Wesseling et al., 2020) from the BA9 of a 
Braak VI AD donor. The FACS plots illustrate the high degree of overlap between AT8 and T22 (81.9% 
AT8+T22+, 8.3% AT8+T22-, and 9.7% AT8-T22+ among all tau+ somas) and between AT8 and PHF 
(89.1% AT8+PHF1+, 10.3% AT8+PHF1-, and 0.6% AT8-PHF1+ among all tau+ somas). The 
microphotographs illustrate representative AT8+T22+ and AT8+PHF1+ sorted somas. Although the 
expression levels detected by each antibody within the same cell were variable in early fibrils and 
mature tangles, all the somas were double positive.  
(C) Representative histological sections immunostained with AT8 and either T22 or PHF1 from the BA9 
of a Braak VI AD donor illustrating the high degree of overlap between AT8 and T22 and AT8 and 
PHF1. Arrowheads point to double positive cells; the single arrow points to a rare AT8-PHF1+ tangle. 
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Figure S3. Robustness of clustering of the NFT-bearing and NFT-free combined dataset 
Related to Figure 2 
(A-F) Comparison of unsupervised clustering using two strategies. The NFT-bearing and NFT-free 
combined dataset was analyzed using either exonic sequences for alignment and multiCCA for data 
integration and clustering (A, C, and E; Seurat v2.4 package) or pre-mRNA for alignment and the 
Seurat v3 workflow with single-cell transform (SCT) for data integration and UMAP for dimensionality 
reduction and clustering (B, D, and F; Seurat v3.1 package). Colors in the t-SNE plots in (A) 
correspond to cell types (top), subjects (bottom left) or datasets (bottom right). The same color code is 
used in (B), where the excitatory clusters (left) and inhibitory (right) clusters were subset and 
processed separately. Clusters were annotated as in Figure 2E (11 excitatory neuron subtypes and 7 
inhibitory neuron subtypes) in both workflows. The dot plots in (C and D) depict similar expression of 
marker genes (x-axis) within each excitatory and inhibitory neuronal subtype (y-axis) from the 
combined dataset processed after either multiCCA (left) or SCT (right) integration. The sizes of the 
dots represent the percentage of neurons expressing the marker; color intensities represent 
expression levels. The bar plots in (E and F) show the frequencies of neurons with NFTs within each 
cluster in the datasets processed after either multiCCA (left) or SCT (right) integration. Bars represent 
the absolute numbers of AT8- (yellow) and AT8+ (blue) somas for each excitatory and inhibitory 
neuronal subtype. Clustering robustness is shown by the similar results in cell type identification and 
NFT frequencies obtained with both workflows.  
(G-J) Selection of canonical correlation vectors (CCs) for dimensionality reduction in the multiCCA 
analysis of the NFT and NFT-free combined dataset. The plot in (G) represents the correlation strength 
between samples as a function of the number of CCs. Color corresponds to samples (AT8- and AT8+ 
datasets; 8 samples each; 63,110 somas in total). This visualization method is used to select the 
number of CCs for dimensionality reduction. The t-SNE plots demonstrate clustering after selecting 15 
(H), 26 (I) or 30 (J) CCs. Color corresponds to cell types. Clustering robustness is shown by the wide 
range of CCs producing similar clustering results. MultiCCA analysis with 26 CCs was chosen for 
downstream analysis. 
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Related to Figure 4
Rank-rank hypergeometric overlap (RRHO) heatmaps representing the overlap or correlation between 
the gene expression signatures associated with NFTs obtained from the dataset combining the eight 
donors (IDs #1 to #8) and the gene expression signatures obtained after excluding two donors (top 
x-axis = excluded donors). In the far-right column, no samples were excluded and the heatmaps depict 
a perfect correlation. Rows correspond to the five excitatory clusters with a high burden of tau 
pathology (Ex1, Ex2, Ex3, Ex7, and Ex10). Gene expression signatures are robust to subsampling of 
any two of the eight donors.
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Figure S5. Transcriptional regulatory networks associated with NFTs.  Figure legend on next page



 

  
 

Figure S5. Transcriptional regulatory networks associated with NFTs 
Related to Figure 4 
(A) Transcription factors identified by a TFBS enrichment analysis performed in the promoters of the 
genes that were differentially expressed in NFT-bearing compared to NFT-free neurons in five neuronal 
subtypes (Ex1, Ex2, Ex3, Ex7, and Ex10). The transcription factors enriched in the five excitatory 
clusters and those unique to cluster Ex3 are shown.  
(B) Transcriptional regulatory network plots (color code: yellow = coregulated and differentially 
expressed in NFT-bearing cells; pink = coregulated and coexpressed based on our single-cell data; 
green = coregulated, differentially expressed in NFT-bearing cells, and coexpressed based on 
ROSMAP datasets; blue = coregulated and coexpressed based on ROSMAP datasets). 
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Figure S6. Mapping of synaptic genes dysregulated in NFT-bearing neurons on a model synapse Related 
to Figure 6

Schematic representation of a model synapse adapted from the SynGO framework (Koopmans et al. 2019). 
Top-level GO cellular component (CC) and biological process (BP) annotations are depicted. The DE genes 
between neurons with and without NFTs in five excitatory clusters with a high burden of tau pathology (Ex1, 
Ex2, Ex3, Ex7, and Ex10) that were significantly enriched in the synapse (SynGO analysis; data from Figure 6 
and Table S5) are mapped onto their corresponding CC and/or BP. Only the genes that were differentially 
expressed in at least three of the five clusters are represented. Most genes were upregulated, except RIMS2, 
PNKD, and CALY. A few genes were downregulated in cluster Ex3 and upregulated in the other clusters 
(e.g., SNAP25, SLC6A17, YWHAG, SNCA, SPARCL1, SYN1, NAPB, NSF, and PRKCG).



A Relative susceptibility to NFT

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

R
at

io
s 

of
 A

D
-A

T8
+  to

 A
D

-A
T8

−

+ 
su

sc
ep

tib
le

+
re

si
st

an
t

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9
Ex1

0
Ex11Ex1

2
Ex1

3 In1 In2 In3 In4 In5 In6 In7

**

**

n.s.

** ** **

** n.s.

n.s.
n.s.

n.s.

*
**

n.s. n.s.

** ** ** ** **

Relative susceptibility to death

0

0.2

0.4

0.6

0.8

1.0
1.2

1.4

1.6

1.8

R
at

io
s 

of
 n

on
-A

D
 to

 A
D

+ 
su

sc
ep

tib
le

+
re

si
st

an
t

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9
Ex1

0
Ex11Ex1

2
Ex1

3 In1 In2 In3 In4 In5 In6 In7

n.s.

n.s.

n.s.
n.s.

n.s. n.s.

n.s.

n.s.

n.s.

*
n.s. n.s.

n.s. n.s.

n.s.
n.s.

n.s. n.s.
n.s.

Figure S7. Relative susceptibilities for NFT formation and cell death across neuronal subtypes  

Related to Figure 7

(A) Bar plots showing the ratios of AD-AT8+ to AD-AT8− somas (top) and the ratios of non-AD to AD somas 
(bottom) for each cluster (Ex1−Ex13 and In1−In7; relative to all neuronal somas), interpreted as 
susceptibility to NFTs and susceptibility to cell death, respectively. Dashed lines indicate a hypothetical 
ratio of 1:1. The red and green colors indicate the most susceptible and resistant subtypes, respectively 
(**p-value < 0.01; *p-value < 0.05; n.s. = not significant; Mann-Whitney U-test). Error bars indicate standard 
error of the mean.
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Figure S8. Neuronal cell composition of the BA9 in AD and controls compared with published datasets. 
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Figure S8. Neuronal cell composition of the BA9 in AD and controls compared with published 
datasets  
Related to Figure 7 
(A) Chart showing the brain region, number of donors, Braak stage, and numbers of neurons profiled in 
two published datasets (Mathys et al., 2019; Leng et al., 2021) and this manuscript. The datasets were 
reanalyzed using the wrapper function MapQuery in the Seurat package version v4 with the neuronal 
cell type annotations from our control BA9 dataset (Figure S1) as reference. 
(B) UMAP plots showing the excitatory (Ex1-Ex13) and inhibitory (In1-In7) clusters in the three query 
datasets alongside the reference dataset. The UMAPs were generated computing a reference UMAP 
model and then projecting each query dataset onto the reference UMAP structure using MapQuery.  
(C) Bar plots showing the fractions of neurons within Braak groups (control/low Braak, intermediate 
Braak, and high Braak) per cluster in the reference and three query datasets. The fraction of total 
excitatory neurons relative to total neurons and the fraction of each excitatory or inhibitory subtype 
relative to total neurons are represented (left and right plots, respectively). Error bars indicate standard 
error of the mean. The plots illustrate consistent neuronal cell compositions across datasets, despite 
the overall overrepresentation of superficial layer neurons (Ex1/2) in Leng et al. and Mathys et al. 
Except for a decrease in In3/4 (SST+/NPY+) and In6 (LAMP5+) interneurons in high compared to 
control/low Braak stages in the Mathys et al. dataset, no statistically significant differences were found 
(n.s. = not significant *adjusted p-value < 0.05, **adjusted p-value < 0.01; beta regression with the 
biased-corrected maximum likelihood estimator and correction for multiple testing with Holm method), 
supporting the lack of substantial cell-type-specific neuronal loss in the BA9.  
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Figure S9. Validation of ATF4 upregulation and increased p62/SQSTM1 protein expression in NFT-bearing 
neurons
Related to Figure 8
  

(A) Violin plots showing the expression levels of ATF4 in the non-AD (orange), AD-AT8− (teal), and AD-AT8+    

(salmon) datasets within each excitatory cluster (Ex1−Ex13). 
 

(B) Representative double fluorescent RNAscope ISH staining for SLC17A7 combined with ATF4 in AT8+ neurons 
from the BA9 of a Braak VI AD donor. Arrowheads point to AT8+ neurons with high ATF4 signals.
 

(C) Quantification of integrated density (IntDen) of ATF4 in AT8+ compared to AT8− excitatory neurons (4 donors; 
8,952 AT8+ and 654 AT8− cells). ATF4 was significantly upregulated (p < 0.001) after fitting a linear mixed model 
to predict its expression level (IntDen) with AT8 and using the donor as a random effect.
 

(D) Western blots showing increased p62/SQSTM1 protein levels in FACS-sorted AT8+ compared to AT8−           

neuronal somas (3 donors; ~ 15,000 somas per sample blotted with anti-p62/SQSTM1 and antibodies against 
β-Actin, Lamin 1B, and Histone H3 as loading controls).
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Donor 
ID # Age Sex PMI 

(hr) RIN Brain 
weight 

Brain 
region 

AD stage 
(NIA-AA) 

Braak 
stage 

Other 
pathology 

1 93 F 4 6.5 1,150 BA9 A3B3C3 VI CVD 
2 79 F 19.5 7.0 1,270 BA9 A3B3C3 VI none 
3 81 M 16 6.5 1,360 BA9 A3B3C3 VI none 
4 57 M 14 6.8 1,160 BA9 A3B3C3 VI none 
5 81 F 24 6.1 960 BA9 A3B3C3 VI none 
6 73 F 13 5.7 1,300 BA9 A3B3C3 VI none 
7 89 F 1 6.5 1,130 BA9 A3B3C3 VI CVD 
8 62 M 11 6.6 1,250 BA9 A3B3C3 VI none 
9 61 M 19.5 6.5 1,480 BA9 A0B1C0 II none 
10 67 F 11.8 7.8 970 BA9 A1B1C0 II none 
11 87 M 9.3 7.5 1,040 BA9 A0B1C0 II none 
12 67 F 33 6.6 1,160 BA9 A0B0C0 0 none 
13 72 M 16.4 6.4 N/A BA9 A0B1C0 I none 
14 66 M 11.2 7.1 N/A BA9 A0B1C0 I none 
15 68 F 19.2 6.8 N/A BA9 A0B1C0 II none 
16 71 M 24.9 6.5 N/A BA9 A0B0C0 0 none 
17 91 F 3.5 4.9 1,000 BA9 A3B3C3 VI none 
18 74 F 12 5.2 1,100 BA9 A3B3C3 VI severe CAA 
19 86 M 7 N/A N/A BA9 A3B3C3 0 none 

 
Table S1. AD and control donor demographics and sample characteristics  
Related to STAR Methods 
Characteristics of the AD (Braak VI) and control (Braak 0-II) donors used in this study. Donors #1-16 
were used for single-soma transcriptomics. Donors #17-19 were used for Western blots. All AD 
patients died with dementia and received a neuropathological diagnosis of Alzheimer’s disease 
neuropathological change, a Braak stage VI of VI, and an ABC score (NIA-AA Research Framework 
criteria) of A3B3C3 (Hyman et al., 2012; Braak and Braak, 1991). No neocortical Lewy body 
pathology was present. Brains #1 and #7 showed cardiovascular disease (CVD), including moderate 
to severe atherosclerosis in large vessels, moderate to severe arteriosclerosis, and rare remote 
lacunar infarcts. Cortical infarcts were not seen by gross examination, and the cerebral cortical 
tissue used for single-cell RNA-seq experiments was assessed histologically to ensure the absence 
of infarcts within or in close proximity to the sampled tissue. Case #18 had severe cerebral amyloid 
angiopathy (CAA). Brains #4, #6 and #8 were from subjects with early-onset dementia. 
Abbreviations: PMI = Post-mortem interval; RIN = RNA integrity number; BA9 = Brodmann area 9; 
M = male; F = female. 
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