Project a set of co-expression modules from a reference to a query dataset
Usage
ProjectModules(
seurat_obj,
seurat_ref,
modules = NULL,
group.by.vars = NULL,
gene_mapping = NULL,
genome1_col = NULL,
genome2_col = NULL,
overlap_proportion = 0.5,
vars.to.regress = NULL,
scale.model.use = "linear",
wgcna_name = NULL,
wgcna_name_proj = NULL,
...
)
Arguments
- seurat_obj
A Seurat object where the modules will be projected to
- seurat_ref
A Seurat object containing the co-expression modules to be projected
- modules
optionally provide a dataframe containing gene-module information to bypass seurat_ref
- group.by.vars
groups to harmonize by
- gene_mapping
dataframe to map gene names between genomes
- genome1_col
column in gene_mapping containing the genes for seurat_ref (reference)
- genome2_col
column in gene_mapping containing the genes for seurat_obj (query)
- overlap_proportion
the proportion of genes that must be present in seurat_obj for a given module to be projected. Default = 0.5 (50% of genes)
- vars.to.regress
character vector of variables in seurat_obj@meta.data to regress when running ScaleData
- scale.model.use
model to scale data when running ScaleData choices are "linear", "poisson", or "negbinom"
- wgcna_name
The name of the hdWGCNA experiment in the seurat_ref@misc slot
- wgcna_name_proj
The name of the hdWGCNA experiment to be created for the projected modules in seurat_obj
Examples
ProjectModules
#> function (seurat_obj, seurat_ref, modules = NULL, group.by.vars = NULL,
#> gene_mapping = NULL, genome1_col = NULL, genome2_col = NULL,
#> overlap_proportion = 0.5, vars.to.regress = NULL, scale.model.use = "linear",
#> wgcna_name = NULL, wgcna_name_proj = NULL, ...)
#> {
#> if (is.null(wgcna_name)) {
#> wgcna_name <- seurat_ref@misc$active_wgcna
#> }
#> CheckWGCNAName(seurat_ref, wgcna_name)
#> if (is.null(modules)) {
#> modules <- GetModules(seurat_ref, wgcna_name)
#> }
#> else {
#> if (!all(c("gene_name", "module", "color") %in% colnames(modules))) {
#> stop("Missing columns in modules table. Required columns are gene_name, module, color")
#> }
#> }
#> if (!is.factor(modules$module)) {
#> modules$module <- as.factor(modules$module)
#> }
#> if (!is.null(gene_mapping)) {
#> modules <- TransferModuleGenome(modules, gene_mapping,
#> genome1_col, genome2_col)
#> }
#> mods <- as.character(unique(modules$module))
#> mod_props <- unlist(lapply(mods, function(x) {
#> cur_mod <- subset(modules, module == x)
#> sum(cur_mod$gene_name %in% rownames(seurat_obj))/nrow(cur_mod)
#> }))
#> mods_keep <- mods[mod_props >= overlap_proportion]
#> mods_remove <- mods[mod_props < overlap_proportion]
#> if (length(mods) > 0) {
#> warning(paste0("The following modules will not be projected because too few genes are present in seurat_obj: ",
#> paste(mods_remove, collapse = ", ")))
#> }
#> modules <- subset(modules, module %in% mods_keep) %>% dplyr::mutate(module = droplevels(module))
#> gene_names <- modules$gene_name
#> genes_use <- intersect(gene_names, rownames(seurat_obj))
#> modules <- modules %>% subset(gene_name %in% genes_use)
#> if (!(wgcna_name_proj %in% names(seurat_obj@misc))) {
#> seurat_obj <- SetupForWGCNA(seurat_obj, wgcna_name = wgcna_name_proj,
#> features = genes_use)
#> }
#> print("project modules")
#> seurat_obj <- ModuleEigengenes(seurat_obj, group.by.vars = group.by.vars,
#> modules = modules, vars.to.regress = vars.to.regress,
#> scale.model.use = scale.model.use, wgcna_name = wgcna_name_proj,
#> ...)
#> seurat_obj
#> }
#> <bytecode: 0x7f854365ca20>
#> <environment: namespace:hdWGCNA>