Skip to contents

Computes module preservation statistics in a query dataset for a given reference dataset

Usage

ModulePreservation(
  seurat_obj,
  seurat_ref,
  name,
  n_permutations = 500,
  parallel = FALSE,
  seed = 12345,
  gene_mapping = NULL,
  genome_ref_col = NULL,
  genome_query_col = NULL,
  return_raw = FALSE,
  wgcna_name = NULL,
  wgcna_name_ref = NULL,
  ...
)

Arguments

seurat_obj

A Seurat object

seurat_ref

A Seurat object serving as the reference for the module preservation analysis

name

The name to give the module preservation analysis.

n_permutations

Number of permutations for the module preservation test.

parallel

logical determining whether to run preservation analysis in parallel

seed

random seed for the permutation analysis.

gene_mapping

a dataframe containing gene name mappings between the query and the reference dataset. One column should have the gene name in the query dataset, and anotehr column should have the corresponding gene name in the reference dataset.

genome_ref_col

the column name containing the gene names for the reference dataset

genome_query_col

the column name containing the gene names for the query dataset

return_raw

if TRUE, returns the module preservation statistics, else returns seurat_obj with the stats added to the hdWGCNA experiment.

wgcna_name

The name of the hdWGCNA experiment in the seurat_obj@misc slot

wgcna_name_ref

The name of the hdWGCNA experiment in the seurat_ref@misc slot

Details

ModulePreservation performs a statistical test to assess the preservation of co-expression modules identified in one dataset in an independent dataset. This method is originally described by Langfelder et al. in the 2011 paper "Is My Network Module Preserved and Reproducible?". This method can be used to assess biological differences in networks, as well as technical differences / reproducibility across different batches.