Function to compare expression levels of co-expression modules between two sets of cell barcodes.
Usage
FindDMEs(
seurat_obj,
barcodes1,
barcodes2,
features = "MEs",
harmonized = TRUE,
wgcna_name = NULL,
add_missing = FALSE,
test.use = "wilcox",
only.pos = FALSE,
logfc.threshold = 0,
min.pct = 0,
verbose = FALSE,
pseudocount.use = 0,
...
)
Arguments
- seurat_obj
A Seurat object
- barcodes1
character vector containing cell barcodes for the first group to test. Positive fold-change means up-regulated in this group.
- barcodes2
character vector containing cell barcodes for the second group to test. Negative fold-change means up-regulated in this group.
- features
indicate whether to use "MEs" or "ModuleScores" for the comparison
- harmonized
logical determining whether or not to use harmonized MEs
- wgcna_name
The name of the hdWGCNA experiment in the seurat_obj@misc slot
- add_missing
logical determining whether or not to add missing modules back into the resulting dataframe with NA values.
- ...
Additional parameters for the FindMarkers function
Examples
FindDMEs
#> function (seurat_obj, barcodes1, barcodes2, features = "MEs",
#> harmonized = TRUE, wgcna_name = NULL, add_missing = FALSE,
#> test.use = "wilcox", only.pos = FALSE, logfc.threshold = 0,
#> min.pct = 0, verbose = FALSE, pseudocount.use = 0, ...)
#> {
#> if (is.null(wgcna_name)) {
#> wgcna_name <- seurat_obj@misc$active_wgcna
#> }
#> CheckWGCNAName(seurat_obj, wgcna_name)
#> if (!(all(barcodes1 %in% colnames(seurat_obj)))) {
#> stop("Some barcodes in barcodes1 not found in colnames(seurat_obj).")
#> }
#> if (!(all(barcodes2 %in% colnames(seurat_obj)))) {
#> stop("Some barcodes in barcodes2 not found in colnames(seurat_obj).")
#> }
#> if (length(intersect(barcodes1, barcodes2)) > 0) {
#> stop("Some barcodes overlap in barcodes1 and barcodes2")
#> }
#> if (features == "MEs") {
#> MEs <- GetMEs(seurat_obj, harmonized, wgcna_name)
#> }
#> else if (features == "ModuleScores") {
#> MEs <- GetModuleScores(seurat_obj, wgcna_name)
#> }
#> else {
#> stop("Invalid selection for features. Valid choices are MEs or ModuleScores.")
#> }
#> MEs <- MEs[, colnames(MEs) != "grey"]
#> MEs[MEs < 0] <- 0
#> MEs <- t(MEs)
#> ME_assay <- Seurat::CreateAssayObject(MEs)
#> DMEs <- FindMarkers(ME_assay, cells.1 = barcodes1, cells.2 = barcodes2,
#> slot = "counts", test.use = test.use, only.pos = only.pos,
#> logfc.threshold = logfc.threshold, min.pct = min.pct,
#> verbose = verbose, pseudocount.use = pseudocount.use,
#> ...)
#> DMEs$module <- rownames(DMEs)
#> if (add_missing) {
#> missing_mods <- rownames(MEs)[!(rownames(MEs) %in% DMEs$module)]
#> for (cur_mod in missing_mods) {
#> DMEs[cur_mod, ] <- NA
#> DMEs[cur_mod, "module"] <- cur_mod
#> }
#> }
#> DMEs
#> }
#> <bytecode: 0x7f853602e2b0>
#> <environment: namespace:hdWGCNA>