Makes a igraph network plot using the module UMAP
Usage
ModuleUMAPPlot(
seurat_obj,
sample_edges = TRUE,
edge_prop = 0.2,
label_hubs = 5,
edge.alpha = 0.25,
vertex.label.cex = 0.5,
label_genes = NULL,
return_graph = FALSE,
keep_grey_edges = TRUE,
wgcna_name = NULL,
...
)
Arguments
- seurat_obj
A Seurat object
- sample_edges
logical determining whether we downsample edges for plotting (TRUE), or take the strongst edges.
- edge_prop
proportion of edges to plot. If sample_edges=FALSE, the strongest edges are selected.
- label_hubs
the number of hub genes to label in each module
- edge.alpha
scaling factor for edge opacity
- vertex.label.cex
font size for labeled genes
- return_graph
logical determining whether to plot thr graph (FALSE) or return the igraph object (TRUE)
- keep_grey_edges
logical determining whether to show edges between genes in different modules (grey edges)
- wgcna_name
The name of the hdWGCNA experiment in the seurat_obj@misc slot
Examples
ModuleUMAPPlot
#> function (seurat_obj, sample_edges = TRUE, edge_prop = 0.2, label_hubs = 5,
#> edge.alpha = 0.25, vertex.label.cex = 0.5, label_genes = NULL,
#> return_graph = FALSE, keep_grey_edges = TRUE, wgcna_name = NULL,
#> ...)
#> {
#> if (is.null(wgcna_name)) {
#> wgcna_name <- seurat_obj@misc$active_wgcna
#> }
#> TOM <- GetTOM(seurat_obj, wgcna_name)
#> modules <- GetModules(seurat_obj, wgcna_name)
#> umap_df <- GetModuleUMAP(seurat_obj, wgcna_name)
#> mods <- levels(umap_df$module)
#> mods <- mods[mods != "grey"]
#> subset_TOM <- TOM[umap_df$gene, umap_df$gene[umap_df$hub ==
#> "hub"]]
#> hub_list <- lapply(mods, function(cur_mod) {
#> cur <- subset(modules, module == cur_mod)
#> cur[, c("gene_name", paste0("kME_", cur_mod))] %>% top_n(label_hubs) %>%
#> .$gene_name
#> })
#> names(hub_list) <- mods
#> hub_labels <- as.character(unlist(hub_list))
#> print("hub labels")
#> print(hub_labels)
#> print(label_genes)
#> if (is.null(label_genes)) {
#> label_genes <- hub_labels
#> }
#> else {
#> if (!any(label_genes %in% umap_df$gene)) {
#> stop("Some genes in label_genes not found in the UMAP.")
#> }
#> label_genes <- unique(c(label_genes, hub_labels))
#> }
#> print(label_genes)
#> selected_modules <- modules[umap_df$gene, ]
#> selected_modules <- cbind(selected_modules, umap_df[, c("UMAP1",
#> "UMAP2", "hub", "kME")])
#> selected_modules$label <- ifelse(selected_modules$gene_name %in%
#> label_genes, selected_modules$gene_name, "")
#> selected_modules$fontcolor <- ifelse(selected_modules$color ==
#> "black", "gray50", "black")
#> selected_modules$framecolor <- ifelse(selected_modules$gene_name %in%
#> label_genes, "black", selected_modules$color)
#> edge_df <- subset_TOM %>% reshape2::melt()
#> print(dim(edge_df))
#> edge_df$color <- future.apply::future_sapply(1:nrow(edge_df),
#> function(i) {
#> gene1 = as.character(edge_df[i, "Var1"])
#> gene2 = as.character(edge_df[i, "Var2"])
#> col1 <- selected_modules[selected_modules$gene_name ==
#> gene1, "color"]
#> col2 <- selected_modules[selected_modules$gene_name ==
#> gene2, "color"]
#> if (col1 == col2) {
#> col = col1
#> }
#> else {
#> col = "grey90"
#> }
#> col
#> })
#> if (!keep_grey_edges) {
#> edge_df <- edge_df %>% subset(color != "grey90")
#> }
#> groups <- unique(edge_df$color)
#> if (sample_edges) {
#> temp <- do.call(rbind, lapply(groups, function(cur_group) {
#> cur_df <- edge_df %>% subset(color == cur_group)
#> n_edges <- nrow(cur_df)
#> cur_sample <- sample(1:n_edges, round(n_edges * edge_prop))
#> cur_df[cur_sample, ]
#> }))
#> }
#> else {
#> temp <- do.call(rbind, lapply(groups, function(cur_group) {
#> cur_df <- edge_df %>% subset(color == cur_group)
#> n_edges <- nrow(cur_df)
#> cur_df %>% dplyr::top_n(round(n_edges * edge_prop),
#> wt = value)
#> }))
#> }
#> edge_df <- temp
#> print(dim(edge_df))
#> edge_df <- edge_df %>% group_by(color) %>% mutate(value = scale01(value))
#> edge_df <- edge_df %>% arrange(value)
#> edge_df <- rbind(subset(edge_df, color == "grey90"), subset(edge_df,
#> color != "grey90"))
#> edge_df$color_alpha <- ifelse(edge_df$color == "grey90",
#> alpha(edge_df$color, alpha = edge_df$value/2), alpha(edge_df$color,
#> alpha = edge_df$value))
#> selected_modules <- rbind(subset(selected_modules, hub ==
#> "other"), subset(selected_modules, hub != "other"))
#> selected_modules <- rbind(subset(selected_modules, label ==
#> ""), subset(selected_modules, label != ""))
#> g <- igraph::graph_from_data_frame(edge_df, directed = FALSE,
#> vertices = selected_modules)
#> if (return_graph) {
#> return(g)
#> }
#> plot(g, layout = as.matrix(selected_modules[, c("UMAP1",
#> "UMAP2")]), edge.color = adjustcolor(igraph::E(g)$color_alpha,
#> alpha.f = edge.alpha), vertex.size = igraph::V(g)$kME *
#> 3, edge.curved = 0, edge.width = 0.5, vertex.color = igraph::V(g)$color,
#> vertex.label = igraph::V(g)$label, vertex.label.dist = 1.1,
#> vertex.label.degree = -pi/4, vertex.label.family = "Helvetica",
#> vertex.label.font = 3, vertex.label.color = igraph::V(g)$fontcolor,
#> vertex.label.cex = 0, vertex.frame.color = igraph::V(g)$framecolor,
#> margin = 0)
#> }
#> <bytecode: 0x7f8545f7a9d0>
#> <environment: namespace:hdWGCNA>